University of Toronto
 Solutions to MAT187H1F TERM TEST
 of WEDNESDAY, JUNE 10, 2009

Duration: 90 minutes
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

Instructions: Answer all seven questions. Present your solutions in the booklets provided. The value for each question is indicated in parantheses beside the question number. TOTAL MARKS: 60

General Comments: The results on this test were very good, and very few students failed.

Breakdown of Results: 92 registered students wrote this test. The marks ranged from 28.3% to 93.3%, and the average was 73.15%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	8.7%
A	38.0%	$80-89 \%$	29.3%
B	$32,8 \%$	$70-79 \%$	32.6%
C	12.0%	$60-69 \%$	12.0%
D	10.9%	$50-59 \%$	10.9%
F	6.5%	$40-49 \%$	4.3%
		$30-39 \%$	1.1%
		$20-29 \%$	1.1%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

1. [8 marks] Consider the curve with parametric equations $x=e^{t^{2}} ; y=t^{2}-t^{3}$. Find both $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(x, y)=(e, 0)$, for which $t=1$.

Solution:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t-3 t^{2}}{2 t e^{t^{2}}}=e^{-t^{2}}-\frac{3}{2} t e^{-t^{2}}
$$

So at $t=1$,

$$
\frac{d y}{d x}=e^{-1}-\frac{3}{2} e^{-1}=-\frac{1}{2 e} .
$$

Also,

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(e^{-t^{2}}-\frac{3}{2} t e^{-t^{2}}\right)}{2 t e^{t^{2}}}=\frac{-2 t e^{-t^{2}}-\frac{3}{2} e^{-t^{2}}+3 t^{2} e^{-t^{2}}}{2 t e^{t^{2}}}
$$

So at $t=1$,

$$
\frac{d^{2} y}{d x^{2}}=\frac{-2 e^{-1}-3 e^{-1} / 2+3 e^{-1}}{2 e}=-\frac{1}{4 e^{2}} .
$$

2. [8 marks] Solve for y as a function of x if

$$
3 y^{\prime \prime}+6 y^{\prime}+6 y=0 ; y(0)=2, y^{\prime}(0)=-4
$$

Solution: the auxiliary quadratic is $3 r^{2}+6 r+6$. Solve:

$$
3 r^{2}+6 r+6=0 \Leftrightarrow r=\frac{-6 \pm \sqrt{36-72}}{6}=-1 \pm i
$$

Thus

$$
y=C_{1} e^{-x} \cos x+C_{2} e^{-x} \sin x
$$

To find C_{1} use the initial condition $y=2$ when $x=0$:

$$
2=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=2 .
$$

To find C_{2} you need to find y^{\prime} :

$$
y^{\prime}=C_{1}\left(-e^{-x} \cos x+e^{-x} \sin x\right)+C_{2}\left(-e^{-x} \sin x+e^{-x} \cos x\right)
$$

Now substitute $x=0, y^{\prime}=-4, C_{1}=2$:

$$
-4=-(2)+C_{2} \Leftrightarrow C_{2}=-4+2 \Leftrightarrow C_{2}=-2
$$

Thus

$$
y=2 e^{-x} \cos x-2 e^{-x} \sin x
$$

3. [8 marks] Find the area of the region inside the curve with polar equation $r=4+2 \cos \theta$ but outside the circle with polar curve $r=3$.

Solution:

Find the intersection points:

$$
\begin{aligned}
4+2 \cos \theta=3 & \Rightarrow \cos \theta=-\frac{1}{2} \\
& \Rightarrow \theta= \pm \frac{2 \pi}{3}
\end{aligned}
$$

Then

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-2 \pi / 3}^{2 \pi / 3}\left((4+2 \cos \theta)^{2}-3^{2}\right) d \theta \\
& =2\left(\frac{1}{2}\right) \int_{0}^{2 \pi / 3}\left((4+2 \cos \theta)^{2}-3^{2}\right) d \theta, \text { by symmetry } \\
& =\int_{0}^{2 \pi / 3}\left(7+16 \cos \theta+4 \cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{2 \pi / 3}(7+16 \cos \theta+2(1+\cos 2 \theta)) d \theta, \text { using double angle formula } \\
& =\int_{0}^{2 \pi / 3}(9+16 \cos \theta+2 \cos 2 \theta) d \theta \\
& =[9 \theta+16 \sin \theta+\sin 2 \theta]_{0}^{2 \pi / 3} \\
& =6 \pi+16\left(\frac{\sqrt{3}}{2}\right)-\frac{\sqrt{3}}{2} \\
& =6 \pi+\frac{15 \sqrt{3}}{2}
\end{aligned}
$$

4. [8 marks] Consider the curve with parametric equations $x=t^{3}$ and $y=3 t+8$ for $t \in \mathbb{R}$. Find the area of the region under the curve and above the x-axis, for $-8 \leq x \leq 8$.

Solution:

$$
x= \pm 8 \Rightarrow t^{3}= \pm 8 \Rightarrow t= \pm 2
$$

Then:

$$
\begin{aligned}
A & =\int_{-8}^{8} y d x \\
& =\int_{-2}^{2}(3 t+8) 3 t^{2} d t \\
& =\int_{-2}^{2}\left(9 t^{3}+24 t^{2}\right) d t \\
& =\left[\frac{9}{4} t^{4}+8 t^{3}\right]_{-2}^{2} \\
& =36+64-36-(-64) \\
& =128
\end{aligned}
$$

5. [10 marks] Torricelli's Law states that

$$
A(y) \frac{d y}{d t}=-a \sqrt{2 g y}
$$

where y is the depth of a fluid in a tank at time $t, A(y)$ is the cross-sectional area of the tank at height y above the exit hole, a is the cross-sectional area of the exit hole, and g is the acceleration due to gravity.

An inverted conical water tank with a radius at its top of 3 m and a height of 9 m above its vertex, is initially full. At 12 noon a plug at the bottom of the tank is removed, and 10 min later the depth of the water in the tank is 4 m . When will the tank be completely empty?

Solution:

$$
\begin{aligned}
& \text { By similar triangles, } \begin{aligned}
& \frac{x}{y}=\frac{3}{9} \Rightarrow x=\frac{y}{3} \text {, so } \\
& \qquad \begin{aligned}
A(y) & =\pi x^{2} \\
& =\pi\left(\frac{y}{3}\right)^{2} \\
& =\frac{\pi}{9} y^{2}
\end{aligned}
\end{aligned} \text {. }
\end{aligned}
$$

Solve the DE by separating variables:

$$
\begin{aligned}
A(y) \frac{d y}{d t}=-a \sqrt{2 g y} & \Leftrightarrow \frac{\pi}{9} \int \frac{y^{2}}{\sqrt{y}} d y=-\frac{\pi}{9} \int K d t, \text { for } K=\frac{9 a \sqrt{2 g}}{\pi} \\
& \Leftrightarrow \int y^{3 / 2} d y=-\int K d t \\
& \Leftrightarrow \frac{2}{5} y^{5 / 2}=-K t+C, \text { for some } C
\end{aligned}
$$

Let t be measured in minutes; let $t=0$ be noon. When $t=0, y=9$, so

$$
\frac{2}{5} 9^{5 / 2}=C \Leftrightarrow C=\frac{486}{5}=97.2
$$

When $t=10, y=4$, so

$$
\frac{2}{5} 4^{5 / 2}=-10 K+\frac{486}{5} \Leftrightarrow 10 K=\frac{486}{5}-\frac{64}{5} \Leftrightarrow K=\frac{211}{25}=8.44
$$

The tank is empty when $y=0$:

$$
0=-K t+C \Leftrightarrow t=\frac{C}{K}=\frac{97.2}{8.44}=\frac{2430}{211} \simeq 11.5 .
$$

So the tank will be empty at about 12:11:30 PM; that is, a minute and a half after 12.10 PM .
6. [10 marks] Find the particular solution to the initial value problem:

$$
\mathrm{DE}: \frac{d y}{d x}+\frac{3 y}{x}=\frac{\cos x}{x^{2}} ; \quad \text { IC: } y=0 \text { if } x=-\pi .
$$

Solution: The integrating factor is

$$
\rho=e^{\int \frac{3}{x} d x}=e^{3 \ln |x|}=|x|^{3} ;
$$

take either $\pm x^{3}$. Then the general solution is

$$
\begin{aligned}
y & =\frac{\int \rho \frac{\cos x}{x^{2}} d x}{\rho} \\
& =\frac{\int x \cos x d x}{x^{3}} \\
& =\frac{x \sin x+\cos x+C}{x^{3}}, \text { by parts, }
\end{aligned}
$$

To find C, let $x=-\pi$ and $y=0$:

$$
0=\frac{0-1+C}{-\pi^{3}} \Leftrightarrow C=1
$$

Thus the particular solution is

$$
y=\frac{x \sin x+\cos x+1}{x^{3}} \text { or } \frac{\sin x}{x^{2}}+\frac{\cos x}{x^{3}}+\frac{1}{x^{3}} .
$$

7. [8 marks] Find the length of the curve with parametric equations

$$
x=\ln t ; y=2 t ; z=t^{2}
$$

for $1 \leq t \leq 4$.

Solution:

$$
\begin{aligned}
L & =\int_{1}^{4} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{1}^{4} \sqrt{\left(\frac{1}{t}\right)^{2}+(2)^{2}+(2 t)^{2}} d t \\
& =\int_{1}^{4} \sqrt{\frac{1}{t^{2}}+4+4 t^{2}} d t \\
& =\int_{1}^{4} \sqrt{\left(\frac{1}{t}+2 t\right)^{2}} d t \\
& =\int_{1}^{4}\left(\frac{1}{t}+2 t\right) d t, \text { since } t>0 \\
& =\left[\ln t+t^{2}\right]_{1}^{4} \\
& =\ln 4+15
\end{aligned}
$$

