MAT186H1F - Calculus I - Fall 2016
 Solutions to Term Test 1 - October 18, 2016

Time allotted: 100 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments:

1. The range on each question was (or 1 or 2) to 10 ; each question had a passing average.
2. Many students seem unaware of the definitions of the inverse trig functions, such as $\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$ and $\sec ^{-1} x$; there are no choices:

$$
-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}, 0 \leq \cos ^{-1} x \leq \pi,-\frac{\pi}{2}<\tan ^{-1} x<\frac{\pi}{2} \text { and } 0 \leq \sec ^{-1} x<\frac{\pi}{2} \text { or } \frac{\pi}{2}<\sec ^{-1} x \leq \pi .
$$

3.
4.

Breakdown of Results: 755 students wrote this test. The marks ranged from 23.75% to 100%, and the average was 71.0%. There was one perfect paper. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	4.8%
A	28.4%	$80-89 \%$	23.6%
B	32.3%	$70-79 \%$	32.3%
C	22.0%	$60-69 \%$	22.0%
D	10.7%	$50-59 \%$	10.7%
F	6.6%	$40-49 \%$	4.9%
		$30-39 \%$	1.3%
		$20-29 \%$	0.4%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

1. [avg: 6.9/10] Indicate if the following statements are True or False. No justification is required; 1 mark for each correct choice.
(a) A tangent line is the limit of secant lines.
\otimes TrueFalse
(b) A definite integral is the limit of Riemann sums.
\otimes TrueFalse
(c) If $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$ then $\lim _{x \rightarrow \infty} f(x) \neq \infty$
\bigcirc True \otimes False
(d) $\sec ^{-1} \sqrt{2}=-\frac{\pi}{4}$
\bigcirc True \otimes False
(e) $\lim _{x \rightarrow \infty} \frac{1+2 \cos x}{x}=0$
\otimes True \bigcirc False
(f) If $f(x)$ is continuous on the interval $[a, b]$ and $F^{\prime}(x)=f(x)$ for all x in the interval $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
\otimes True \bigcirc
False
(g) The definite integral of f on the interval $[a, b]$ represents the area of the region under the graph of f on $[a, b]$.
\bigcirc True \otimes False
(h) $\sin \left(\sin ^{-1} x\right)=x$ for all x in $[-1,1]$.
\otimes True \bigcirc False
(i) $\cos ^{-1}(\cos \theta)=\theta$, for all θ.
\bigcirc True \otimes False
(j) If $x>0$ then $\tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$
\otimes True \bigcirc False
2. [avg: 6.7/10] Suppose the function $g(t)$ is defined for all t in the interval $[0,8]$; the only discontinuities of g in the interval $[0,8]$ are at $t=2.5,4$ and 8 ; and that the following data points are on the graph of g :

t	0	1	2	3	4	5	6	7	8
$g(t)$	-1.1	5.7	2.2	-9.0	0.2	-0.3	-4.6	8.8	-3.2

(a) [2 marks] What is the slope of the secant line joining the points $(6, g(6))$ and $(8, g(8))$?

Solution: let m be the slope of the secant line.

$$
m=\frac{g(8)-g(6)}{8-6}=\frac{-3.2+4.6}{2}=0.7
$$

(b) [3 marks] Approximate the value of $\int_{0}^{8} g(t) d t$ by using a left Riemann sum and $n=4$ subintervals of $[0,8]$.

Solution: use a regular partition with $\Delta x=2$:

$$
\int_{0}^{8} g(t) d t \approx g(0) \Delta x+g(2) \Delta x+g(4) \Delta x+g(6) \Delta x=2(-1.1+2.2+0.2-4.6)=-6.6
$$

(c) [3 marks] At least how many solutions in the interval $[0,8]$ are there to the equation $g(t)=0$?

Solution: g is not continuos on the intervals $[2,3],[3,4],[4,5]$ or $[7,8] ; g$ is continuos on the intervals $[0,1],[1,2],[5,6]$ and $[6,7]$. On only two of these, namely $[0,1]$ and $[6,7]$, does g change signs. Thus by the Intermediate Theorem there will be at least one solution to $g(t)=0$ in the interval $[0,1]$ and at least one solution to $g(t)=0$ in the interval [6, 7]. Answer: at least two.
(d) [2 marks] At least how many points are there in the interval $(0,8)$ at which g is not differentiable?

Solution: we know that if g is differentiable at $x=a$ then it is continuous at $x=a$. This means: if g is not continuous at $x=a$ it is not differentiable at $x=a$. Thus there are at least two points in the interval $(0,8)$ at which g is not differentiable: $x=2.5$ and $x=4$.
3. [avg: 7.0/10]
3.(a) [5 marks] Let A be the area of the region between $y=e^{x}$ and $y=0$ on the interval $[0, a]$; let B be the area of the region between $y=e^{x}$ and $y=0$ on the interval $[0, b]$. See the diagram to the right. Suppose B is four times A. Express b in terms of a.

Solution: we have

$$
A=\int_{0}^{a} e^{x} d x=\left[e^{x}\right]_{0}^{a}=e^{a}-1
$$

and

$$
B=\int_{0}^{b} e^{x} d x=\left[e^{x}\right]_{0}^{b}=e^{b}-1
$$

If $B=4 A$, then

$$
e^{b}-1=4\left(e^{a}-1\right) \Rightarrow e^{b}=4 e^{a}-3 \Rightarrow b=\ln \left(4 e^{a}-3\right) .
$$

3.(b) [5 marks] Find the exact value of $\sin \left(2 \tan ^{-1}\left(-\frac{12}{5}\right)\right)$

Solution: let

$$
\theta=\tan ^{-1}\left(-\frac{12}{5}\right) .
$$

Then $-\pi / 2<\theta<0$ and

$$
\tan \theta=-\frac{12}{5}
$$

and

$$
\sin \theta=-\frac{12}{13}, \cos \theta=\frac{5}{13} .
$$

Finally,

$$
\sin (2 \theta)=2 \sin \theta \cos \theta=2\left(-\frac{12}{13}\right)\left(\frac{5}{13}\right)=-\frac{120}{169} .
$$

4. [avg: 9.2/10] Let

$$
f(x)=\frac{1+x}{x^{2} e^{x}} .
$$

Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(1, f(1))$.
Solution: use quotient and product rules, as required:

$$
f^{\prime}(x)=\frac{1 \cdot x^{2} e^{x}-(1+x) \cdot\left(2 x e^{x}+x^{2} e^{x}\right)}{x^{4} e^{2 x}}=-\frac{2+2 x+x^{2}}{x^{3} e^{x}} .
$$

Then

$$
f^{\prime}(1)=-\frac{5}{e}
$$

The equation of the tangent line to f at $x=1$ is given by

$$
\frac{y-f(1)}{x-1}=f^{\prime}(1) \Leftrightarrow \frac{y-2 / e}{x-1}=-\frac{5}{e} \Leftrightarrow y=-\frac{5}{e} x+\frac{7}{e} .
$$

5. [avg: 7.2/10] Find the following limits.
(a) [5 marks] $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+21}-5}{x^{2}-x-2}$

Solution: rationalize and factor:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+21}-5}{x^{2}-x-2} & =\lim _{x \rightarrow 2} \frac{\left(\sqrt{x^{2}+21}-5\right)\left(\sqrt{x^{2}+21}+5\right)}{\left(x^{2}-x-2\right)\left(\sqrt{x^{2}+21}+5\right)} \\
& =\lim _{x \rightarrow 2} \frac{x^{2}-4}{(x-2)(x+1)\left(\sqrt{x^{2}+21}+5\right)} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x+1)\left(\sqrt{x^{2}+21}+5\right)} \\
& =\lim _{x \rightarrow 2} \frac{x+2}{(x+1)\left(\sqrt{x^{2}+21}+5\right)} \\
& =\frac{2}{15}
\end{aligned}
$$

(b) [5 marks] $\lim _{x \rightarrow 0} \frac{\tan (3 x)}{\sin (5 x)}$

Solution: manipulate the expression until you can use the basic trig limit

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1 .
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (3 x)}{\sin (5 x)} & =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (5 x)} \cdot \lim _{h \rightarrow 0} \frac{1}{\cos (3 x)} \\
& =\frac{3}{5} \cdot \lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \cdot \lim _{x \rightarrow 0} \frac{5 x}{\sin (5 x)} \cdot 1 \\
& =\frac{3}{5} \cdot 1 \cdot \frac{1}{1}, \text { using basic trig limit, twice } \\
& =\frac{3}{5}
\end{aligned}
$$

6. [avg: 6.1/10] Find all the asymptotes - vertical, horizontal, or slant - of the following functions:
(a) [5 marks] $p(x)=\frac{x^{3}-3 x^{2}+2 x}{x^{2}-1}$

Solution: factor, simplify and divide:

$$
p(x)=\frac{x^{3}-3 x^{2}+2 x}{x^{2}-1}=\frac{\left(x^{2}-2 x\right)(x-1)}{(x-1)(x+1)}=\frac{x^{2}-2 x}{x+1}=x-3+\frac{3}{x+1},
$$

if $x \neq 1$. In particular, there is no vertical asymptote at $x=1$ since

$$
\lim _{x \rightarrow 1} p(x)=-\frac{1}{2}
$$

The line with equation $y=x-3$ is a slant asymptote, and the line $x=-1$ is a vertical asymptote, since

$$
\lim _{x \rightarrow-1^{-}} p(x)=-\infty \text { and } \lim _{x \rightarrow-1^{+}} p(x)=\infty
$$

(b) [5 marks] $q(x)=\frac{1}{1-e^{x}}$

Solution: $q(0)$ is not defined, because $e^{0}=1$. There is a vertical asymptote at $x=0$ since

$$
\lim _{x \rightarrow 0^{-}} q(x)=\infty \text { and } \lim _{x \rightarrow 0^{+}} q(x)=-\infty .
$$

As for horizontal asymptotes, they exist on both sides:

$$
\lim _{x \rightarrow-\infty} q(x)=\frac{1}{1-0}=1, \text { since } \lim _{x \rightarrow-\infty} e^{x}=0
$$

and

$$
\lim _{x \rightarrow \infty} q(x)=0, \text { since } \lim _{x \rightarrow \infty} e^{x}=\infty
$$

Thus there are horizontal asymptotes at $y=0$ and $y=1$.
7. [avg: 6.7/10] Suppose the position at time t of an object moving horizontally along the x-axis is given by $x=t^{2}-4 t$, for $0 \leq t \leq 8$.
(a) [2 marks] What is the velocity of the object at time t ?

Solution: let the velocity of the object be v.

$$
v=\frac{d x}{d t}=2 t-4 .
$$

(b) [2 marks] For which values of t is the object moving towards the left?

Solution: $v<0 \Leftrightarrow 2 t-4<0 \Leftrightarrow t<2$. So the object is moving to the left when $0 \leq t<2$.
(c) [2 marks] What is the average velocity of the object on the time interval $0 \leq t \leq 3$?

Solution: the average velocity is

$$
\frac{\Delta x}{\Delta t}=\frac{x(3)-x(0)}{3-0}=\frac{-3-0}{3}=-1
$$

(d) [2 marks] What is the speed of the object at $t=1$?

Solution: speed is $|v|$. At $t=1, v=-2$, so the speed at $t=1$ is 2 .
(e) [2 marks] What is the average speed of the object on the time interval $0 \leq t \leq 3$?

Solution: the average speed is the total distance travelled divided by the total time. In the first 2 seconds the object goes from $x=0$ to $x=-4$, so the object travels 4 units. In the next second the object goes form $x=-4$ to $x=-3$, a further 1 unit distance travelled. So the total distance travelled in the first 3 seconds is 5 ; and the average speed is $\frac{5}{3}$.
Alternate Solution: or use integrals and the fact that the total distance travelled by the object over the first 3 seconds is

$$
\int_{0}^{3}|v| d t=\int_{0}^{2}-(2 t-4) d t+\int_{2}^{3}(2 t-4) d t=\left[4 t-t^{2}\right]_{0}^{2}+\left[t^{2}-4 t\right]_{2}^{3}=4+1=5
$$

so the average speed is $5 / 3$, as before.
8. [avg: 7.0/10] The displacement of a mass on a spring suspended from the ceiling is given by

$$
y=10 e^{-t / 2} \cos \left(\frac{\pi t}{8}\right)
$$

(a) [5 marks] Find the velocity of the mass at time t.

Solution: let v be the velocity of the mass.

$$
v=\frac{d y}{d t}=-5 e^{-t / 2} \cos \left(\frac{\pi t}{8}\right)-\frac{5 \pi}{4} e^{-t / 2} \sin \left(\frac{\pi t}{8}\right)=-5 e^{-t / 2}\left(\cos \left(\frac{\pi t}{8}\right)+\frac{\pi}{4} \sin \left(\frac{\pi t}{8}\right)\right) .
$$

(b) [3 marks] At which time, $t>0$, is the velocity first equal to zero?

Solution: set $v=0$:

$$
\begin{aligned}
-5 e^{-t / 2}\left(\cos \left(\frac{\pi t}{8}\right)+\frac{\pi}{4} \sin \left(\frac{\pi t}{8}\right)\right)=0 & \Rightarrow \cos \left(\frac{\pi t}{8}\right)+\frac{\pi}{4} \sin \left(\frac{\pi t}{8}\right)=0 \\
& \Rightarrow \frac{\pi}{4} \sin \left(\frac{\pi t}{8}\right)=-\cos \left(\frac{\pi t}{8}\right) \\
& \Rightarrow \tan \left(\frac{\pi t}{8}\right)=-\frac{4}{\pi} \\
& \Rightarrow \frac{\pi t}{8}=\tan ^{-1}\left(-\frac{4}{\pi}\right)=-\tan ^{-1}\left(\frac{4}{\pi}\right) \\
& \Rightarrow t=-\frac{8}{\pi} \tan ^{-1}\left(\frac{4}{\pi}\right)<0,
\end{aligned}
$$

so, since the period of $\tan (\pi t / 8)$ is 8 , take

$$
t=8-\frac{8}{\pi} \tan ^{-1}\left(\frac{4}{\pi}\right) \approx 5.7 \ldots
$$

Note: answer must be in radians!
(c) [2 marks] What is $\lim _{t \rightarrow \infty} y$?

Solution: use the squeeze law, and the fact that

$$
-10 \leq 10 \cos \left(\frac{\pi t}{8}\right) \leq 10
$$

Thus

$$
-10 e^{-t / 2} \leq 10 e^{-t / 2} \cos \left(\frac{\pi t}{8}\right) \leq 10 e^{-t / 2}
$$

Since

$$
\lim _{t \rightarrow \infty} e^{-t / 2}=0
$$

the expression squeezed in the middle also has limit zero: $\lim _{t \rightarrow \infty} y=0$.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

