University of Toronto
 Solutions to MAT187H1F TERM TEST
 of THURSDAY, JUNE 7, 2012

Duration: 110 minutes
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

Instructions: Present your solutions to the following questions in the booklets provided. The value for each question is indicated in parantheses beside the question number.
TOTAL MARKS: 60

Answers:

1. [8 marks] Solve the initial value problem

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{4 y}{x}=\frac{3}{x^{2}}+\frac{5}{x^{6}} ; y=6 \text { if } x=1 . \\
& \text { Ans: } y=\frac{1}{x}-\frac{5}{x^{5}}+\frac{10}{x^{4}} .
\end{aligned}
$$

2. [8 marks] Solve the initial value problem

$$
x^{\prime \prime}(t)+4 x^{\prime}(t)+3 x(t)=0 ; \quad x(0)=2 ; \quad x^{\prime}(0)=-1
$$

for x as a function of t.

$$
\text { Ans: } x=-\frac{1}{2} e^{-3 t}+\frac{5}{2} e^{-t}
$$

3. [9 marks] As the salt KNO_{3} dissolves in methanol the number $x(t)$ of grams of the salt in the solution after t seconds satisfies the differential equation

$$
\frac{d x}{d t}=x\left(1-\frac{x}{200}\right) .
$$

If $x=50$ when $t=0$, how long will it take for an additional 100 grams of the salt to dissolve?

Ans: $t=2 \ln 3$ seconds.
4. [10 marks] Recall: if $x(t)$ is the mass of solute dissolved in a solution of volume $V(t)$, at time t, in a large mixing tank, then

$$
\frac{d x(t)}{d t}+\frac{r_{o} x(t)}{V(t)}=r_{i} c_{i}
$$

where c_{i} is the concentration of solute in a solution entering the mixing tank at rate r_{i}, and r_{o} is the rate at which the well-mixed solution is leaving the tank.

A tank with capacity 1000 L initially contains 600 L of water and 150 kg of dissolved salt. At $t=0$, a salt water solution containing 0.1 kg salt per L is added at a rate of $20 \mathrm{~L} / \mathrm{min}$ and the mixed solution is drained off at a rate of $15 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank when it reaches the point of overflowing? Ans: $x=119.44 \mathrm{~kg}$.
5. [9 marks] Decide if each of the following infinite series converges or diverges. Justify your choice.
(a) $[3$ marks $] \sum_{k=1}^{\infty} \frac{k^{3}}{3 k^{4}-15 k^{2}+17}$

Ans: diverges by Limit Comparison Test.
(b) $[3$ marks $] \sum_{m=1}^{\infty} \frac{\sin ^{2} m}{m^{2}}$

Ans: converges by Comparison Test.
(c) $\left[3\right.$ marks] $\sum_{n=1}^{\infty}\left(\frac{\tan ^{-1} n}{2}\right)^{n}$

Ans: converges by Root Test.
6. [8 marks; 4 marks for each part] Determine if the following infinite series converge conditionally, converge absolutely, or diverge.
(a) $\sum_{k=1}^{\infty}(-1)^{k} \frac{k+1}{k(k+3)} \quad$ Ans: converges conditionally.
(b) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(k!)^{2}}{(2 k-1)!}$

Ans: converges absolutely.
7. [8 marks; 4 for each part.] Find the exact sum of each of the following infinite series:
(a) $\sum_{k=0}^{\infty}\left(\frac{2}{3^{k}}-\frac{4}{5^{k+1}}\right)$

Ans: 2
(b) $\sum_{n=0}^{\infty} \frac{1}{(n+2)(n+3)}$

Ans: $1 / 2$

Solutions:

1. [8 marks] Solve the initial value problem

$$
\frac{d y}{d x}+\frac{4 y}{x}=\frac{3}{x^{2}}+\frac{5}{x^{6}} ; \quad y=6 \text { if } x=1 .
$$

Solution: The integrating factor is

$$
\mu=e^{\int \frac{4 d x}{x}}=e^{4 \ln |x|}=x^{4}
$$

so

$$
x^{4} y=\int\left(3 x^{2}+\frac{5}{x^{2}}\right) d x=x^{3}-\frac{5}{x}+C \Rightarrow y=\frac{1}{x}-\frac{5}{x^{5}}+\frac{C}{x^{4}} .
$$

To find C substitute $x=1$ and $y=6: 6=1-5+C \Leftrightarrow C=10$. Thus

$$
y=\frac{1}{x}-\frac{5}{x^{5}}+\frac{10}{x^{4}} .
$$

2. [8 marks] Solve the initial value problem

$$
x^{\prime \prime}(t)+4 x^{\prime}(t)+3 x(t)=0 ; \quad x(0)=2 ; \quad x^{\prime}(0)=-1
$$

for x as a function of t.
Solution: the auxiliary quadratic equation is $r^{2}+4 r+3=0 \Leftrightarrow r=-3, r=-1$. So

$$
x=A e^{-3 t}+B e^{-t} \text { and } x^{\prime}=-3 A e^{-3 t}-B e^{-t}
$$

Using the initial conditions we have:

$$
A+B=2 \text { and }-3 A-B=-1 \Leftrightarrow(A, B)=(-1 / 2,5 / 2)
$$

Thus

$$
x=-\frac{1}{2} e^{-3 t}+\frac{5}{2} e^{-t} .
$$

3. [9 marks] As the salt KNO_{3} dissolves in methanol the number $x(t)$ of grams of the salt in the solution after t seconds satisfies the differential equation

$$
\frac{d x}{d t}=x\left(1-\frac{x}{200}\right) .
$$

If $x=50$ when $t=0$, how long will it take for an additional 100 grams of the salt to dissolve? .
Solution: separate variables, and use partial fractions:

$$
\int \frac{200 d x}{x(200-x)}=\int d t \Leftrightarrow \int\left(\frac{1}{x}+\frac{1}{200-x}\right) d x=t+C \Leftrightarrow \ln |x|-\ln |200-x|=t+C .
$$

To find C let $t=0$ and $x=50: \ln 50-\ln 150=C \Leftrightarrow C=-\ln 3$. Now let $x=150$ and solve for t :

$$
\ln 150-\ln 50=t-\ln 3 \Rightarrow t=2 \ln 3
$$

So it will take $t=2 \ln 3$ seconds.
4. [10 marks] Recall: if $x(t)$ is the mass of solute dissolved in a solution of volume $V(t)$, at time t, in a large mixing tank, then

$$
\frac{d x(t)}{d t}+\frac{r_{o} x(t)}{V(t)}=r_{i} c_{i}
$$

where c_{i} is the concentration of solute in a solution entering the mixing tank at rate r_{i}, and r_{o} is the rate at which the well-mixed solution is leaving the tank.
A tank with capacity 1000 L initially contains 600 L of water and 150 kg of dissolved salt. At $t=0$, a salt water solution containing 0.1 kg salt per L is added at a rate of $20 \mathrm{~L} / \mathrm{min}$ and the mixed solution is drained off at a rate of $15 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank when it reaches the point of overflowing?
Solution: take $r_{i}=20, c_{i}=1 / 10, r_{o}=15$ and $V=600+5 t$. Then the differential equation

$$
\frac{d x}{d t}+\frac{15 x}{600+5 t}=2
$$

has integrating factor

$$
\mu=e^{\int \frac{15 d t}{60+5 t}}=e^{3 \ln (600+5 t)}=(600+5 t)^{3}
$$

and so

$$
x=\frac{1}{(600+5 t)^{3}} \int 2(600+5 t)^{3} d t=\frac{(600+5 t)^{4} / 10+C}{(600+5 t)^{3}}=\frac{600+5 t}{10}+\frac{C}{(600+5 t)^{3}} .
$$

To find C let $t=0$ and $x=150: 150=60+C / 600^{3} \Leftrightarrow C=90(600)^{3}$.
The tank is full when $V=1000 \Leftrightarrow 600+5 t=10000 \Leftrightarrow t=80$.
Let $t=80$ and calculate x :

$$
x=\frac{1000}{10}+\frac{90(600)^{3}}{1000^{3}}=119.44
$$

5. [9 marks] Decide if each of the following infinite series converges or diverges. Justify your choice.
(a) [3 marks] $\sum_{k=1}^{\infty} \frac{k^{3}}{3 k^{4}-15 k^{2}+17}$ diverges by Limit Comparison Test.

Justification: let $a_{k}=\frac{k^{3}}{3 k^{4}-15 k^{2}+17}$ and $b_{k}=\frac{1}{k}$. Then

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\frac{k^{4}}{3 k^{4}-15 k^{2}+17}=\frac{1}{3},
$$

which is finite, non-zero. Since $\sum b_{k}$ is the harmonic series, it diverges. By the Limit Comparison Test, $\sum a_{k}$ diverges as well.
(b) [3 marks] $\sum_{m=1}^{\infty} \frac{\sin ^{2} m}{m^{2}}$ converges by Comparison Test.

Justification: let $a_{m}=\frac{\sin ^{2} m}{m^{2}}, b_{m}=\frac{1}{m^{2}}$. Since $\sin ^{2} m \leq 1$, we have

$$
a_{m} \leq b_{m},
$$

and $\sum b_{k}$ converges, since it is a p-series with $p=2>1$.
So by the Comparison Test, $\sum a_{m}$ converges as well.
(c) [3 marks] $\sum_{n=1}^{\infty}\left(\frac{\tan ^{-1} n}{2}\right)^{n}$ converges by Root Test.

Justification: use the Root Test:

$$
\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{\tan ^{-1} n}{2}\right)^{n / n}=\lim _{n \rightarrow \infty} \frac{\tan ^{-1} n}{2}=\frac{\pi}{4}<1 ;
$$

so $\sum a_{n}$ converges.
6. [8 marks; 4 marks for each part] Determine if the following infinite series converge conditionally, converge absolutely, or diverge.
(a) $\sum_{k=1}^{\infty}(-1)^{k} \frac{k+1}{k(k+3)}$ converges conditionally.

Justification:

$$
\sum_{k=1}^{\infty} \frac{k+1}{k(k+3)}
$$

diverges by the Limit Comparison Test, as in Question 5(a). But

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{k+1}{k(k+3)}
$$

converges by the Alternating Series Test. So, all in all, the given series converges conditionally.
(b) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(k!)^{2}}{(2 k-1)!}$ converges absolutely.

Justification: use the Root Test for absolute convergence.

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty} \frac{((k+1)!)^{2}}{(k!)^{2}} \frac{(2 k-1)!}{(2 k+1)!}=\lim _{k \rightarrow \infty} \frac{(k+1)^{2}}{(2 k+1)(2 k)}=\frac{1}{4}<1,
$$

so the given series converges absolutely.
7. [8 marks; 4 for each part.] Find the exact sum of each of the following infinite series:
(a) $\sum_{k=0}^{\infty}\left(\frac{2}{3^{k}}-\frac{4}{5^{k+1}}\right)=2$

Solution:

$$
\sum_{k=0}^{\infty}\left(\frac{2}{3^{k}}-\frac{4}{5^{k+1}}\right)=2 \sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{k}-\frac{4}{5} \sum_{k=0}^{\infty}\left(\frac{1}{5}\right)^{k}=\frac{2}{1-1 / 3}-\frac{4}{5} \frac{1}{1-1 / 5}=2
$$

(b) $\sum_{n=0}^{\infty} \frac{1}{(n+2)(n+3)}=\frac{1}{2}$

Solution: this is a telescoping sum, once you write a_{n} in terms of its partial fractions:

$$
\frac{1}{(n+2)(n+3)}=\frac{1}{n+2}-\frac{1}{n+3} .
$$

Then

$$
\begin{aligned}
S_{N} & =\sum_{n=0}^{N}\left(\frac{1}{n+2}-\frac{1}{n+3}\right) \\
& =\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{N+2}-\frac{1}{N+3} \\
& =\frac{1}{2}-\frac{1}{N+3} .
\end{aligned}
$$

Thus

$$
\sum_{n=0}^{\infty} \frac{1}{(n+2)(n+3)}=\lim _{N \rightarrow \infty} S_{N}=\frac{1}{2}
$$

