MAT186H1F - Calculus I - Fall 2015

Solutions to Term Test 1 - October 13, 2015

Time allotted: 100 minutes.

Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments:

- 1. Of the eight questions, Questions 4, 5, 7 and 8 were straightforward, computational problems, with Question 7 the easiest of all. These four questions were done very well.
- 2. Questions 1 and 3 were graphical in nature; one was very well done, the other poorly done.
- 3. Question 2, the True or False Question, had some definite "traps" which many students fell into.
- 4. When stating the Intermediate Value Theorem we will not accept long, circuitous variations, or try to decode vague paraphrases: you must state it precisely–for example, as it is written in the book. Moreover, drawing a picture is not a *statement* of the theorem.

Breakdown of Results: 887 students wrote this test. The marks ranged from 22.5% to 100%, and the average was 77.5%. There were four perfect papers. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	8.9%
A	47.2%	80-89%	38.3%
В	34.6%	70-79%	34.6%
C	11.4%	60-69%	11.4%
D	5.3~%	50-59%	5.3%
F	1.5%	40-49%	0.7%
		30-39%	0.6%
		20-29%	0.2%
		10-19%	0.0%
		0-9%	0.0%

PART I: No explanation is necessary for your answers to Question 1 and Question 2.

1. [avg: 8.9/10] Sketch a possible graph of y = f(x) if f is a function with ALL of the following properties:

- f(x) is defined for all x, except x = -2
- the only solution to f(x) = 0 is x = 0.
- f(-4) = 1, f(2) = 2 and f(3) = 3
- f is continuous on the intervals $(-\infty, -2), (-2, 2)$ and $[2, \infty)$
- f is differentiable at all x except for x = -2, x = 2 and x = 3
- $\lim_{x \to -2^-} f(x) = \infty$, $\lim_{x \to -2^+} f(x) = -\infty$ and $\lim_{x \to 2^-} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = 2$ and $\lim_{x \to \infty} f(x) = 1$
- the only solution to f'(x) = 0 is x = -4

Clearly label all asymptotes to your graph of f. Solution: the graph should look something like:

- 2. [avg: 6.8/10] Decide if the following statements are True or False. Each correct choice is worth 1 mark.
 (a) If f(x) is continuous for all x then it is differentiable for all x. True ⊗ False
 - (b) If a function f(x) is not continuous at x = a then it is not differentiable at x = a.

 \otimes True \bigcirc False

(c) For every function f defined for all x, if a < b and f(a) < L < f(b) then there is a number c in the open interval (a, b) such that f(c) = L. \bigcirc True \bigotimes False

(d) The function $g(x) = \frac{x^2 + 5x + 6}{x + 2}$ has a vertical asymptote at x = -2. \bigcirc **True** \bigotimes **False**

- (e) $\lim_{\theta \to \infty} \frac{\sin \theta}{\theta} = 1.$ () True \bigotimes False
- (f) $\lim_{t \to \infty} t \sin(1/t) = 1.$ \bigotimes True \bigcirc False
- (g) $\lim_{x \to \infty} x \sin x = \infty$. \bigcirc True \bigotimes False
- (h) $\frac{d}{dx}(e^{\pi}+x^2) = e^{\pi}+2x.$ \bigcirc True \bigotimes False
- (j) $\cos^{-1}\left(-\frac{1}{2}\right) = -\frac{4\pi}{3}$. \bigcirc True \bigotimes False

PART II : Present complete solutions to the following questions in the space provided.

3. [avg: 3.3/10] The graph of a function y = f(x)is given to the right. Answer the following questions:

(a) [2 marks] Is f(x) continuous at x = 4?

Soluiton: No, f has a jump discontinuity at x = 4.

More formally, you could observe either one of the following three inequalities to conclude that f is not continuous at x = 4:

(b) [4 marks] Is f(f(x)) continuous at x = 4?

Solution: No. First observe that f(f(4)) = f(2) = -1. Then observe that both

$$\lim_{x \to 4^{-}} f(f(x)) = \lim_{y \to 1^{-}} f(y) = 0 \neq -1 \text{ and } \lim_{x \to 4^{+}} f(f(x)) = \lim_{y \to 3^{+}} f(y) = 0 \neq -1.$$

Either inequality is enough to show $f \circ f$ is not continuous at x = 4. You could also point out that even though

$$\lim_{x \to 4} f(f(x)) = 0,$$

this limit is not equal to $(f \circ f)(4)$. (That is, $f \circ f$ has a removable discontinuity at x = 4.)

(c) [4 marks] What is $\lim_{x \to 4} e^{-1/f(f(x))}$?

Solution: with calculations similar to those of part (b),

$$\lim_{x \to 4} e^{-1/f(f(x))} = \lim_{u \to 0^+} e^{-1/u} = \lim_{v \to \infty} e^{-v} = 0$$

4. [avg: 8.5/10] Suppose $\sin \alpha = \frac{3}{5}$ and $\cos \alpha < 0$.

(a) [3 marks] Find the exact value of $\sin(2\alpha)$.

Solution: since it is given that $\cos \alpha < 0$, we have

$$\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\sqrt{1 - \left(\frac{3}{5}\right)^2} = -\frac{4}{5}.$$

Then

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha = 2\left(\frac{3}{5}\right)\left(-\frac{4}{5}\right) = -\frac{24}{25}.$$

(b) [2 marks] Find the exact value of $\sin(3\alpha)$, given the triple angle formula

$$\sin(3x) = 3\sin x - 4\sin^3 x.$$

Solution:

$$\sin(3\alpha) = 3\sin\alpha - 4\sin^3\alpha = 3\left(\frac{3}{5}\right) - 4\left(\frac{3}{5}\right)^3 = \frac{9}{5} - \frac{108}{125} = \frac{117}{125}.$$

(c) [5 marks] By appropriately differentiating the above triple angle formula for sin(3x), find a triple angle formula for cos(3x), and then use it to find the exact value of cos(3α).
 Solution:

$$\frac{d\sin(3x)}{dx} = \frac{d(3\sin x - 4\sin^3 x)}{dx}$$

$$\Rightarrow 3\cos(3x) = 3\cos x - 12\sin^2 x \cos x$$

$$\Rightarrow \cos(3x) = \cos x - 4\sin^2 x \cos x$$

(optionally)
$$\Rightarrow \cos(3x) = -3\cos x + 4\cos^3 x$$

Then

$$\cos(3\alpha) = \cos\alpha - 4\sin^2\alpha \cos\alpha = -\frac{4}{5} - 4\left(\frac{3}{5}\right)^2\left(-\frac{4}{5}\right) = \frac{44}{125}$$

5. [avg: 8.5/10] Find the following limits.

(a) [5 marks]
$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 2x^2 + x - 2}$$

Solution: substituting x = 2 gives a limit in the 0/0 form, so try factoring.

$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 2x^2 + x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)(x^2 + 1)} = \lim_{x \to 2} \frac{x + 2}{x^2 + 1} = \frac{4}{5}$$

(b) [5 marks] $\lim_{x \to 0} \frac{a + \sqrt{a^2 - x^2}}{x^2}$, if a < 0.

Solution: since $\sqrt{a^2} = |a| = -a$, if a < 0, this limit is in the 0/0 form. So try rationalizing.

$$\lim_{x \to 0} \frac{a + \sqrt{a^2 - x^2}}{x^2}$$

$$= \lim_{x \to 0} \frac{(a + \sqrt{a^2 - x^2})(a - \sqrt{a^2 - x^2})}{x^2(a - \sqrt{a^2 - x^2})}$$

$$= \lim_{x \to 0} \frac{a^2 - (a^2 - x^2)}{x^2(a - \sqrt{a^2 - x^2})}$$

$$= \lim_{x \to 0} \frac{x^2}{x^2(a - \sqrt{a^2 - x^2})}$$

$$= \lim_{x \to 0} \frac{1}{a - \sqrt{a^2 - x^2}}$$

$$= \frac{1}{a - \sqrt{a^2}}$$

$$= \frac{1}{a - (-a)}, \text{ since } a < 0$$

$$= \frac{1}{2a}$$

6. [avg: 7.6/10]

6.(a) [4 marks; 2 marks for each part] Use the Squeeze Theorem to find the following limits:

(i) $\lim_{x \to 0} f(x)$, if $-x^2 + \sin x \le f(x) \le x^2 + \sin x$.	(ii) $\lim_{x \to -\infty} f(x)$, if $f(x) = e^x \cos(x^3 + 7)$.	
Solution: both	Solution: since $-1 \le \cos(x^3 + 7) \le 1$, we have	
$\lim_{x \to 0} (-x^2 + \sin x) = 0$	$-e^x \le f(x) \le e^x.$	
and	Both	
$\lim_{x \to 0} (x^2 + \sin x) = 0;$ so by the Squeeze Theorem,	$\lim_{x \to -\infty} -e^x = 0 \text{ and } \lim_{x \to -\infty} e^x = 0,$	
$\lim_{x \to 0} f(x) = 0$	so $\lim_{x \to -\infty} f(x) = 0$	
as well.	as well, by the Squeeze Theorem.	

6.(b) [6 marks] State the Intermediate Value Theorem and use it to explain why the equation

$$2x + \sin x - \frac{1}{6} = 0$$

has at least one solution.

Solution: the Intermediate Value Theorem states:

Let f be a continuous function on the closed interval [a, b] and suppose K is a value between f(a) and f(b). Then there is a number c in the open interval (a, b) such that f(c) = K.

For the second part of the question, let $f(x) = 2x + \sin x - 1/6$, which is continuous for all x. Since

$$f(0) = -\frac{1}{6} < 0$$
 and $f(1) = 2 + \sin 1 - \frac{1}{6} > 0$

there is, by the Intermediate Value Theorem, a number c in the interval (0,1) such that

$$f(c) = 0 \Leftrightarrow 2c + \sin c - \frac{1}{6} = 0.$$

- 7. [avg: 9.6/10] Suppose a stone is thrown vertically upward from the edge of a cliff with an initial velocity of 20 m/s from a height of 25 m above the ground. Assume the height s (in meters) of the stone above the ground t seconds after it is thrown is $s = -5t^2 + 20t + 25$.
 - (a) [2 marks] Determine the velocity v of the stone after t seconds.

Solution: in meters per second,

$$v = \frac{ds}{dt} = -10t + 20.$$

(b) [2 marks] When does the stone reach its highest point?

Solution: at the highest point, the stone is momentarily at rest.

$$v = 0 \Leftrightarrow -10t + 20 = 0 \Leftrightarrow t = 2.$$

So the stone reaches its highest point at t = 2 seconds.

(c) [2 marks] What is the height of the stone at the highest point?

Solution: at t = 2 the height of the stone is

$$s = -5(2^2) + 202 + 25 = 45$$

meters above the ground.

(d) [2 marks] When does the stone strike the ground?

Solution: let s = 0 and solve for t;

$$-5t^{2} + 20t + 25 \Leftrightarrow t^{2} - 4t - 5 = 0 \Leftrightarrow (t+1)(t-5) = 0 \Leftrightarrow t = -1 \text{ or } t = 5.$$

So the stone hits the ground at t = 5 seconds.

(e) [2 marks] With what velocity does the stone strike the ground?

Solution: at t = 5,

$$v = -10(5) + 20 = -30$$

meters per second.

8. [avg: 8.6/10] For each of the graphs determined by the following equations, find the slope of the tangent line to the graph at the point (x, y) = (1, -1/2).

(a) [5 marks]
$$y = \frac{\cos(\pi\sqrt{x})}{(1+x^2)}$$
.

Solution: cross multiply and then use implicit differentiation:

$$y(1+x^2) = \cos(\pi\sqrt{x}) \Rightarrow \frac{dy}{dx}(1+x^2) + 2xy = -\frac{\pi\sin(\pi\sqrt{x})}{2\sqrt{x}}.$$

Substitute (x, y) = (1, -1/2) and solve for dy/ds:

$$2\frac{dy}{dx} + 2(1)\left(-\frac{1}{2}\right) = 0 \Leftrightarrow \frac{dy}{dx} = \frac{1}{2}.$$

Alteranate Solution: use the quotient rule.

$$\begin{aligned} \frac{dy}{dx} &= \frac{-\pi \sin(\pi \sqrt{x}) \left(\frac{1}{2\sqrt{x}}\right) (1+x^2) - 2x \cos(\pi \sqrt{x})}{(1+x^2)^2} \\ \Rightarrow \left. \frac{dy}{dx} \right|_{x=1} &= \frac{0-2 \cos \pi}{2^2} = \frac{1}{2}, \text{ as before.} \end{aligned}$$

(b) [5 marks] $4x^2y + e^{x-1} = 16y^3 + 1$.

Solution: use implicit differentiation:

$$8x y + 4x^2 \frac{dy}{dx} + e^{x-1} = 48y^2 \frac{dy}{dx}.$$

Substitute (x, y) = (1, -1/2) and solve for dy/dx:

$$8\left(-\frac{1}{2}\right) + 4\frac{dy}{dx} + e^0 = 48\left(\frac{1}{4}\right)\frac{dy}{dx} \Leftrightarrow 4\frac{dy}{dx} - 3 = 12\frac{dy}{dx} \Leftrightarrow \frac{dy}{dx} = -\frac{3}{8}.$$

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.