University of Toronto
 Solutions to MAT187H1F TERM TEST
 of THURSDAY, JUNE 3, 2010

Duration: 90 minutes
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

Instructions: Answer all seven questions. Present your solutions in the booklets provided. The value for each question is indicated in parantheses beside the question number. TOTAL MARKS: 60

General Comments:

1. The questions on this test are considered routine. The only possible complications are in Question 2, solving for y; and in Question 7(b), which is a telescoping sum in which four terms do not cancel.
2. The results on this test were better than the results on the first test.

Breakdown of Results: 83 registered students wrote this test. The marks ranged from 20.8% to 95.8%, and the average was 66.8%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	2.4%
A	22.9%	$80-89 \%$	20.5%
B	26.5%	$70-79 \%$	26.5%
C	25.3%	$60-69 \%$	25.3%
D	7.2%	$50-59 \%$	7.2%
F	18.1%	$40-49 \%$	9.7%
		$30-39 \%$	6.0%
		$20-29 \%$	2.4%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

1. [6 marks] Suppose that the population of a bacteria colony is growing exponentially so that its population doubles every 4 hours. How long does it take for the bacteria colony to triple its population?

Solution: for exponential growth the doubling time is $t=\frac{\ln 2}{k}$. So

$$
4=\frac{\ln 2}{k} \Leftrightarrow k=\frac{\ln 2}{4} \simeq 0.1732867952
$$

Then

$$
3 x_{0}=x_{0} e^{k t} \Leftrightarrow e^{k t}=3 \Leftrightarrow t=\frac{\ln 3}{k} \simeq 6.339850003
$$

so the tripling time is about 6.34 hours.
2. [10 marks] Solve the initial value problem

$$
\text { DE: }\left(1+2 y^{2}\right) y^{\prime}=2 x y^{2} \quad \text { IC: } y(0)=1
$$

for y as an explicit function of x.

Solution: separate variables.

$$
\begin{aligned}
\left(1+2 y^{2}\right) \frac{d y}{d x} & =2 x y^{2} \\
\Leftrightarrow \int\left(\frac{1}{y^{2}}+2\right) d y & =\int 2 x d x \\
\Leftrightarrow-\frac{1}{y}+2 y & =x^{2}+C
\end{aligned}
$$

To find C let $x=0$ and $y=1$:

$$
-1+2=0+C \Leftrightarrow C=1 .
$$

Thus

$$
-\frac{1}{y}+2 y=x^{2}+1
$$

Isolating y is the hardest part:

$$
\begin{aligned}
-\frac{1}{y}+2 y=x^{2}+1 & \Rightarrow-1+2 y^{2}=\left(x^{2}+1\right) y \\
& \Rightarrow 2 y^{2}-\left(x^{2}+1\right) y-1=0 \\
& \Rightarrow y=\frac{x^{2}+1 \pm \sqrt{\left(x^{2}+1\right)^{2}+8}}{4} \\
(\text { using IC: } y(0)=1) & \Rightarrow y=\frac{x^{2}+1+\sqrt{\left(x^{2}+1\right)^{2}+8}}{4}
\end{aligned}
$$

3. [8 marks] Find the general solution to the differential equation

$$
\frac{d y}{d x}-2 x y=2 x
$$

What is the particular solution that passes through the point $(0,3)$?

Solution: use the method of the integrating factor.

$$
\mu=e^{\int(-2 x) d x}=e^{-x^{2}}
$$

The general solution is

$$
\begin{aligned}
y & =\frac{\int \mu 2 x d x}{\mu} \\
& =e^{x^{2}} \int 2 x e^{-x^{2}} d x \\
& =e^{x^{2}}\left(-e^{-x^{2}}+C\right) \\
& =-1+C e^{x^{2}}
\end{aligned}
$$

Particular Solution: if $x=0$ and $y=3$, then

$$
3=-1+C \Rightarrow C=4
$$

So the particular solution passing through the point $(0,3)$ is

$$
y=-1+4 e^{x^{2}}
$$

4. [9 marks] Solve for x as a function of t if $x^{\prime \prime}+4 x^{\prime}+5 x=0$ and $x(0)=2, x^{\prime}(0)=-4$.

Solution: the auxiliary quadratic is $r^{2}+4 r+5$. Solve:

$$
r^{2}+4 r+5=0 \Leftrightarrow r=\frac{-4 \pm \sqrt{16-20}}{2}=-2 \pm i
$$

Thus

$$
x=C_{1} e^{-2 t} \cos t+C_{2} e^{-2 t} \sin t
$$

To find C_{1} use the initial condition $x=2$ when $t=0$:

$$
2=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=2 .
$$

To find C_{2} you need to find x^{\prime} :

$$
x^{\prime}=C_{1}\left(-2 e^{-2 t} \cos t-e^{-2 t} \sin t\right)+C_{2}\left(-2 e^{-2 t} \sin t+e^{-2 t} \cos t\right)
$$

Now substitute $t=0, x^{\prime}=-4, C_{1}=2$:

$$
-4=2(-2-0)+C_{2}(0+1) \Leftrightarrow C_{2}=0
$$

Thus

$$
x=2 e^{-2 t} \cos t
$$

5. [9 marks; 3 for each part.] Decide if the following infinite series converge or diverge; justify your choice.
(a) $\sum_{k=0}^{\infty} \frac{5}{3^{k}+1}$
\otimes Converges
Diverges
by the limit comparison test
Calculation: use the fact that the infinite geometric series $\sum_{k=0}^{\infty} \frac{1}{3^{k}}$ converges.

$$
a_{k}=\frac{5}{3^{k}+1}, b_{k}=\frac{1}{3^{k}} \text { and } \lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=5 \lim _{k \rightarrow \infty} \frac{3^{k}}{3^{k}+1}=5 \lim _{k \rightarrow \infty} \frac{1}{1+3^{-k}}=5
$$

Or use comparison test:

$$
a_{k}<\frac{5}{3^{k}} \text { and } \sum_{k=0}^{\infty} \frac{5}{3^{k}}=5 \sum_{k=0}^{\infty} \frac{1}{3^{k}}
$$

converges.
(b) $\sum_{k=1}^{\infty} k^{2} \sin ^{2}\left(\frac{1}{k}\right)$Converges
\otimes Diverges
by the k-th term test

Calculation:

$\lim _{k \rightarrow \infty} k^{2} \sin ^{2}\left(\frac{1}{k}\right)=\lim _{k \rightarrow \infty} \frac{\sin ^{2}\left(\frac{1}{k}\right)}{\frac{1}{k^{2}}}=\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{h^{2}}=\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)^{2}=1 \neq 0$.
(c) $\sum_{k=1}^{\infty} \frac{\ln k}{e^{k}} \quad \otimes$ Converges $\quad \bigcirc$ Diverges by the ratio test

Calculation:

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\ln (k+1)}{\ln k} \frac{e^{k}}{e^{k+1}}=\frac{1}{e} \lim _{k \rightarrow \infty} \frac{k}{k+1}=\frac{1}{e}<1 .
$$

6. [10 marks] If x is the mass of salt dissolved in a saline solution of volume V, at time t, in a large mixing tank, then

$$
\frac{d x}{d t}+\frac{r_{o}}{V} x=r_{i} c_{i}
$$

where c_{i} is the concentration of salt in a solution entering the mixing tank at rate r_{i}, and r_{o} is the rate at which the well-mixed solution is leaving the tank.
A 100-liter tank initially contains 70 liters of brine (i.e. saline solution) containing 10 kg of salt. Brine containing 1 kg of salt per liter enters the tank at the rate of 5 liters per sec, and the well-mixed brine in the tank flows out at the rate of 2 liters per sec. How many kilograms of salt will the tank contain when it is full?

Solution: $V=70+\left(r_{i}-r_{o}\right) t=70+3 t$. The integrating factor of the differential equation

$$
\frac{d x}{d t}+\frac{2}{70+3 t} x=5
$$

is

$$
\mu=e^{\int \frac{2}{70+3 t} d t}=e^{2 \ln (70+3 t) / 3}=(70+3 t)^{2 / 3}
$$

and so

$$
x=\frac{\int 5 \mu d t}{\mu}=\frac{(70+3 t)^{5 / 3}+C}{(70+3 t)^{2 / 3}}=(70+3 t)+\frac{C}{(70+3 t)^{2 / 3}} .
$$

Use the initial condition $t=0, x=10$ to find C :

$$
10=70+\frac{C}{70^{2 / 3}} \Leftrightarrow C=-60 \cdot 70^{2 / 3} \simeq-1019.1
$$

Thus

$$
x=(70+3 t)-\frac{60 \cdot 70^{2 / 3}}{(70+3 t)^{2 / 3}}
$$

The tank is full when $V=100 \Leftrightarrow 70+3 t=100 \Leftrightarrow t=10$. At $t=10$,

$$
x=(70+30)-\frac{60 \cdot 70^{2 / 3}}{(70+30)^{2 / 3}}=100-60\left(\frac{7}{10}\right)^{2 / 3} \simeq 52.7
$$

So when the tank is full of brine it contains about 52.7 kilograms of salt.
7. [8 marks; 4 for each part.] Find the sum of the following infinite series:
(a) $\sum_{k=0}^{\infty}\left(\frac{1}{3^{k}}+\frac{2}{5^{k+1}}\right)$

Solution: use the sum of an infinite geometric series, $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$, if $|r|<1$.

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left(\frac{1}{3^{k}}+\frac{2}{5^{k+1}}\right) & =\sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{k}+\frac{2}{5} \sum_{k=0}^{\infty}\left(\frac{1}{5}\right)^{k} \\
& =\frac{1}{1-1 / 3}+\frac{2}{5} \frac{1}{1-1 / 5} \\
& =\frac{3}{2}+\frac{2}{5} \cdot \frac{5}{4} \\
& =\frac{3}{2}+\frac{2}{4}=2
\end{aligned}
$$

(b) $\sum_{k=5}^{\infty} \frac{4}{k^{2}-4 k}$

Solution: use partial fractions.

$$
\frac{4}{k^{2}-4 k}=\frac{1}{k-4}-\frac{1}{k}
$$

So $\sum_{k=5}^{\infty} \frac{4}{k^{2}-4 k}$ is a telescoping sum:

$$
\begin{aligned}
\sum_{k=5}^{\infty} \frac{4}{k^{2}-4 k} & =\sum_{k=5}^{\infty}\left(\frac{1}{k-4}-\frac{1}{k}\right) \\
& =\frac{1}{1}-\frac{1}{5}+\frac{1}{2}-\frac{1}{6}+\frac{1}{3}-\frac{1}{7}+\frac{1}{4}-\frac{1}{8}+\frac{1}{5}-\frac{1}{9}+\frac{1}{6}-\frac{1}{10} \cdots \\
& =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \\
& =\frac{25}{12}
\end{aligned}
$$

