University of Toronto

SOLUTIONS to MAT186H1F TERM TEST 1
 of Tuesday, October 6, 2009

General Comments about the Test:

- Many students seem to have missed the instructions on the front page of the test:

Present your solutions in the space provided. This means: show your work!
You won't get full marks on a written test question unless you explain your solution clearly and completely.

- Questions 1, 2(a), 4, 5(a), 6 and 7 are all completely routine.
- In Question 2(a), $0<\cos ^{-1}(-2 / 3)<\pi$, so the sine of this angle must be positive. A lot of students gave two answers, a negative and a positive one.
- Questions 2(b) and 5(b) were the hardest questions on the paper. 5(b) starts out routinely enough-rationalize-but then you have to realize that $|x|=\sqrt{x^{2}}=-x$, since $x \rightarrow-\infty$, to finish it correctly. 2(b) is a variation on a WileyPlus assigned question about inverses.
- The limits in Questions 3(a) and 3(b) are not the same; a lot of students ignored the absolute value in both parts and got the same answers for both parts-which completely misses the point of this question-and is a major error.
- In Questions 6(b) and 7(a) you have to clearly explain how the Intermediate Value Theorem and the Squeezing Theorem, respectively, apply, to get full marks.
- In Question 7(b) you have to clearly show how the basic trig limit can be invoked to finish the calculations.

Breakdown of Results: 491 students wrote this test. The marks ranged from 15% to 100%, and the average was 70%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	9.6%
A	32.8%	$80-89 \%$	23.2%
B	24.9%	$70-79 \%$	24.9%
C	17.5%	$60-69 \%$	17.5%
D	13.2%	$50-59 \%$	13.2%
F	11.6%	$40-49 \%$	7.5%
		$30-39 \%$	1.4%
		$20-29 \%$	1.8%
		$10-19 \%$	0.8%
		$0-9 \%$	0.0%

1. [9 marks] Suppose $\cos x=\frac{1}{5}$ and $\sin x<0$. Find the exact values of the following:
(a) $[2$ marks $] \sin x$

Solution:

$$
\begin{aligned}
\sin x & =-\sqrt{1-\cos ^{2} x} \\
& =-\sqrt{1-\left(\frac{1}{5}\right)^{2}} \\
& =-\sqrt{1-\left(\frac{1}{25}\right)} \\
& =-\sqrt{\frac{24}{25}} \\
& =-\frac{2}{5} \sqrt{6}
\end{aligned}
$$

(b) $[3$ marks $] \sin (2 x)$

Solution:

$$
\begin{aligned}
\sin (2 x) & =2 \sin x \cos x \\
& =2\left(-\frac{2}{5} \sqrt{6}\right)\left(\frac{1}{5}\right) \\
& =-\frac{4}{25} \sqrt{6}
\end{aligned}
$$

(c) $[4$ marks $] \cos \left(x+\frac{\pi}{6}\right)$

Solution:

$$
\begin{aligned}
\cos \left(x+\frac{\pi}{6}\right) & =\cos x \cos \frac{\pi}{6}-\sin x \sin \frac{\pi}{6} \\
& =\left(\frac{1}{5}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(-\frac{2}{5} \sqrt{6}\right)\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{3}}{10}+\frac{\sqrt{6}}{5}
\end{aligned}
$$

2(a) [4 marks] Find the exact value of $\sin \left(\cos ^{-1}\left(-\frac{2}{3}\right)\right)$.
Solution: let $\theta=\cos ^{-1}\left(-\frac{2}{3}\right)$. Then $\cos \theta=-\frac{2}{3}$ and $\frac{\pi}{2}<\theta<\pi$. So

$$
\begin{aligned}
\sin \left(\cos ^{-1}\left(-\frac{2}{3}\right)\right) & =\sin \theta \\
& =\sqrt{1-\cos ^{2} \theta} \\
& =\sqrt{1-\left(-\frac{2}{3}\right)^{2}} \\
& =\sqrt{1-\frac{4}{9}} \\
& =\frac{\sqrt{5}}{3}
\end{aligned}
$$

2.(b) [5 marks] Find the formula for $f^{-1}(x)$ if $f(x)=\left\{\begin{array}{cl}(x-2)^{2}+1, & \text { if } x<2 \\ \frac{2}{x}, & \text { if } x \geq 2\end{array}\right.$.

Solution: the graph of f is shown below, along with the line $y=x$. Then

$$
x=\frac{2}{y} \Leftrightarrow y=\frac{2}{x}
$$

and

$$
x=(y-2)^{2}+1 \Leftrightarrow y=2 \pm \sqrt{x-1} .
$$

Since $(0,5)$ is on the graph of $f,(5,0)$ must be on the graph of f^{-1}. So

$$
f^{-1}(x)=\left\{\begin{array}{cl}
-\sqrt{x-1}+2, & \text { if } x>1 \\
\frac{2}{x}, & \text { if } 0<x \leq 1
\end{array}\right.
$$

Aside: other observations that can help you organize this question: the range of f is $y>0$, so the domain of f^{-1} must be $x>0$; and the domain of f is \mathbb{R}, so the range of f^{-1} must be \mathbb{R}. The point $(2,1)$ is the dividing point for the two cases of f, so the point $(1,2)$ is the dividing point for the two cases of f^{-1}.
3. [9 marks] Find the following limits.
(a) $\left[3\right.$ marks] $\lim _{x \rightarrow 2^{+}} \frac{\left|x^{2}-x-2\right|}{x-2}$

Solution: factor and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} \frac{\left|x^{2}-x-2\right|}{x-2} & =\lim _{x \rightarrow 2^{+}} \frac{|(x-2)(x+1)|}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{|x-2||x+1|}{x-2} \\
& =\lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+1)}{x-2}, \text { since } x>2 \\
& =\lim _{x \rightarrow 2^{+}}(x+1)=3
\end{aligned}
$$

(b) [3 marks] $\lim _{x \rightarrow 2^{-}} \frac{\left|x^{2}-x-2\right|}{x-2}$

Solution: factor and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \frac{\left|x^{2}-x-2\right|}{x-2} & =\lim _{x \rightarrow 2^{-}} \frac{|(x-2)(x+1)|}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{|x-2||x+1|}{x-2} \\
& =\lim _{x \rightarrow 2^{-}} \frac{-(x-2)(x+1)}{x-2}, \text { since } x<2 \\
& =\lim _{x \rightarrow 2^{-}}-(x+1)=-3
\end{aligned}
$$

(c) [3 marks] $\lim _{x \rightarrow 0^{-}} \frac{\sin x}{1-\cos x}$

Solution: multiply through by $1+\cos x$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{1-\cos x} & =\lim _{x \rightarrow 0^{-}} \frac{\sin x(1+\cos x)}{(1-\cos x)(1+\cos x)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sin x(1+\cos x)}{1-\cos ^{2} x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sin x(1+\cos x)}{\sin ^{2} x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{1+\cos x}{\sin x}, \text { which is in } \frac{2}{0^{-}} \text {form } \\
& =-\infty
\end{aligned}
$$

4. [8 marks] Find the following limits.
(a) [3 marks] $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$

Solution: factor and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3} & =\lim _{x \rightarrow 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{\sqrt{x}-3} \\
& =\lim _{x \rightarrow 9} \sqrt{x}+3 \\
& =6
\end{aligned}
$$

Alternate Solution: rationalize and simplify.
(b) [5 marks] $\lim _{x \rightarrow 9} \frac{\sqrt{3 x+9}-6}{\sqrt{x}-3}$

Solution: rationalize twice and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow 9} \frac{\sqrt{3 x+9}-6}{\sqrt{x}-3} & =\lim _{x \rightarrow 9} \frac{(\sqrt{3 x+9}-6)(\sqrt{3 x+9}+6)(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{3 x+9}+6)(\sqrt{x}+3)} \\
& =\lim _{x \rightarrow 9} \frac{(3 x+9-36)(\sqrt{x}+3)}{(x-9)(\sqrt{3 x+9}+6)} \\
& =\lim _{x \rightarrow 9} \frac{(3 x-27)(\sqrt{x}+3)}{(x-9)(\sqrt{3 x+9}+6)} \\
& =\lim _{x \rightarrow 9} \frac{3(x-9)(\sqrt{x}+3)}{(x-9)(\sqrt{3 x+9}+6)} \\
& =3 \lim _{x \rightarrow 9} \frac{\sqrt{x}+3}{\sqrt{3 x+9}+6} \\
& =3\left(\frac{6}{6+6}\right) \\
& =\frac{3}{2}
\end{aligned}
$$

Alternate Solution:

$$
\lim _{x \rightarrow 9} \frac{\sqrt{3 x+9}-6}{\sqrt{x}-3}=\lim _{x \rightarrow 9} \frac{\sqrt{3 x+9}-6}{x-9} \cdot \frac{x-9}{\sqrt{x}-3}=6 \lim _{x \rightarrow 9} \frac{\sqrt{3 x+9}-6}{x-9},
$$

by part (a). To finish, rationalize and simplify in the remaining limit.
5. [8 marks] Find the following limits:
(a) [3 marks] $\lim _{x \rightarrow \infty} \frac{x^{2}+3 x-14}{4-3 x^{2}}$

Solution: divide through by the highest power of x.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}+3 x-14}{4-3 x^{2}} & =\lim _{x \rightarrow \infty} \frac{1+3 / x-14 / x^{2}}{4 / x^{2}-3} \\
& =\frac{1+0-0}{0-3} \\
& =-\frac{1}{3}
\end{aligned}
$$

(b) [5 marks] $\lim _{x \rightarrow-\infty} \sqrt{x^{2}+9 x}+x$

Solution: rationalize and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \sqrt{x^{2}+9 x}+x & =\lim _{x \rightarrow-\infty} \frac{\left(\sqrt{x^{2}+9 x}+x\right)\left(\sqrt{x^{2}+9 x}-x\right)}{\sqrt{x^{2}+9 x}-x} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}+9 x-x^{2}}{\sqrt{x^{2}+9 x}-x} \\
& =\lim _{x \rightarrow-\infty} \frac{9 x}{\sqrt{x^{2}+9 x}-x} \\
& =\lim _{x \rightarrow-\infty} \frac{9}{\frac{\sqrt{x^{2}+9 x}}{x}-1} \\
& =\lim _{x \rightarrow-\infty} \frac{9}{-\sqrt{\frac{x^{2}+9 x}{x^{2}}}-1}, \text { since } x<0 \\
& =\lim _{x \rightarrow-\infty} \frac{9}{-\sqrt{1+9 / x}-1} \\
& =\frac{9}{-\sqrt{1+0}-1} \\
& =-\frac{9}{2}
\end{aligned}
$$

6.(a) [5 marks] Find all the discontinuities of $f(x)=\frac{x^{2}-6 x+5}{x^{2}-1}$ and determine if each discontinuity is removable, jump or infinite.

Solution: discontinuities: $x^{2}-1=0 \Leftrightarrow x= \pm 1$.
At $x=1$:

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-6 x+5}{x^{2}-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-5)(x-1)}{(x+1)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x-5}{x+1} \\
& =-2,
\end{aligned}
$$

so f has a removable discontinuity at $x=1$.
At $x=-1$:

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-1^{+}} \frac{x^{2}-6 x+5}{x^{2}-1} \\
& =\lim _{x \rightarrow-1^{+}} \frac{(x-5)(x-1)}{(x+1)(x-1)} \\
& =\lim _{x \rightarrow-1^{+}} \frac{x-5}{x+1}, \text { which is in } \frac{-6}{0^{+}} \text {form } \\
& =-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} f(x) & =\lim _{x \rightarrow-1^{-}} \frac{x^{2}-6 x+5}{x^{2}-1} \\
& =\lim _{x \rightarrow-1^{-}} \frac{(x-5)(x-1)}{(x+1)(x-1)} \\
& =\lim _{x \rightarrow-1^{-}} \frac{x-5}{x+1}, \text { which is in } \frac{-6}{0^{-}} \text {form } \\
& =\infty,
\end{aligned}
$$

so f has an infinite discontinuity at $x=-1$.
6.(b) [4 marks] Using the Intermediate Value Theorem, explain succinctly why the equation $x-\cos x=0$ has at least one solution in the interval $[0, \pi / 2]$.

Solution: let $f(x)=x-\cos x$, which is a continuous function for all x. Observe that

$$
f(0)=0-\cos 0=0-1=-1<0
$$

and

$$
f(\pi / 2)=\pi / 2-\cos \pi / 2=\pi / 2-0=\pi / 2>0
$$

So by the Intermediate Value Theorem, there is a number $c \in(0, \pi / 2)$ such that

$$
f(c)=0 \Leftrightarrow c-\cos c=0
$$

7. [8 marks]
(a) [4 marks] Use the Squeezing Theorem to find $\lim _{x \rightarrow 2}(x-2)^{2} \sin (\sec (\pi / x))$.

Solution: $\sec (\pi / 2)$ is not defined. Use the Squeezing Theorem.

$$
\begin{aligned}
& x \neq 2 \Rightarrow-1 \leq \sin (\sec (\pi / x)) \leq 1 \\
\Rightarrow & -(x-2)^{2} \leq(x-2)^{2} \sin (\sec (\pi / x)) \leq(x-2)^{2}
\end{aligned}
$$

Both

$$
\lim _{x \rightarrow 2}-(x-2)^{2}=0 \text { and } \lim _{x \rightarrow 2}(x-2)^{2}=0
$$

so by the Squeezing Theorem,

$$
\lim _{x \rightarrow 2}(x-2)^{2} \sin (\sec (\pi / x))=0
$$

as well.
(b) [4 marks] Find $\lim _{x \rightarrow 0} \frac{\sin (-4 x)}{\sin (7 x)}$.

Solution: make use of the basic trig limit $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (-4 x)}{\sin (7 x)} & =\lim _{x \rightarrow 0}\left(-\frac{4}{7} \cdot \frac{\sin (-4 x)}{(-4 x)} \cdot \frac{(7 x)}{\sin (7 x)}\right) \\
& =-\frac{4}{7} \cdot \lim _{x \rightarrow 0} \frac{\sin (-4 x)}{(-4 x)} \cdot \lim _{x \rightarrow 0} \frac{(7 x)}{\sin (7 x)} \\
& =-\frac{4}{7} \cdot 1 \cdot \frac{1}{1}, \text { making use of the basic trig limit } \\
& =-\frac{4}{7}
\end{aligned}
$$

