University of Toronto
FACULTY OF APPLIED SCIENCE AND ENGINEERING
Solutions to FINAL EXAMINATION, APRIL, 2009
First Year - CHE, CIV, IND, LME, MEC, MMS
\section*{MAT187H1S - CALCULUS II}
Exam Type: A

Comments and Alternate Solutions:

1. Questions 11 and 12 were out of the homework. Question 8 was out of the book, but not an assigned homework problem. They are all routine questions.
2. 7(a) converges by the comparison test with $b_{n}=\frac{1}{\sqrt{n}}$ or $\frac{1}{n}$, but to get full marks you must show that $a_{n}>b_{n}$. It's easier to use the limit comparison test.
3. To get full marks when using the comparison test in $7(\mathrm{~b})$ you have to say $\left|a_{n}\right|<1 / n^{2}$, since the comparison test assumes both series are positive-term series. You can also use a combination of comparison and integral tests for $7(\mathrm{~b})$.
4. In $7(\mathrm{c})$, the n-th term goes to infinity, but that is not easy to prove directly. For instance, you can prove that $a_{n}>n / 4$. So 7 (c) does diverge by the n-th term test.
5. Question 13 can be done using a straightforward approach; but it is easier to do if you use power series.

Breakdown of Results: 430 students wrote this exam. The marks ranged from 12% to 99%, and the average mark was 58.9%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	3.7%
A	12.5%	$80-89 \%$	8.8%
B	17.2%	$70-79 \%$	17.2%
C	17.9%	$60-69 \%$	17.9%
D	21.9%	$50-59 \%$	21.9%
F	30.5%	$40-49 \%$	16.3%
		$30-39 \%$	10%
		$20-29 \%$	3.5%
		$10-19 \%$	0.7%
		$0-9 \%$	0.0%

1. The position $x(t)$ of a particle at time t changes according to the differential equation

$$
4 x^{\prime \prime}(t)+7 x^{\prime}(t)+3 x(t)=0
$$

The motion of the particle is
(a) simple harmonic motion.
(b) underdamped.
(c) critically damped.
(d) overdamped.

Solution: solve the associated quadratic.

$$
4 r^{2}+7 r+3=0 \Rightarrow r=-\frac{3}{4} \text { or }-1
$$

Both roots are real, so the system is overdamped. The answer is (d).
2. What is the length of the polar curve with polar equation $r=e^{\theta}$, for $0 \leq \theta \leq 1$?

Solution:

(a) $e-1$
(b) $\sqrt{2}$
(c) $\sqrt{2}(e-1)$
(d) $\sqrt{2} e$

$$
\begin{aligned}
\int_{0}^{1} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta & =\int_{0}^{1} \sqrt{e^{2 \theta}+e^{2 \theta}} d \theta \\
& =\sqrt{2} \int_{0}^{1} e^{\theta} d \theta \\
& =\sqrt{2}\left[e^{\theta}\right]_{0}^{1}=\sqrt{2}(e-1)
\end{aligned}
$$

The answer is (c).
3. What is the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{4^{n} \ln n}(x-1)^{n}$?

Solution: Check convergence at endpoints. At $x=-3$,

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{4^{n} \ln n}(-4)^{n}=\sum_{n=2}^{\infty} \frac{1}{\ln n}
$$

which diverges, by comparison with the harmonic series. At $x=5$,

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{4^{n} \ln n}\left(4^{n}\right)=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}
$$

which converges by the alternating series test.
The answer is (d).
4. How many critical points are there on the curve with parametric equations

$$
x=t^{3}-12 t, y=\ln \left(t^{2}+1\right)
$$

for $t \in \mathbb{R}$?
(a) 1
(b) 2
(c) 3
(d) 4

Solution:

$$
\begin{gathered}
\frac{d y}{d x}=0 \Leftrightarrow \frac{d y}{d t}=\frac{2 t}{t^{2}+1}=0 \Leftrightarrow t=0 \\
\frac{d y}{d x} \text { is undefined } \Leftrightarrow \frac{d x}{d t}=3 t^{2}-12=0 \Leftrightarrow t= \pm 2 .
\end{gathered}
$$

The answer is (c).
5. What is the area bounded by one loop of the curve with polar equation $r^{2}=4 \cos \theta$?
(a) 1
(b) 2
(c) 4
(d) 8

Solution: $r^{2}=4 \cos \theta=0 \Rightarrow \theta= \pm \pi / 2$.

$$
A=2\left(\frac{1}{2} \int_{0}^{\pi / 2} r^{2} d \theta\right)=\int_{0}^{\pi / 2} 4 \cos \theta d \theta=[4 \sin \theta]_{0}^{\pi / 2}=4
$$

The answer is (c).
6. What is the arc length of the curve with parametric equations

$$
x=t \sin t ; y=t \cos t ; z=\frac{1}{3}(2 t)^{3 / 2}
$$

for $0 \leq t \leq 2$?
(a) 1
(b) 2
(c) 3
(d) 4

Solution:

$$
\begin{aligned}
& \int_{0}^{2} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t \\
= & \int_{0}^{2} \sqrt{(\sin t+t \cos t)^{2}+(\cos t-t \sin t)^{2}+(\sqrt{2 t})^{2}} d t \\
= & \int_{0}^{2} \sqrt{1+2 t+t^{2}} d t=\int_{0}^{2}(1+t) d t=\left[t+\frac{t^{2}}{2}\right]_{0}^{2}=4
\end{aligned}
$$

The answer is (d).
7. [12 marks; 4 for each part.] Decide if the following infinite series converge or diverge. Summarize your work at the right by marking your choice, and by indicating which convergence/divergence test you are using.
(a) $\sum_{n=1}^{\infty} \frac{4 n^{5 / 2}+3 n^{2}-3 n}{n^{3}+n^{3 / 2}+\sqrt{n}}$
Converges
Diverges
by limit comparison test.
Calculation: use the fact that the p-series with $p=1 / 2$ diverges.

$$
a_{n}=\frac{4 n^{5 / 2}+3 n^{2}-3 n}{n^{3}+n^{3 / 2}+\sqrt{n}} ; b_{n}=\frac{1}{\sqrt{n}} \text { and } \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=4 .
$$

(b) $\sum_{n=0}^{\infty} \frac{\sin \left(n^{2}+3 n-6\right)}{n^{2}+1}$

Converges
Diverges
by absolute convergence and comparison test.
Calculation: compare with the p-series, $p=2$, which converges.

$$
\sum_{n=0}^{\infty}\left|\frac{\sin \left(n^{2}+3 n-6\right)}{n^{2}+1}\right| \leq \sum_{n=0}^{\infty} \frac{1}{n^{2}+1} \leq \sum_{n=0}^{\infty} \frac{1}{n^{2}}
$$

(c) $\sum_{n=1}^{\infty} \frac{n^{2 n}}{(2 n)!}$

Calculation:

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{2 n} \cdot \frac{(n+1)^{2}}{(2 n+2)(2 n+1)}\right)=\frac{e^{2}}{4}>1 .
$$

8. [12 marks] An artillery gun with muzzle velocity (initial speed) of $1000 \mathrm{ft} / \mathrm{sec}$ is located atop a seaside cliff 500 ft high. At what inclination angle(s) should it fire a projectile in order to hit a ship at sea $20,000 \mathrm{ft}$ from the base of the cliff? (Neglect air resistance; use $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)

Solution: Take $v_{0}=1000$ and let the angle of inclination be α.

Then

$$
x=1000 t \cos \alpha
$$

and

$$
y=500+1000 t \sin \alpha-16 t^{2}
$$

Solve for α and t if $(x, y)=(20000,0)$:

$$
1000 t \cos \alpha=20000 \Rightarrow t=20 \sec \alpha
$$

and

$$
\begin{aligned}
& 500+1000(20 \sec \alpha) \sin \alpha-16\left(400 \sec ^{2} \alpha\right)=0 \\
\Rightarrow & 1+40 \tan \alpha-12.8 \sec ^{2} \alpha=0 \\
\Rightarrow & 12.8\left(\tan ^{2} \alpha+1\right)-40 \tan \alpha-1=0 \\
\Rightarrow & 12.8 \tan ^{2} \alpha-40 \tan \alpha+11.8=0 \\
\Rightarrow & \tan \alpha=\frac{40 \pm \sqrt{40^{2}-4(12.8)(11.8)}}{25.6} \\
\Rightarrow & \tan \alpha \simeq 2.795192683 \text { or } 0.3298073173 \\
\Rightarrow & \alpha \simeq 70.3^{\circ} \text { or } 18.2^{\circ}
\end{aligned}
$$

So the inclination angle of the artillery gun should be 70.3° or 18.2° from the horizontal.
9. [12 marks] Solve for y as a function of x if $y=1$ when $x=0$ and

$$
\frac{d y}{d x}+\frac{y}{1+x}=\arctan x .
$$

Solution: The integrating factor is

$$
\rho=e^{\int \frac{1}{1+x} d x}=e^{\ln |1+x|}=|1+x| ;
$$

take $\rho=(1+x)$ or $-(1+x)$, it makes no difference. Then

$$
\begin{aligned}
y & =\frac{\int \rho \arctan x d x}{\rho} \\
& =\frac{\int(1+x) \arctan x d x}{1+x}
\end{aligned}
$$

Use integration by parts; let $u=\arctan x ; d v=(1+x) d x$. Then

$$
\begin{aligned}
\int(1+x) \arctan x d x & =u v-\int v d u \\
& =\frac{1}{2}(1+x)^{2} \arctan x-\int \frac{1}{2}(1+x)^{2} \frac{1}{1+x^{2}} d x \\
& =\frac{1}{2}(1+x)^{2} \arctan x-\frac{1}{2} \int \frac{1+2 x+x^{2}}{1+x^{2}} d x \\
& =\frac{1}{2}(1+x)^{2} \arctan x-\frac{1}{2} \int\left(1+\frac{2 x}{1+x^{2}}\right) d x \\
& =\frac{1}{2}(1+x)^{2} \arctan x-\frac{1}{2}\left(x+\ln \left(1+x^{2}\right)\right)+C
\end{aligned}
$$

Thus the general solution is

$$
y=\frac{1}{2}(1+x) \arctan x-\frac{x+\ln \left(1+x^{2}\right)}{2(1+x)}+\frac{C}{1+x} .
$$

If $(x, y)=(0,1)$, then $1=0-0+C \Leftrightarrow C=1$. So the particular soluton is

$$
y=\frac{1}{2}(1+x) \arctan x-\frac{x+\ln \left(1+x^{2}\right)}{2(1+x)}+\frac{1}{1+x} .
$$

10. [10 marks] Approximate $\int_{0}^{0.5}\left(1+x^{6}\right)^{3 / 2} d x$ to within 10^{-6}, and explain why your approximation is correct to within 10^{-6}.

Solution: use the binomial series.

$$
\begin{aligned}
& \int_{0}^{0.5}\left(1+x^{6}\right)^{3 / 2} d x \\
= & \int_{0}^{0.5}\left(1+\frac{3}{2} x^{6}+\frac{\frac{3}{2}\left(\frac{1}{2}\right)}{2!}\left(x^{6}\right)^{2}+\frac{\frac{3}{2}\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{3!}\left(x^{6}\right)^{3}+\cdots\right) d x \\
= & \int_{0}^{0.5}\left(1+\frac{3}{2} x^{6}+\frac{3}{8} x^{12}-\frac{1}{16} x^{18}+\cdots\right) d x \\
= & {\left[x+\frac{3}{14} x^{7}+\frac{3}{104} x^{13}-\frac{1}{304} x^{19}+\cdots\right]_{0}^{0.5} } \\
= & 0.5+0.001674107143+0.000003521259014-6.274 \times 10^{-9}+\ldots \\
= & 0.5016776284 \ldots
\end{aligned}
$$

which is correct to within $6.274 \times 10^{-9}<10^{-6}$, by the alternating series remainder term. Note: the first three terms of the series are positive; after that the terms alternate minus, plus.
11. [10 marks] Find and classify the critical points of the function $f(x, y)=2 x^{4}+y^{2}-4 x y$.

Solution: Let $z=f(x, y)$. Then

$$
\frac{\partial z}{\partial x}=8 x^{3}-4 y \text { and } \frac{\partial z}{\partial y}=2 y-4 x .
$$

Critical points:

$$
\begin{gathered}
8 x^{3}-4 y=0 \\
2 y-4 x=0
\end{gathered} \Rightarrow \begin{gathered}
2 x^{3}=y \\
y=2 x
\end{gathered} \Rightarrow x^{3}=x \text { and } y=2 x
$$

so the critical points are

$$
(x, y)=(0,0),(1,2) \text { or }(-1,-2)
$$

Second Derivative Test:

$$
\frac{\partial^{2} z}{\partial x^{2}}=24 x^{2}, \frac{\partial^{2} z}{\partial y^{2}}=2, \frac{\partial^{2} z}{\partial x \partial y}=-4, \text { and } \Delta=48 x^{2}-16
$$

At $(x, y)=(0,0), \Delta=-16<0$, so f has a saddle point at $(x, y)=(0,0)$.
At $(x, y)=(1,2)$ or $(-1,-2), \Delta=32>0$ and $\frac{\partial^{2} z}{\partial y^{2}}=2>0$, so f has a minimum value at both $(x, y)=(1,2)$ or $(-1,-2)$.
12. [10 marks] The acceleration of a Maserati sports car is proportional to the difference between $250 \mathrm{~km} / \mathrm{hr}$ and its velocity v. If this sports car can accelerate from rest to $100 \mathrm{~km} / \mathrm{hr}$ in 10 sec , how long will it take for the car to accelerate to $200 \mathrm{~km} / \mathrm{hr}$?

Solution: Let v be the velocity of the car at time t. We are given that

$$
a=\frac{d v}{d t}=K(250-v)
$$

for some proportionality constant K.

Solve by separating variables:

$$
\begin{aligned}
\frac{d v}{d t}=K(250-v) & \Rightarrow \int \frac{d v}{250-v}=\int K d t \\
(\text { for } v<250) & \Rightarrow-\ln (250-v)=K t+C
\end{aligned}
$$

To find C, let $t=0$ and $v=0$, so $C=-\ln 250$. To find K, let $t=10$ and $v=100$, so

$$
-\ln (250-100)=10 K-\ln 250 \Leftrightarrow K=\frac{1}{10} \ln \left(\frac{5}{3}\right) .
$$

Finally, let $v=200$ and solve for t :

$$
-\ln (250-200)=\frac{t}{10} \ln \left(\frac{5}{3}\right)-\ln 250 \Leftrightarrow t=\frac{10 \ln 5}{\ln (5 / 3)} \simeq 31.5
$$

So it takes about 31.5 seconds for the car to accelerate from zero to $200 \mathrm{~km} / \mathrm{hr}$.
13. [10 marks] Find the fifth degree Taylor polynomial of $f(x)=e^{\sin x}$ at $a=0$.

Solution: using brute force. Not recommended.

$$
\begin{gathered}
f^{\prime}(x)=\cos (x) e^{\sin x} ; f^{\prime \prime}(x)=-\sin x e^{\sin x}+\cos ^{2} x e^{\sin x} ; \\
f^{(3)}(x)=-\cos (x) e^{\sin x}-3 \sin x \cos x e^{\sin x}+\cos ^{3} x e^{\sin x} \\
f^{(4)}(x)=\sin x e^{\sin x}-4 \cos ^{2} x e^{\sin x}+3 \sin ^{2} x e^{\sin x}-6 \sin x \cos ^{2} x e^{\sin x}+\cos ^{4} x e^{\sin x} ; \\
f^{(5)}(x)=\cos x e^{\sin x}+15 \sin x \cos x e^{\sin x}-10 \cos ^{3} x e^{\sin x}+15 \sin ^{2} x \cos x e^{\sin x}- \\
10 \sin x \cos ^{3} x e^{\sin x}+\cos ^{5} x e^{\sin x}
\end{gathered}
$$

So

$$
f(0)=1 ; f^{\prime}(0)=1 ; f^{(2)}(0)=1 ; f^{(3)}(0)=0 ; f^{(4)}(0)=-3 ; f^{(5)}(0)=-8
$$

and

$$
P_{5}(x)=1+x+\frac{1}{2} x^{2}-\frac{3}{24} x^{4}-\frac{8}{120} x^{5}=1+x+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{15} x^{5}
$$

Alternate Solution: using power series freely, and keeping track only of powers of x up to 5 .

$$
\begin{aligned}
e^{\sin x} & =e^{\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots\right)} \\
& =e^{x} e^{-x^{3} / 6} e^{x^{5} / 120} \cdots \\
& =\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\cdots\right)\left(1-\frac{x^{3}}{6}+\cdots\right)\left(1+\frac{x^{5}}{120}+\cdots\right) \cdots \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\cdots-\frac{x^{3}}{6}-\frac{x^{4}}{6}-\frac{x^{5}}{12}-\cdots+\frac{x^{5}}{120}+\cdots \\
& =1+x+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{15} x^{5}+\cdots
\end{aligned}
$$

So as before,

$$
P_{5}(x)=1+x+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{15} x^{5}
$$

