University of Toronto
 FACULTY OF APPLIED SCIENCE AND ENGINEERING Solutions to FINAL EXAMINATION, APRIL, 2008
 First Year - CHE, CIV, IND, LME, MEC, MMS

 MAT 187H1S - CALCULUS II

 MAT 187H1S - CALCULUS II
 Exam Type: A

Comments: the results on this exam were disappointing.

1. The average on the multiple choice part was $16 / 24$.
2. Questions $7(\mathrm{a}), 7(\mathrm{~b}), 8,9,11$ and 12 are all completely routine questions. They should have been aced!
3. 7(c) was based on homework question $\# 35$ of Section 10.6.
4. Only questions 10 and 13 required any real thought.

Alternate Solutions:

1. 7 (a) converges by the ratio test or the alternating series test, as well.
2. 7 (b) converges by the comparison test or the limit comparison test, as well.

Breakdown of Results: 469 students wrote this exam. The marks ranged from 13% to 98%, and the average was 52.4%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	3.4%
A	7.9%	$80-89 \%$	4.5%
B	8.3%	$70-79 \%$	8.3%
C	15.6%	$60-69 \%$	15.6%
D	23.4%	$50-59 \%$	23.4%
F	44.8%	$40-49 \%$	21.3%
		$30-39 \%$	16.6%
		$20-29 \%$	4.7%
		$10-19 \%$	2.1%
		$0-9 \%$	0.0%

1. What is the third degree Taylor polynomial of the function $f(x)=\frac{1}{1+x}$ at $a=0$?
(a) $1+x+x^{2}+x^{3}$
(b) $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$
(c) $1-x+x^{2}-x^{3}$
(d) $1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}$

Solution:

$$
\begin{aligned}
\frac{1}{1+x} & =\frac{1}{1-(-x)} \\
& =1-x+x^{2}-x^{3}+\cdots \\
\Rightarrow P_{3}(x) & =1-x+x^{2}-x^{3}
\end{aligned}
$$

The answer is (c).
2. The length of the polar curve with polar equation $r=e^{-\theta}$ for $\theta \geq 0$ is

Solution:
(a) 0
(b) 1
(c) $\sqrt{2}$
(d) ∞

$$
\begin{aligned}
\int_{0}^{\infty} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta & =\int_{0}^{\infty} \sqrt{e^{-2 \theta}+e^{-2 \theta}} d \theta \\
& =\sqrt{2} \int_{0}^{\infty} e^{-\theta} d \theta \\
& =\sqrt{2} \lim _{b \rightarrow \infty}\left[-e^{-\theta}\right]_{0}^{b}=\sqrt{2}
\end{aligned}
$$

The answer is (c).
3. What is the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{\ln n}{3^{n}}(x-1)^{n}$?

Solution:

(a) 1
(b) $\frac{1}{3}$
(c) $\ln 3$
(d) 3

$$
\begin{aligned}
a_{n}=\frac{\ln n}{3^{n}} \Rightarrow R & =\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)} \frac{3^{n+1}}{3^{n}} \\
& =3 \lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)}=3 \cdot 1=3
\end{aligned}
$$

The answer is (d).
4. If the position vector of a particle at time t is given by $\mathbf{r}=t^{2} \mathbf{i}+\ln t \mathbf{j}+4 \tan ^{-1} t \mathbf{k}$, then its speed at time $t=1$ is
(a) 3
(b) $\sqrt{1+\pi^{2}}$
(c) $\sqrt{3}$
(d) $\frac{\pi}{3}$

Solution: $\mathbf{v}=\frac{d \mathbf{r}}{d t}=2 t \mathbf{i}+\frac{1}{t} \mathbf{j}+\frac{4}{1+t^{2}} \mathbf{k}$.
At $t=1$,

$$
\mathbf{v}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}
$$

and the speed is $|\mathbf{v}|=\sqrt{2^{2}+1^{2}+2^{2}}=3$.
The answer is (a).
5. The area of the region inside the cardioid with equation $r=2+2 \cos \theta$ but outside the circle with equation $r=2$ is given by
(a) $\int_{0}^{\pi / 2}[2 \cos \theta]^{2} d \theta$
(b) $\int_{0}^{\pi / 2}\left[(2+2 \cos \theta)^{2}-2^{2}\right] d \theta$
(c) $\int_{\pi / 2}^{\pi}[2 \cos \theta]^{2} d \theta$
(d) $\int_{\pi / 2}^{\pi}\left[(2+2 \cos \theta)^{2}-2^{2}\right] d \theta$
Solution:
$A=2\left(\frac{1}{2} \int_{0}^{\pi / 2}\left[(2+2 \cos \theta)^{2}-2^{2}\right] d \theta\right)$
The answer is (b).
6. How many inflection points are there on the curve with parametric equations

$$
x=t^{2}+4 t ; y=t^{3}-3 t ?
$$

Recall: as in Calculus I, an inflection point on a curve is a point where the concavity changes.
(a) 0
(b) 1
(c) 2
(d) 3

Solution:

$$
\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t+4} ; \frac{d^{2} y}{d x^{2}}=\frac{6 t^{2}+24 t+6}{(2 t+4)^{3}} .
$$

There are inflection points at $t=-2, t=-2 \pm \sqrt{3}$.
The answer is (d).
7. [12 marks; 4 for each part.] Decide if the following infinite series converge or diverge. Summarize your work at the right by marking your choice, and by indicating which convergence/divergence test you are using.
(a) $\sum_{n=1}^{\infty}\left(\frac{-3 n}{4 n+1}\right)^{n}$
\otimes Converge
Diverges
by the root test.

Calculation:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left(\frac{-3 n}{4 n+1}\right)^{n}\right|}=\lim _{n \rightarrow \infty} \frac{3 n}{4 n+1}=\frac{3}{4}<1
$$

(b) $\sum_{n=0}^{\infty} \frac{\tan ^{-1} n}{n^{2}+1}$
\otimes Converges
Diverges
by the integral test

Calculation:

$$
u=\tan ^{-1} x \Rightarrow \int_{0}^{\infty} \frac{\tan ^{-1} x}{1+x^{2}} d x=\int_{0}^{\pi / 2} u d u<\infty
$$

(c) $\sum_{n=1}^{\infty} \frac{n^{n}}{(n+1)^{n+1}}$

Converges
\otimes Diverges
by the limit comparison test

Calculation:

$$
a_{n}=\frac{n^{n}}{(n+1)^{n+1}} ; b_{n}=\frac{1}{n+1} \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=e^{-1}
$$

and the series $\sum b_{n}$ diverges (by the integral test.) Note: both the ratio test and the root test will fail.
8. [12 marks] The displacement, $x(t)$, of an underdamped mass-spring system satisfies

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+65 x(t)=0 ; x(0)=-2 \text { and } x^{\prime}(0)=4 .
$$

Solve for x as a function of t and sketch its graph for $0 \leq t \leq \pi$, indicating both its pseudo period and its time-varying amplitude.

Solution: the auxiliary quadratic is $r^{2}+2 r+65$. Solve:

$$
r^{2}+2 r+65=0 \Leftrightarrow r=\frac{-2 \pm \sqrt{4-260}}{2}=-1 \pm 8 i .
$$

Thus

$$
x=C_{1} e^{-t} \cos (8 t)+C_{2} e^{-t} \sin (8 t)
$$

To find C_{1} use the initial condition $x=-2$ when $t=0$:

$$
-2=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=-2 .
$$

To find C_{2} you need to find $x^{\prime}(t)$:

$$
x^{\prime}=C_{1}\left(-e^{-t} \cos (8 t)-8 e^{-t} \sin (8 t)\right)+C_{2}\left(-e^{-t} \sin (8 t)+8 e^{-t} \cos (8 t)\right) .
$$

Now substitute $t=0, x^{\prime}=4, C_{1}=-2$:

$$
4=-2(-1-0)+C_{2}(0+8) \Leftrightarrow 8 C_{2}=2 \Leftrightarrow C_{2}=\frac{1}{4} .
$$

Thus

$$
x=-2 e^{-t} \cos (8 t)+\frac{1}{4} e^{-t} \sin (8 t)
$$

Graph:

The pseudo period is

$$
\frac{2 \pi}{8}=\frac{\pi}{4}
$$

$$
\sqrt{(-2)^{2}+\left(\frac{1}{4}\right)^{2}} e^{-t}=\frac{\sqrt{65}}{4} e^{-t} .
$$

9. [12 marks: 6 for each part.]
(a) Write down the first four non-zero terms of the Maclaurin series for each of $f(x)=e^{-x^{2}}$ and $g(x)=\int_{0}^{x} f(t) d t$.

Solution:

$$
\begin{aligned}
f(x) & =1+\left(-x^{2}\right)+\frac{\left(-x^{2}\right)^{2}}{2!}+\frac{\left(-x^{2}\right)^{3}}{3!}+\cdots \\
& =1-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{6}+\cdots \\
g(x) & =\int_{0}^{x}\left(1-t^{2}+\frac{t^{4}}{2}-\frac{t^{6}}{6}+\cdots\right) d t \\
& =\left[t-\frac{t^{3}}{3}+\frac{t^{5}}{10}-\frac{t^{7}}{42}+\cdots\right]_{0}^{x} \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{10}-\frac{x^{7}}{42}+\cdots
\end{aligned}
$$

(b) Approximate $\int_{0}^{0.5} \sqrt{1+x^{4}} d x$ to within 10^{-6}, and explain why your approximation is correct to within 10^{-6}.
Solution: use the binomial theorem.

$$
\begin{aligned}
\int_{0}^{0.5} \sqrt{1+x^{4}} d x & =\int_{0}^{0.5}\left(1+x^{4}\right)^{1 / 2} d x \\
& =\int_{0}^{0.5}\left(1+\frac{x^{4}}{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!}\left(x^{4}\right)^{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}\left(x^{4}\right)^{3}-\cdots\right) d x \\
& =\int_{0}^{0.5}\left(1+\frac{x^{4}}{2}-\frac{x^{8}}{8}+\frac{x^{12}}{16}-\cdots\right) d x \\
& =\left[x+\frac{x^{5}}{10}-\frac{x^{9}}{72}+\frac{x^{13}}{208}-\cdots\right]_{0}^{0.5} \\
& =0.5+0.003125-0.00002712673611 \ldots \\
& =0.5030978733 \ldots
\end{aligned}
$$

which is correct to within $\frac{(0.5)^{13}}{208}=0.0000005868765 \cdots<10^{-6}$ by the alternating series remainder term.
10. [10 marks] Find $\int_{0}^{\infty} \frac{1}{e^{a x}\left(1+e^{2 a x}\right)} d x$, if $a>0$.

Solution: let $e^{a x}=\tan \theta$. Then

$$
a e^{a x} d x=\sec ^{2} \theta d \theta \Rightarrow d x=\frac{1}{a} \frac{1}{\tan \theta} \sec ^{2} \theta d \theta
$$

Note:

$$
x=0 \Rightarrow \tan \theta=1 \Rightarrow \theta=\frac{\pi}{4}
$$

and since $a>0$,

$$
x \rightarrow \infty \Rightarrow \tan \theta \rightarrow \infty \Rightarrow \theta \rightarrow \frac{\pi-}{2}
$$

Thus

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{e^{a x}\left(1+e^{2 a x}\right)} d x & =\int_{\pi / 4}^{\pi / 2} \frac{1}{\tan \theta\left(1+\tan ^{2} \theta\right)} \frac{1}{a} \frac{1}{\tan \theta} \sec ^{2} \theta d \theta \\
& =\frac{1}{a} \int_{\pi / 4}^{\pi / 2} \cot ^{2} \theta d \theta \\
& =\frac{1}{a} \int_{\pi / 4}^{\pi / 2}\left(\csc ^{2} \theta-1\right) d \theta \\
& =\frac{1}{a}[-\cot \theta-\theta]_{\pi / 4}^{\pi / 2} \\
& =\frac{1}{a}\left(0-\frac{\pi}{2}+1+\frac{\pi}{4}\right) \\
& =\frac{1}{a}\left(1-\frac{\pi}{4}\right)
\end{aligned}
$$

Alternate Solution: let $u=e^{a x}$; then $d u=a e^{a x} d x \Rightarrow d x=\frac{1}{a u} d u$. Thus

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{e^{a x}\left(1+e^{2 a x}\right)} d x & =\int_{1}^{\infty} \frac{1}{a} \frac{1}{u^{2}\left(1+u^{2}\right)} d u \\
\text { (partial fractions) } & =\frac{1}{a} \int_{1}^{\infty}\left(\frac{1}{u^{2}}-\frac{1}{1+u^{2}}\right) d u \\
& =\frac{1}{a} \lim _{b \rightarrow \infty}\left[-\frac{1}{u}-\tan ^{-1} u\right]_{1}^{b} \\
& =\frac{1}{a}\left(1-\frac{\pi}{4}\right), \text { as before }
\end{aligned}
$$

11. [10 marks] Given that $-\frac{\pi}{2}<x<\frac{\pi}{2}$, find the general solution to the differential equation

$$
\cos x \frac{d y}{d x}+y \sin x=\cos x+\sin x
$$

Is there a solution that passes through the point $(x, y)=(0,0)$?
Solution: must rearrange the equation:

$$
\cos x \frac{d y}{d x}+y \sin x=\cos x+\sin x \Leftrightarrow \frac{d y}{d x}+y \tan x=1+\tan x .
$$

Note: $-\frac{\pi}{2}<x<\frac{\pi}{2} \Rightarrow \sec x>0$. The integrating factor is

$$
\rho=e^{\int \tan x d x}=e^{\ln \sec x}=\sec x
$$

and the general solution is

$$
\begin{aligned}
y & =\frac{\int \rho(1+\tan x) d x}{\rho} \\
& =\frac{\int(\sec x+\sec x \tan x) d x}{\sec x} \\
& =\frac{\ln |\sec x+\tan x|+\sec x+C}{\sec x}
\end{aligned}
$$

If $(x, y)=(0,0)$, then

$$
0=\frac{\ln (\sec 0+\tan 0)+\sec 0+C}{\sec 0} \Leftrightarrow C=-1
$$

so, yes, there is a solution to the differential equation that passes through the point $(x, y)=(0,0)$.
12. [10 marks] Torricelli's Law states that

$$
A(y) \frac{d y}{d t}=-a \sqrt{2 g y}
$$

where y is the depth of a fluid in a tank at time $t, A(y)$ is the cross-sectional area of the tank at height y above the exit hole, a is the cross-sectional area of the exit hole, and g is the acceleration due to gravity.
A spherical water tank of radius 1 m is initially full. At 12 noon a plug at the bottom of the tank is removed, and 20 min later the tank is half empty. When will the tank be completely empty?

Solution:

$$
\begin{aligned}
A(y) & =\pi x^{2} \\
& =\pi\left(1-(y-1)^{2}\right) \\
& =\pi\left(1-y^{2}+2 y-1\right) \\
& =\pi\left(2 y-y^{2}\right)
\end{aligned}
$$

Solve the DE by separating variables:

$$
\begin{aligned}
A(y) \frac{d y}{d t}=-a \sqrt{2 g y} & \Leftrightarrow \pi \int \frac{2 y-y^{2}}{\sqrt{y}} d y=-\pi \int K d t, \text { for } K=\frac{a \sqrt{2 g}}{\pi} \\
& \Leftrightarrow \int\left(2 \sqrt{y}-y^{3 / 2}\right) d y=-\int K d t \\
& \Leftrightarrow \frac{4}{3} y^{3 / 2}-\frac{2}{5} y^{5 / 2}=-K t+C, \text { for some } C
\end{aligned}
$$

Let t be measured in minutes; let $t=0$ be noon. When $t=0, y=2$, so

$$
\frac{4}{3} 2^{3 / 2}-\frac{2}{5} 2^{5 / 2}=C \Leftrightarrow C=\frac{8}{3} \sqrt{2}-\frac{8}{5} \sqrt{2}=\frac{16}{15} \sqrt{2}
$$

When $t=20, y=1$, so

$$
\frac{4}{3}-\frac{2}{5}=-20 K+\frac{16}{15} \sqrt{2} \Leftrightarrow 20 K=\frac{16}{15} \sqrt{2}-\frac{14}{15} \Leftrightarrow K=\frac{8 \sqrt{2}-7}{150}
$$

The tank is empty when $y=0$:

$$
0=-K t+C \Leftrightarrow t=\frac{C}{K}=\frac{160 \sqrt{2}}{8 \sqrt{2}-7} \simeq 52.45
$$

So the tank will be empty at about 12:53 PM.
13. [10 marks] Use power series to find the Taylor series of

$$
f(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
$$

at $a=0$. What is its interval of convergence?
Solution: use the fact that

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\cdots, \text { if }|x|<1
$$

What is the domain of $f ? x$ is in the domain of f if and only if

$$
\begin{aligned}
\frac{1+x}{1-x}>0 & \Leftrightarrow(1+x)(1-x)>0 \\
& \Leftrightarrow 1-x^{2}>0 \\
& \Leftrightarrow 1>x^{2} \\
& \Leftrightarrow 1>|x|
\end{aligned}
$$

Both $\ln (1+x)$ and $\ln (1-x)$ are defined for $|x|<1$; hence

$$
\begin{aligned}
f(x) & =\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \\
& =\frac{1}{2}(\ln (1+x)-\ln (1-x)) \\
& =\frac{1}{2}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots-\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots\right)\right) \\
& =\frac{1}{2}\left(2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{5}+\cdots\right) \\
& =x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}}{2 n+1}+\cdots, \text { if }|x|<1
\end{aligned}
$$

This series diverges at $x= \pm 1$, since

$$
\pm 1\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n+1}+\cdots\right)
$$

diverges by the integral test; or by using the limit comparison test for

$$
a_{n}=\frac{1}{2 n+1}, b_{n}=\frac{1}{n} .
$$

So the interval of convergence is the open interval $(-1,1)$.

