University of Toronto
 SOLUTIONS to MAT186H1F TERM TEST 1
 of Tuesday, October 7, 2008

Duration: 90 minutes
TOTAL MARKS: 60
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

General Comments about the Test:

- Many of the questions were based on homework problems, sometimes verbatim.
- In Question \#1 decimal approximations are not acceptable.
- In Question $\# 2(\mathrm{~b})$ you must state that the function $f(x)=x^{4}+2 x-1$ is continuous; otherwise the Intermediate Value Property cannot be applied.
- The point to Question $\# 4(\mathrm{a})$ is to manipulate the given expressions until the basic trig limit can be used.
- Question $\# 5(\mathrm{~b})$ is the hardest part of the test.
- In Question $\# 6$ there are two critical points, one for which $f^{\prime}(x)=0$, and one for which $f^{\prime}(x)$ is undefined. This must be clearly indicated to get full marks.
- In Question $\# 7$ the point $(1,5)$ is not on the graph of $f(x)=x^{3}$, so calculating $f^{\prime}(1)$ and using that as the slope of the required tangent line is a conceptual blunder of the worst kind.
- Far too many students abuse mathematical notation, for which they lost marks.

Breakdown of Results: 451 students wrote this test. The marks ranged from 6.7% to 100%, and the average was 75.1%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	20.9%
A	48.8%	$80-89 \%$	27.9%
B	20.4%	$70-79 \%$	20.4%
C	13.7%	$60-69 \%$	13.7%
D	10.0%	$50-59 \%$	10.0%
F	7.1%	$40-49 \%$	3.8%
		$30-39 \%$	1.8%
		$20-29 \%$	1.3%
		$10-19 \%$	0.0%
		$0-9 \%$	0.2%

1. [9 marks] Suppose $\cos x=-\frac{2}{7}$ and $\sin x>0$. Find the exact values of the following:
(a) $[2$ marks $] \sin x$

Solution:

$$
\begin{aligned}
\sin x & =\sqrt{1-\cos ^{2} x} \\
& =\sqrt{1-\left(-\frac{2}{7}\right)^{2}} \\
& =\sqrt{1-\left(\frac{4}{49}\right)} \\
& =\sqrt{\frac{45}{49}} \\
& =\frac{3 \sqrt{5}}{7}
\end{aligned}
$$

(b) [3 marks] $\sin (2 x)$

Solution:

$$
\begin{aligned}
\sin (2 x) & =2 \sin x \cos x \\
& =2\left(\frac{3 \sqrt{5}}{7}\right)\left(-\frac{2}{7}\right) \\
& =-\frac{12}{49} \sqrt{5}
\end{aligned}
$$

(c) $[4$ marks $] \cos \left(x-\frac{\pi}{3}\right)$

Solution:

$$
\begin{aligned}
\cos \left(x-\frac{\pi}{3}\right) & =\cos x \cos \frac{\pi}{3}+\sin x \sin \frac{\pi}{3} \\
& =\left(-\frac{2}{7}\right)\left(\frac{1}{2}\right)+\left(\frac{3 \sqrt{5}}{7}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{3 \sqrt{15}-2}{14}
\end{aligned}
$$

2(a) [4 marks] Find $g^{\prime}(1)$ if $g(t)=\sqrt{t+\sqrt{t}}$.

Solution: Use the chain rule.

$$
\begin{aligned}
g^{\prime}(t) & =\frac{1}{2} \frac{1}{\sqrt{t+\sqrt{t}}}\left(1+\frac{1}{2} \frac{1}{\sqrt{t}}\right) \\
\Rightarrow g^{\prime}(1) & =\frac{1}{2} \frac{1}{\sqrt{1+1}}\left(1+\frac{1}{2}\right)=\frac{3}{4 \sqrt{2}} \text { or } \frac{3 \sqrt{2}}{8}
\end{aligned}
$$

2(b) [5 marks] Use the Intermediate Value Property to explain why the equation $x^{4}+2 x-1=0$ has at least two solutions in the interval $[-2,2]$. (Be succinct; be precise; do not beat around the bush.)

Solution: Let $f(x)=x^{4}+2 x-1$, which is a continuous function for all x. Observe that

$$
f(-2)=16-4-1=11>0 \text { and } f(0)=-1<0 .
$$

So by the Intermediate Value Property, there is a number $c_{1} \in(-2,0)$ such that

$$
f\left(c_{1}\right)=0 .
$$

Similarly,

$$
f(0)=-1<0 \text { and } f(2)=16+4-1=19>0 ;
$$

so by the Intermediate Value Property, there is a number $c_{2} \in(0,2)$ such that

$$
f\left(c_{2}\right)=0
$$

Thus the equation $f(x)=0$ has at least two solutions in the interval $[-2,2]$.
3. [8 marks] Find the following limits.
(a) [4 marks] $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+2 x-3}$

Solution: Factor and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+2 x-3} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x+3)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+3} \\
& =\frac{3}{4}
\end{aligned}
$$

(b) [4 marks] $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$

Solution: Rationalize and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3} & =\lim _{x \rightarrow 0}\left(\frac{x-9}{\sqrt{x}-3}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}+3}\right) \\
& =\lim _{x \rightarrow 9} \frac{(x-9)(\sqrt{x}+3)}{x-9} \\
& =\lim _{x \rightarrow 9} \sqrt{x}+3 \\
& =\sqrt{9}+3 \\
& =6
\end{aligned}
$$

4. [9 marks] Find the following limits.
(a) [5 marks] $\lim _{z \rightarrow 0} \frac{\tan (5 z)}{\sin (3 z)}$

Solution: Make use of the basic trig limit $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$.

$$
\begin{aligned}
\lim _{z \rightarrow 0} \frac{\tan (5 z)}{\sin (3 z)} & =\lim _{z \rightarrow 0}\left(\frac{1}{\cos (5 z)} \frac{\sin (5 z)}{z} \frac{z}{\sin (3 z)}\right) \\
& =\frac{1}{1} \cdot \frac{5}{3} \cdot \lim _{z \rightarrow 0} \frac{\sin (5 z)}{(5 z)} \cdot \lim _{z \rightarrow 0} \frac{(3 z)}{\sin (3 z)} \\
& =\frac{5}{3} \cdot 1 \cdot \frac{1}{1} \\
& =\frac{5}{3}
\end{aligned}
$$

(b) [4 marks] $\lim _{x \rightarrow 0} x^{2} \sin \left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)$

Solution: Use the Squeeze Law.

$$
\begin{aligned}
x \neq 0 & \Rightarrow-1 \leq \sin \left(1+\frac{1}{x}+\frac{1}{x^{2}}\right) \leq 1 \\
& \Rightarrow-x^{2} \leq x^{2} \sin \left(1+\frac{1}{x}+\frac{1}{x^{2}}\right) \leq x^{2}
\end{aligned}
$$

Both

$$
\lim _{x \rightarrow 0}\left(-x^{2}\right)=0 \text { and } \lim _{x \rightarrow 0} x^{2}=0
$$

so by the Squeeze Law,

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)=0
$$

as well.
5. $[9$ marks $]$ Let $f(x)=\frac{1}{1-|x|}$.
(a) [6 marks] Find both points where the function is not defined, and at each such point $x=a$, calculate both $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$, or explain why they do not exist.

Solution: $f(x)$ is undefined if and only if $1-|x|=0 \Leftrightarrow x= \pm 1$.
At $x=1$,

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{1-x}=-\infty, \text { since } 1-x \rightarrow 0^{-}
$$

and

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{1}{1-x}=+\infty, \text { since } 1-x \rightarrow 0^{+}
$$

At $x=-1$, use $|x|=-x$, since $x<0$. Then

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} \frac{1}{1+x}=-\infty, \text { since } x+1 \rightarrow 0^{-}
$$

and

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} \frac{1}{1+x}=+\infty, \text { since } x+1 \rightarrow 0^{+}
$$

(b) [3 marks] Is f differentiable at $x=0$?

Solution: NO. Use the definition of $f^{\prime}(0)$.

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1-|h|}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{|h|}{h(1-|h|)}
\end{aligned}
$$

This limit doesn't exist, since the two one-sided limits at $h=0$ are different:

$$
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h(1-|h|)}=\lim _{h \rightarrow 0^{+}} \frac{h}{h(1-h)}=\lim _{h \rightarrow 0^{+}} \frac{1}{1-h}=1
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h(1-|h|)}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h(1+h)}=\lim _{h \rightarrow 0^{+}} \frac{-1}{1+h}=-1 .
$$

6. [8 marks] Find the maximum and minimum values of the function

$$
f(x)=5 x^{2 / 3}-x^{5 / 3}
$$

on the closed interval $[-1,4]$.
Solution: This is Example 6 on page 151 of the text book.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{10}{3} x^{-1 / 3}-\frac{5}{3} x^{2 / 3} \\
& =\frac{5}{3}\left(\frac{2-x}{x^{1 / 3}}\right)
\end{aligned}
$$

Critical points:

$$
\begin{gathered}
f^{\prime}(x)=0 \Rightarrow 2-x=0 \Rightarrow x=2 \\
f^{\prime}(x) \text { is undefined when } x=0
\end{gathered}
$$

The endpoints are $x=-1$ or $x=4$. Compare:

- $f(-1)=5-(-1)=6$
- $f(0)=0$
- $f(2)=2^{2 / 3}(5-2)=3 \cdot 2^{2 / 3} \simeq 4.76$
- $f(4)=4^{2 / 3}(5-4)=4^{2 / 3} \simeq 2.52$

So the maximum value of f is $y=6$ at $x=-1$; and the minimum value of f is $y=0$ at $x=0$.
7. [8 marks] Find the point $\left(a, a^{3}\right)$ on the graph of $f(x)=x^{3}$ such that the tangent to the graph of $y=f(x)$ at $(x, y)=\left(a, a^{3}\right)$ passes through the point $(x, y)=(1,5)$.

Solution: This is Question 55 from Section 3.2 of the textbook. $f^{\prime}(x)=3 x^{2}$, so the equation of the tangent line to the graph of $y=f(x)$ at the point $\left(a, a^{3}\right)$ is

$$
\frac{y-a^{3}}{x-a}=f^{\prime}(a) \Leftrightarrow \frac{y-a^{3}}{x-a}=3 a^{2}
$$

For this tangent line to go through the point $(x, y)=(1,5)$, substitute $x=1, y=5$ and solve for a :

$$
\begin{aligned}
\frac{5-a^{3}}{1-a}=3 a^{2} & \Leftrightarrow 5-a^{3}=(1-a)\left(3 a^{2}\right) \\
& \Leftrightarrow 5-a^{3}=3 a^{2}-3 a^{3} \\
& \Leftrightarrow 2 a^{3}-3 a^{2}+5=0 \\
& \Leftrightarrow(a+1)\left(2 a^{2}-5 a+5\right)=0 \\
& \Rightarrow a=-1 \text { is the only real solution. }
\end{aligned}
$$

So the required point on the graph is $(x, y)=(-1,-1)$.

