MAT186H1F - Calculus I - Fall 2019
 Solutions to Term Test 1 - October 15, 2019

Time allotted: 100 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

Comments:

- In Question 6(a), there is NO choice for the angle $\tan ^{-1}(-2 / 3)$; it musts be in $[-\pi / 2,0]$. Many students used a calculator approximation for the answer even though it said, "find the exact value."
- In Question 6(b) many students ignored the instruction to use the definition of the derivative.
- In Question 8(b) the only way to calculate the limits is by rationalizing. Many students tried dividing the whole expression by x or by squaring parts of the expression - but this changes the question!
- In Question 7(a) it is necessary to put some restriction on x since $2 x^{2}-x^{4} / 2$ is not always positive.
- Except for Question 1, which had a minimum score of 3, the range on every question was 0 to 10 .

Breakdown of Results: 853 registered students wrote this test. The marks ranged from 13.75% to 97.5%, and the average was $47.5 / 80$ or 59.4%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	2.0%
A	8.1%	$80-89 \%$	6.1%
B	17.7%	$70-79 \%$	17.7%
C	25.1%	$60-69 \%$	25.1%
D	23.8%	$50-59 \%$	23.8%
F	25.3%	$40-49 \%$	16.6%
		$30-39 \%$	5.9%
		$20-29 \%$	2.6%
		$10-19 \%$	0.2%
		$0-9 \%$	0.0%

1. [avg: $8.96 / 10]$ Find the following:
(a) $\left[3\right.$ marks] $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x^{2}-9}$

Solution: the limit is in the 0/0 form. Try factoring.

$$
\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x^{2}-9}=\lim _{x \rightarrow-3} \frac{(x+3)(x-2)}{(x-3)(x+3)}=\lim _{x \rightarrow-3} \frac{(x-2)}{(x-3)}=\frac{-5}{-6}=\frac{5}{6}
$$

(b) $[3$ marks $] \frac{d\left(x e^{-x}\right)}{d x}$

Solution: use the product rule.

$$
\frac{d\left(x e^{-x}\right)}{d x}=1 \cdot e^{-x}+x\left(-e^{-x}\right)=e^{-x}-x e^{-x} .
$$

(c) [4 marks] the slope of tangent line to the graph of $y=\sin \left(x^{2}\right)$ at $x=\sqrt{\frac{\pi}{4}}$.

Solution: by the chain rule,

$$
\frac{d y}{d x}=2 x \cos \left(x^{2}\right)
$$

At $x=\sqrt{\frac{\pi}{4}}$,

$$
\frac{d y}{d x}=2 \sqrt{\frac{\pi}{4}} \cos \left(\frac{\pi}{4}\right)=\sqrt{\pi}\left(\frac{1}{\sqrt{2}}\right)=\sqrt{\frac{\pi}{2}} .
$$

So the slope of tangent line to the graph of $y=\sin \left(x^{2}\right)$ at $x=\sqrt{\frac{\pi}{4}}$ is $\sqrt{\frac{\pi}{2}}$.
2. [avg: 4.07/10] Let $f(x)=2^{x}$. Also, assume that for $r \neq 1$, the formula for the sum of a finite geometric series is

$$
1+r+r^{2}+\cdots+r^{n-1}=\sum_{i=0}^{n-1} r^{i}=\frac{r^{n}-1}{r-1} .
$$

- Let L_{n} denote the Riemann sum approximation of the area under the curve $y=f(x)$ on the interval $[0,1]$ using n subintervals of equal length and the left endpoint of each subinterval.
- Let R_{n} denote the Riemann sum approximation of the area under the curve $y=f(x)$ on the interval $[0,1]$ using n subintervals of equal length and the right endpoint of each subinterval.
(a) [5 marks] Without calculating, arrange the numbers $L_{1}, R_{1}, L_{2019}, R_{2019}, \int_{0}^{1} 2^{x} d x$ from smallest to largest.

Solution: since $f(x)=2^{x}$ is an increasing function,

$$
L_{1}<L_{2019}<\int_{0}^{1} 2^{x} d x<R_{2019}<R_{1}
$$

Aside: see figures to the right for the case $n=1$.
But no justification is required for this question.

(b) [5 marks] Calculate L_{100} and R_{100}. (Make use of the formula for the sum of a finite geometric series, as given above.) Then use your calculator to find the approximate values of L_{100} and R_{100} to 4 decimal places.
Solution: let $\Delta x=\frac{1-0}{100}=\frac{1}{100}$; let $x_{i}=\frac{i}{100}$; let $r=2^{1 / 100}$.

$$
L_{100}=\sum_{i=0}^{99} f\left(x_{i}\right) \Delta x=\frac{1}{100} \sum_{i=0}^{99} 2^{i / 100}=\frac{1}{100} \sum_{i=0}^{99} r^{i}=\frac{1}{100}\left(\frac{r^{100}-1}{r-1}\right)=\frac{1}{100}\left(\frac{2-1}{2^{1 / 100}-1}\right)
$$

that is,

$$
L_{100}=\frac{0.01}{2^{1 / 100}-1} \approx 1.4377
$$

Similarly, but a little trickier,
$R_{100}=\sum_{i=1}^{100} f\left(x_{i}\right) \Delta x=\frac{1}{100} \sum_{i=1}^{100} 2^{i / 100}=\frac{1}{100} \sum_{i=1}^{100} r^{i}=\frac{1}{100}\left(\frac{r^{101}-1}{r-1}-1\right)=\frac{1}{100}\left(\frac{2^{1.01}-2^{1 / 100}}{2^{1 / 100}-1}\right) ;$
that is,

$$
R_{100}=\frac{1}{100}\left(\frac{2^{1.01}-2^{1 / 100}}{2^{1 / 100}-1}\right) \approx 1.4477
$$

3. [avg: 3.92/10] Consider the function

$$
f(x)=\frac{|x+2|(x-7)}{(x-c)} .
$$

(a) [1 mark] For which values of x is $f(x)$ continuous?

Solution: $x \neq c$
(b) [3 marks] For which value(s) of c does $f(x)$ have a removable discontinuity?

Solution: if $c=7$ then $f(x)$ has a removable discontinuity at $x=7$ since

$$
\lim _{x \rightarrow 7} f(x)=\lim _{x \rightarrow 7} \frac{|x+2|(x-7)}{(x-7)}=\lim _{x \rightarrow 7}|x+2|=9 ;
$$

that is, $\lim _{x \rightarrow 7} f(x)$ exists, even though $f(7)$ does not exist.
(c) [3 marks] For which value(s) of c does $f(x)$ have a jump discontinuity?

Solution: if $c=-2$ then $f(x)$ has a jump discontinuity at $x=-2$ since

$$
\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}} \frac{|x+2|(x-7)}{(x+2)}=\lim _{x \rightarrow-2^{+}} \frac{(x+2)(x-7)}{(x+2)}=\lim _{x \rightarrow-2^{+}}(x-7)=-9
$$

but

$$
\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} \frac{|x+2|(x-7)}{(x+2)}=\lim _{x \rightarrow-2^{-}} \frac{-(x+2)(x-7)}{(x+2)}=\lim _{x \rightarrow-2^{+}}-(x-7)=+9
$$

that is, both $\lim _{x \rightarrow-2^{+}} f(x)$ and $\lim _{x \rightarrow-2^{-}} f(x)$ exist but are not the same.
(d) [3 marks] For which value(s) of c does $f(x)$ have an infinite discontinuity?

Solution: if $c \neq-2,7$ then $f(x)$ has an infinite discontinuity at $x=c$ since

$$
\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{+}} \frac{|x+2|(x-7)}{(x-c)}= \begin{cases}+\infty, & \text { if } c>7 \\ -\infty, & \text { if } c<7, c \neq-2\end{cases}
$$

OR

$$
\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{-}} \frac{|x+2|(x-7)}{(x-c)}= \begin{cases}-\infty, & \text { if } c>7 \\ +\infty, & \text { if } c<7, c \neq-2\end{cases}
$$

Note: you only have to show one of the one-sided limits is infinite, not both. But in either case, whether the limit is $+\infty$ or $-\infty$ depends on c, and that must be spelled out.
4. [avg: 5.58/10] Consider the function $f(x)=x e^{x}$ restricted to the domain $x \geq 0$. (See the graph to the right.) The Lambert W function is defined as the inverse of the function f,

$$
W(x)=f^{-1}(x)
$$

(a) [2 marks] What is the domain of W ?

Solution: the domain of W is the range of f, which is $[0, \infty)$.
(b) [3 marks] Let $a \geq 1$. Show that $W(a \ln (a))=\ln (a)$.

Solution: since $W=f^{-1}$, we have $W(a \ln (a))=\ln (a) \Leftrightarrow a \ln a=f(\ln a)$. This last equation can be checked directly:

$$
f(\ln a)=(\ln a)\left(e^{\ln a}\right)=(\ln a)(a)=a \ln a .
$$

Aside: the domain of $f(x)$ is $x \geq 0$; that is why $a \geq 1$ is necessary-to make $\ln a \geq 0$.
(c) [3 marks] Explain why the equation $x^{x}=2$ has a solution in the interval [1,2]. Name any theorem you are using.

Solution: let $g(x)=x^{x}$, which we assume is continuous for $x>0$. Then

$$
g(1)=1<2<4=g(2) .
$$

So by the Intermediate Value Theorem there is a number $c \in(1,2)$ such that $g(c)=2 \Leftrightarrow c^{c}=2$.
(d) [2 marks] Find an explicit solution to the equation $x^{x}=2$ in terms of the Lambert W function.

Solution:

$$
\begin{aligned}
x^{x}=2 & \Rightarrow \ln \left(x^{x}\right)=\ln 2 \\
& \Rightarrow x \ln x=\ln 2 \\
& \Rightarrow W(x \ln x)=W(\ln 2) \\
\text { (use part b) } & \Rightarrow \ln x=W(\ln 2) \\
& \Rightarrow x=e^{W(\ln 2)}
\end{aligned}
$$

5. [avg: 7.78/10] For an athlete running a 50-meter dash, the position of the athlete is given by $s(t)=\frac{t^{3}}{6}+4 t$, where $s(t)$ is the athlete's distance in meters from the starting line after t seconds.
(a) [4 marks] Explain why it will take the athlete between 5 and 6 seconds to run the race. Name any theorem you are using.

Solution: s is a continuous function and

$$
s(5)=\frac{245}{6}<50<60=s(6) .
$$

By the Intermediate Value Theorem $s(t)=50$ for some $t \in(5,6)$. Thus the athlete will reach the finish line sometime between 5 and 6 seconds.

Aside: this assumes that s is an increasing function, which it is since $s^{\prime}(t)>0$, and that there is no $t<5$ such that $s(t)=50$.
(b) [3 marks] What is the athlete's average speed for the time interval $1.9 \leq t \leq 2.1$? Approximate your answer to four decimal places.

Solution: calculate

$$
\frac{s(2.1)-s(1.9)}{2.1-1.9}=\frac{7.202}{1.2} \approx 6.0017
$$

So the athlete's average speed for $1.9 \leq t \leq 2.1$ is about $6.0017 \mathrm{~m} / \mathrm{sec}$.
(c) [3 marks] What is the athlete's instantaneous speed at $t=2$?

Solution: we have instantaneous speed given by

$$
s^{\prime}(t)=\frac{t^{2}}{2}+4
$$

So the athlete's instantaneous speed at $t=2$ is

$$
s^{\prime}(2)=2+4=6
$$

$\mathrm{m} / \mathrm{sec}$.
6. [avg: 6.77/10]
6. (a) [5 marks] Find the exact value of $\cos \left(2 \tan ^{-1}\left(-\frac{2}{3}\right)\right)$.

Solution: let $\theta=\tan ^{-1}\left(-\frac{2}{3}\right)$. By definition of $\tan ^{-1}$ we know $-\pi / 2<\theta<0$.
We have $\tan \theta=-2 / 3, \sin \theta<0$ and $\cos \theta>0$. You can use either $\sin \theta$ OR $\cos \theta$:

- In the diagram to the left $\tan \theta=-2 / 3$.
- The length of the radius is $\sqrt{13}$.
- Then

$$
\sin \theta=-\frac{2}{\sqrt{13}}
$$

or

$$
\cos \theta=\frac{3}{\sqrt{13}}
$$

Then the exact value of $\cos \left(2 \tan ^{-1}\left(-\frac{2}{3}\right)\right)$ is given by

$$
\cos (2 \theta)=2 \cos ^{2} \theta-1=2\left(\frac{3}{\sqrt{13}}\right)^{2}-1=\frac{5}{13},
$$

OR

$$
\cos (2 \theta)=1-2 \sin ^{2} \theta=1-2\left(-\frac{2}{\sqrt{13}}\right)^{2}=\frac{5}{13} .
$$

OR

$$
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{3}{\sqrt{13}}\right)^{2}-\left(-\frac{2}{\sqrt{13}}\right)^{2}=\frac{5}{13} .
$$

6. (b) [5 marks] Let $f(x)=\frac{1}{\sqrt{x+4}}$. Use the limit definition of the derivative to find $f^{\prime}(5)$.

Solution: $f(5)=\frac{1}{\sqrt{9}}=\frac{1}{3}$; so

$$
\begin{aligned}
f^{\prime}(5) & =\lim _{h \rightarrow 0} \frac{f(h+5)-f(5)}{h}=\lim _{h \rightarrow 0} \frac{1 / \sqrt{h+9}-1 / 3}{h} \\
& =\lim _{h \rightarrow 0} \frac{3-\sqrt{h+9}}{3 h \sqrt{h+9}}=\lim _{h \rightarrow 0} \frac{(3-\sqrt{h+9})(3+\sqrt{h+9})}{3 h \sqrt{h+9}(3+\sqrt{h+9})} \\
& =\lim _{h \rightarrow 0} \frac{9-(h+9)}{3 h \sqrt{h+9}(3+\sqrt{h+9})}=\lim _{h \rightarrow 0} \frac{-h}{3 h \sqrt{h+9}(3+\sqrt{h+9})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{3 \sqrt{h+9}(3+\sqrt{h+9})}=-\frac{1}{54}
\end{aligned}
$$

7. [avg: 4.33/10]
7.(a) [6 marks] It can be proved that $t-\frac{t^{2}}{2} \leq \ln (1+t) \leq t$, for $t \geq 0$. Make use of this result to find

$$
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{\ln \left(1+x^{2}\right)+x^{2}}}{x}
$$

Name any other theorem you are using.
Solution: let $t=x^{2} \geq 0$. Then

$$
\begin{aligned}
x^{2}-\frac{x^{4}}{2} \leq \ln \left(1+x^{2}\right) \leq x^{2} & \Rightarrow 2 x^{2}-\frac{x^{4}}{2} \leq \ln \left(1+x^{2}\right)+x^{2} \leq 2 x^{2} \\
(\text { say for } 0<x<1) & \Rightarrow \sqrt{2 x^{2}-\frac{x^{4}}{2}} \leq \sqrt{\ln \left(1+x^{2}\right)+x^{2}} \leq \sqrt{2 x^{2}} \\
& \Rightarrow \frac{\sqrt{2 x^{2}-\frac{x^{4}}{2}}}{x} \leq \frac{\sqrt{\ln \left(1+x^{2}\right)+x^{2}}}{x} \leq \frac{\sqrt{2 x^{2}}}{x} \\
& \Rightarrow \sqrt{2-\frac{x^{2}}{2}} \leq \frac{\sqrt{\ln \left(1+x^{2}\right)+x^{2}}}{x} \leq \sqrt{2}
\end{aligned}
$$

Now both

$$
\lim _{x \rightarrow 0^{+}} \sqrt{2-\frac{x^{2}}{2}}=\sqrt{2} \text { and } \lim _{x \rightarrow 0^{+}} \sqrt{2}=\sqrt{2}
$$

so by the Squeeze Law we can conclude that

$$
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{\ln \left(1+x^{2}\right)+x^{2}}}{x}=\sqrt{2} .
$$

7.(b) [4 marks] Find $\lim _{x \rightarrow 0} \frac{\sin ^{3}(2 x)}{\tan ^{3}(4 x)}$.

Solution: limit is in the $0 / 0$ form. Note that $\tan (4 x)=\frac{\sin (4 x)}{\cos (4 x)}$, and that $\cos 0=1$. Thus
$\lim _{x \rightarrow 0} \frac{\sin ^{3}(2 x)}{\tan ^{3}(4 x)}=\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\tan (4 x)}\right)^{3}=\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (4 x)} \cdot \cos (4 x)\right)^{3}=\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (4 x)}\right)^{3} \cdot 1=\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (4 x)}\right)^{3}$.
Approach 1: use double angle formula.

$$
\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (4 x)}\right)^{3}=\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 \sin (2 x) \cos (2 x)}\right)^{3}=\left(\lim _{x \rightarrow 0} \frac{1}{2 \cos (2 x)}\right)^{3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8} .
$$

Approach 2: use basic trig limit.

$$
\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (4 x)}\right)^{3}=\left(\lim _{x \rightarrow 0} \frac{2}{4} \frac{\sin (2 x)}{2 x} \frac{4 x}{\sin (4 x)}\right)^{3}=\left(\frac{1}{2}\right)^{3}\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)^{3}\left(\lim _{k \rightarrow 0} \frac{k}{\sin k}\right)^{3}=\frac{1}{8}\left(1^{3}\right)\left(1^{3}\right)=\frac{1}{8}
$$

Either way, the answer is $\frac{1}{8}$.
8. [avg: 6.09/10] Consider the function $f(x)=\sqrt{x^{2}+6 x+5}$.
(a) [2 marks] Find the domain of f.

Solution: $x^{2}+6 x+5 \geq 0 \Leftrightarrow(x+5)(x+1) \geq 0 \Leftrightarrow x \leq-5$ or $x \geq-1$. So the domain of f is, in interval notation, $(-\infty,-5] \cup[-1, \infty)$.
(b) [6 marks] A line with equation $y=m x+b$ is a slant asymptote to the graph of $y=f(x)$ if

$$
\lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0 \quad \text { or } \quad \lim _{x \rightarrow-\infty}[f(x)-(m x+b)]=0 .
$$

Show that $f(x)$ has slant asymptotes with equations $y=x+3$ and $y=-x-3$.
Solution: show $\lim _{x \rightarrow \infty}(f(x)-(x+3))=0$ and $\lim _{x \rightarrow-\infty}(f(x)-(-x-3))=0$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+6 x+5}-(x+3)\right] & =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+6 x+5}-(x+3)\right)\left(\sqrt{x^{2}+6 x+5}+(x+3)\right)}{\sqrt{x^{2}+6 x+5}+(x+3)} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+6 x+5-x^{2}-6 x-9}{\sqrt{x^{2}+6 x+5}+x+3} \\
& =\lim _{x \rightarrow \infty} \frac{-4}{\sqrt{x^{2}+6 x+5}+x+3}=0 ; \\
\lim _{x \rightarrow-\infty}\left[\sqrt{x^{2}+6 x+5}-(-x-3)\right] & =\lim _{x \rightarrow-\infty} \frac{\left(\sqrt{x^{2}+6 x+5}-(-x-3)\right)\left(\sqrt{x^{2}+6 x+5}+(-x-3)\right)}{\sqrt{x^{2}+6 x+5}+(-x-3)} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}+6 x+5-x^{2}-6 x-9}{\sqrt{x^{2}+6 x+5}-x-3} \\
& =\lim _{x \rightarrow-\infty} \frac{-4}{\sqrt{x^{2}+6 x+5}-x-3}=0 .
\end{aligned}
$$

Aside: the other two limits, $\lim _{x \rightarrow \infty}(f(x)-(-x-3))$ and $\lim _{x \rightarrow-\infty}(f(x)-(x+3))$, are both infinite.
(c) [2 marks] Using the results from parts (a) and (b), sketch the graph of

$$
y=f(x)
$$

and its two slant asymptotes. Make sure to indicate the equation of each part of your sketch.
Solution: to the right.

$$
y=\sqrt{x^{2}+6 x+5}
$$

$y=x+3$

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

