MAT186H1F - Calculus I - Fall 2017

Solutions to Term Test 1 - October 3, 2017

Time allotted: 100 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

Comments:

- Question 1, parts (b)-(e) are about the definition of the inverse trig functions; nothing more.
-
-
-
-

Breakdown of Results: 760 students wrote this test. The marks ranged from ?\% to ?\%, and the average was $? \%$. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	$\%$
A	$\%$	$80-89 \%$	$\%$
B	$\%$	$70-79 \%$	$\%$
C	$\%$	$60-69 \%$	$\%$
D	$\%$	$50-59 \%$	$\%$
F	$\%$	$40-49 \%$	$\%$
		$30-39 \%$	$\%$
		$20-29 \%$	$\%$
		$10-19 \%$	$\%$
		$0-9 \%$	$\%$

1. [2 marks for each part] Find all the solutions x in \mathbb{R} to the following equations:
(a) $2^{\log _{2} x}=x$

Solution: x must be in the domain of $\log _{2} x$, so $x>0$
(b) $\sin \left(\sin ^{-1} x\right)=x$

Solution: x must be in the domain of $\sin ^{-1} x$, so $-1 \leq x \leq 1$.
(c) $\sin ^{-1}(\sin x)=x$

Solution: $y=\sin ^{-1}(\sin x)$ if and only if $\sin y=\sin x$ and $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. So $y=x$ if and only if

$$
-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

(d) $x=\sec \left(\sec ^{-1} x\right)$

Solution: x must be in the domain of $\sec ^{-1} x$, so $x \leq-1$ or $x \geq 1$.
This is equivalent to saying $|x| \geq 1$.
(e) $x=\sec ^{-1}(\sec x)$

Solution: $y=\sec ^{-1}(\sec x)$ if and only if $\sec y=\sec x$ and $0 \leq y<\frac{\pi}{2}$ or $\frac{\pi}{2}<y \leq \pi$. So $y=x$ if and only if

$$
0 \leq x<\frac{\pi}{2} \text { or } \frac{\pi}{2}<x \leq \pi
$$

2. Suppose the function $f(x)$ is defined for all x in the interval $[0,10]$ and that the following data points are on the graph of f :

x	0	1	2	3	4	5	6	7	8	9	10
$f(x)$	1.1	5.7	2.2	9.0	5.2	4.3	4.6	8.8	3.2	5.7	6.9

(a) [5 marks] Approximate the value of $\int_{0}^{10} f(x) d x$ by using a right endpoint Riemann sum and ten equally spaced subintervals of $[0,10]$.

Solution: take $\Delta x=1$ and $x_{i}=i$. Then

$$
\begin{aligned}
\int_{0}^{10} f(x) d x & \approx \sum_{i=1}^{10} f\left(x_{i}\right) \Delta x \\
& =\sum_{i=1}^{10} f(i) \\
& =5.7+2.2+9.0+5.2+4.3+4.6+8.8+3.2+5.7+6.9 \\
& =55.6
\end{aligned}
$$

(b) [5 marks] Approximate the value of $\int_{0}^{10} f(x) d x$ by using a midpoint Riemann sum and five equally spaced subintervals of $[0,10]$.

Solution: now take $\Delta x=2$ and use only the odd x-values: that is, $i+1$ is the midpoint of the interval $[i, i+2]$, for $i=0,2,4,6,10$. Thus

$$
\begin{aligned}
\int_{0}^{10} f(x) d x & \approx(f(1)+f(3)+f(5)+f(7)+f(9)) \Delta x \\
& =(5.7+9.0+4.3+8.8+5.7)(2) \\
& =67
\end{aligned}
$$

3. (a) [5 marks] Suppose $\int_{0}^{2} f(x) d x=10$ and $\int_{2}^{3} f(x) d x=3$. Find $\int_{0}^{3}(f(x)+2) d x$.

Solution:

$$
\begin{aligned}
\int_{0}^{3}(f(x)+2) d x & =\int_{0}^{3} f(x) d x+\int_{0}^{3} 2 d x \\
& =\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{0}^{3} 2 d x \\
& =10+3+2 \cdot 3 \\
& =19
\end{aligned}
$$

3.(b) [5 marks] Decide if each of the following expressions represents the integral

$$
\int_{1}^{9}(x-2 \sin x) d x
$$

Indicate Yes if it does, and No if it doesn't.
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{8 i}{n}-2 \sin \left(\frac{8 i}{n}\right)\right)\left(\frac{8}{n}\right)$
Yes \otimes No
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{9 i}{n}-2 \sin \left(\frac{9 i}{n}\right)\right)\left(\frac{9}{n}\right)$Yes \otimes No
(c) $\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1}\left(1+\frac{8 i}{n}-2 \sin \left(1+\frac{8 i}{n}\right)\right)\left(\frac{8}{n}\right)$
(d) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{8 i}{n}-2 \sin \left(1+\frac{8 i}{n}\right)\right)\left(\frac{8}{n}\right)$
(e) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{8 i}{n}-2 \sin \left(1+\frac{8 i}{n}\right)\right)\left(\frac{9}{n}\right)$Yes \otimes No
4. Consider the function $f(x)=\frac{10+x}{x-9}$.
(a) [3 marks] Show that f is one-to-one.

Solution: show that each value of $f(x)$ corresponds to exactly one value of x.

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Rightarrow \frac{10+x_{1}}{x_{1}-9}=\frac{10+x_{2}}{x_{2}-9} \\
& \Rightarrow\left(10+x_{1}\right)\left(x_{2}-9\right)=\left(10+x_{2}\right)\left(x_{1}-9\right) \\
& \Rightarrow x_{1} x_{2}+10 x_{2}-9 x_{1}-90=x_{2} x_{1}+10 x_{1}-9 x_{2}-90 \\
& \Rightarrow 19 x_{2}=19 x_{1} \\
& \Rightarrow x_{2}=x_{1}
\end{aligned}
$$

OR: show the graph of f passes the horizontal line test, assuming you can graph f accurately.
(b) [3 marks] Find the formula for $f^{-1}(x)$.

Solution: switch x and y in the formula for $y=f(x)$ and solve for y as a function of x.

$$
x=\frac{10+y}{y-9} \Rightarrow y x-9 x=10+y \Rightarrow y(x-1)=10+9 x \Rightarrow y=\frac{10+9 x}{x-1}
$$

so

$$
f^{-1}(x)=\frac{10+9 x}{x-1} .
$$

(c) [4 marks] Find the equations of the horizontal and vertical asymptotes to the graph of f^{-1}.

Solution: the vertical asymptote to the graph of f^{-1} is the line with equation $x=1$ since

$$
\lim _{x \rightarrow 1^{+}} \frac{10+9 x}{x-1}=\infty \text { and } \lim _{x \rightarrow 1^{-}} \frac{10+9 x}{x-1}=-\infty .
$$

The (only) horizontal asymptote to the graph of f^{-1} is the line with equation $y=9$ since

$$
\lim _{x \rightarrow \infty} \frac{10+9 x}{x-1}=\lim _{x \rightarrow \infty} \frac{10 / x+9}{1-1 / x}=9 \text { and } \lim _{x \rightarrow-\infty} \frac{10+9 x}{x-1}=\lim _{x \rightarrow-\infty} \frac{10 / x+9}{1-1 / x}=9
$$

Alternate Solution: you could find the asymptotes of f and then just switch x and y. Thus:

1. the line $y=1$ is a horizontal asymptote to the graph of f, so $x=1$ is a vertical asymptote to the graph of f^{-1}.
2. the line $x=9$ is a vertical asymptote to the graph of f, so $y=9$ is a horizontal asymptote to the graph of f^{-1}.
3. Find the following limits, or explain why they do not exist.
(a) [4 marks] $\lim _{x \rightarrow 4} \frac{x-4}{3-\sqrt{x+5}}$

Solution: the limit is of the from $0 / 0$. Try rationalizing the denominator.

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x-4}{3-\sqrt{x+5}} & =\lim _{x \rightarrow 4}\left(\frac{x-4}{3-\sqrt{x+5}}\right)\left(\frac{3+\sqrt{x+5}}{3+\sqrt{x+5}}\right) \\
& =\lim _{x \rightarrow 4} \frac{(x-4)(3+\sqrt{x+5})}{9-(x+5)} \\
& =\lim _{x \rightarrow 4} \frac{(x-4)(3+\sqrt{x+5})}{4-x} \\
& =-\lim _{x \rightarrow 4}(3+\sqrt{x+5}) \\
& =-(3+3)=-6
\end{aligned}
$$

(b) [4 marks] $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}+2 x-15}$

Solution: the limit is of the from $0 / 0$. Try factoring numerator and denominator.

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}+2 x-15} & =\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)(x+5)} \\
& =\lim _{x \rightarrow 3} \frac{x+3}{x+5} \\
& =\frac{6}{8}=\frac{3}{4}
\end{aligned}
$$

(c) $[2$ marks $] \lim _{x \rightarrow 6} \frac{x-8}{(x-6)^{2}}$

Solution: the limit is of the form $-2 / 0$, so may be infinite. As $x \rightarrow 6$, the numerator is approaching -2 , while denominator is approaching 0 but is always positive. So

$$
\lim _{x \rightarrow 6} \frac{x-8}{(x-6)^{2}}=-\infty .
$$

6.(a) [5 marks] Find the exact value of $\cos \left(2 \sin ^{-1}\left(-\frac{5}{13}\right)\right)$

Solution: use $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta$. Let $\theta=\sin ^{-1}\left(-\frac{5}{13}\right)$. Then $\sin \theta=-\frac{5}{13}$ and

$$
\cos \left(2 \sin ^{-1}\left(-\frac{5}{13}\right)\right)=\cos (2 \theta)=1-2 \sin ^{2} \theta=1-2\left(-\frac{5}{13}\right)^{2}=1-\frac{50}{169}=\frac{119}{169}
$$

6.(b) [5 marks] Find all the solutions x in \mathbb{R} to the equation $x=-\sin \left(\cos ^{-1}(3 x+1)\right)$

Solution: let $\theta=\cos ^{-1}(3 x+1)$. Then $\cos \theta=3 x+1$ and $0 \leq \theta \leq \pi$, by definition of the inverse cosine function. Thus $\sin \theta \geq 0$. Therefore,

$$
\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-(3 x+1)^{2}}=\sqrt{-9 x^{2}-6 x}
$$

(Aside: this may look incorrect, but $-9 x^{2}-6 x \geq 0$ since the domain of $\cos ^{-1}$ is the interval $[-1,1]$ which means

$$
-1 \leq 3 x+1 \leq 1 \Leftrightarrow-2 \leq 3 x \leq 0 \Leftrightarrow-\frac{2}{3} \leq x \leq 0
$$

which in turn implies $-9 x^{2}-6 x \geq 0$. This is also why the negative sign is in the original equation.) Then

$$
\begin{aligned}
x=-\sqrt{-9 x^{2}-6 x} & \Rightarrow x^{2}=-9 x^{2}-6 x \\
& \Rightarrow 10 x^{2}+6 x=0 \\
& \Rightarrow 5 x^{2}+3 x=0 \\
& \Rightarrow x(5 x+3)=0 \\
& \Rightarrow x=0 \text { or } x=-\frac{3}{5}
\end{aligned}
$$

7. Suppose the position at time t of an object moving horizontally along the x-axis is given by $x=t^{2}-4 t$, for $0 \leq t \leq 8$.
(a) [3 marks] What is the average velocity of the object on the time interval $0 \leq t \leq 3$?

Solution:

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{(9-12)-0}{3-0}=-1
$$

(b) [3 marks] What is the average velocity of the object on the time interval $1 \leq t \leq 1+h$?

Solution:

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{(1+h)^{2}-4(1+h)-(-3)}{h}=\frac{h^{2}-2 h}{h}=h-2
$$

(c) [4 marks] What is the instantaneous velocity of the object at $t=1$?

Solution: the instantaneous velocity of the object at $t=1$ is defined as

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\lim _{h \rightarrow 0} \frac{x(1+h)-x(1)}{1+h-1} .
$$

Thus

$$
\begin{aligned}
v_{\text {instantaneous }} & =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-4(1+h)-(-3)}{h} \\
& =\lim _{h \rightarrow 0}(h-2), \text { by part (b) } \\
& =-2
\end{aligned}
$$

OR: you could use $x^{\prime}(1)=2(1)-4=-2$.
8. Find the following limits, or explain why they do not exist.
(a) [3 marks] $\lim _{x \rightarrow \infty} \frac{\cos x}{x^{2}}$

Solution: use the Squeeze Law, and the observation that

$$
-1 \leq \cos x \leq 1 \Rightarrow-\frac{1}{x^{2}} \leq \frac{\cos x}{x^{2}} \leq \frac{1}{x^{2}} .
$$

Since both

$$
\lim _{x \rightarrow \infty}\left(-\frac{1}{x^{2}}\right)=0 \text { and } \lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}\right)=0
$$

the Squeeze Law implies that also

$$
\lim _{x \rightarrow \infty}\left(\frac{\cos x}{x^{2}}\right)=0
$$

(b) [3 marks] $\lim _{x \rightarrow-1^{-}} \frac{\left|1-x^{2}\right|}{x(x+1)}$

Solution: $x \rightarrow-1^{-}$means $x<-1$, implying $x+1<0$. Thus

$$
\lim _{x \rightarrow-1^{-}} \frac{\left|1-x^{2}\right|}{x(x+1)}=\lim _{x \rightarrow-1^{-}} \frac{|(1-x)(1+x)|}{x(x+1)}=\lim _{x \rightarrow-1^{-}} \frac{(1-x)(-(1+x))}{x(x+1)}=\lim _{x \rightarrow-1^{-}} \frac{x-1}{x}=2
$$

(c) [4 marks] $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2 x-5}-3 x}{x-6}$

Solution: divide numerator and denominator by x :

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2 x-5}-3 x}{x-6} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2 x-5} / x-3}{1-6 / x} \\
\left(\text { since } x<0, x=-\sqrt{x^{2}}\right) & =\lim _{x \rightarrow-\infty} \frac{-\sqrt{\frac{x^{2}+2 x-5}{x^{2}}}-3}{1-6 / x} \\
& =\lim _{x \rightarrow-\infty} \frac{-\sqrt{1+2 / x-5 / x^{2}}-3}{1-6 / x} \\
& =-\frac{4}{1}=-4
\end{aligned}
$$

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

