University of Toronto
 SOLUTIONS to MAT 186H1F TERM TEST 1
 of Thursday, October 4, 2007

Duration: 60 minutes
TOTAL MARKS: 50
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

General Comments about the Test:

- Questions 1, 2, 4, 6 and 7 are considered completely routine, straightforward calculations. This is the 66% of the test that should have allowed everybody to pass the test.
- Questions 3 and 5(c) are checking if you know what the Intermediate Value Property and the Squeeze Law say, and if you can use them. The actual calculations involved are very simple.
- Questions 5(a) and 5(b) require a little manipulation to reduce both questions to the basic trigonometric limit

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1
$$

- Question 8 requires some thought to set up, but it requires no more calculus than what you learned in high school.
- Some alternate solutions are included at the end. However, L'Hopital's Rule was not permitted on this test.

Breakdown of Results: 566 students wrote this test. The marks ranged from 0% to 100%, and the average was 58.8%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	4.6%
A	15.7%	$80-89 \%$	11.1%
B	17.5%	$70-79 \%$	17.5%
C	18.6%	$60-69 \%$	18.6%
D	19.1%	$50-59 \%$	19.1%
F	29.2%	$40-49 \%$	14.7%
		$30-39 \%$	7.1%
		$20-29 \%$	4.2%
		$10-19 \%$	2.1%
		$0-9 \%$	1.1%

1. [8 marks] Suppose $\cos x=-\frac{1}{3}$ and $\sin x>0$. Find the exact values of the following:
(a) $[2$ marks $] \sin x$

Solution:

$$
\begin{aligned}
\sin x & =\sqrt{1-\cos ^{2} x} \\
& =\sqrt{1-\left(-\frac{1}{3}\right)^{2}} \\
& =\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

(b) $[3$ marks $] \cos \left(x+\frac{\pi}{6}\right)$

Solution:

$$
\begin{aligned}
\cos \left(x+\frac{\pi}{6}\right) & =\cos x \cos \frac{\pi}{6}-\sin x \sin \frac{\pi}{6} \\
& =-\frac{1}{3} \frac{\sqrt{3}}{2}-\frac{2 \sqrt{2}}{3} \frac{1}{2} \\
& =-\frac{\sqrt{3}+2 \sqrt{2}}{6}
\end{aligned}
$$

(c) $[3$ marks $] \cos (2 x)$

Solution:

$$
\begin{aligned}
\cos (2 x) & =2 \cos ^{2} x-1 \\
& =2\left(-\frac{1}{3}\right)^{2}-1 \\
& =-\frac{7}{9}
\end{aligned}
$$

2. [4 marks] Find all the solutions x in the interval $[0, \pi]$ to the equation

$$
4 \sin ^{2} x \cos ^{2} x=1
$$

Solution:

$$
\begin{aligned}
4 \sin ^{2} x \cos ^{2} x=1 & \Leftrightarrow(2 \sin x \cos x)^{2}=1 \\
& \Leftrightarrow(\sin (2 x))^{2}=1 \\
& \Leftrightarrow \sin (2 x)=1 \text { or } \sin (2 x)=-1
\end{aligned}
$$

If $x \in[0, \pi]$, then $2 x \in[0,2 \pi]$. Take

$$
2 x=\frac{\pi}{2} \text { or } 2 x=\frac{3 \pi}{2} \Leftrightarrow x=\frac{\pi}{4} \text { or } x=\frac{3 \pi}{4} .
$$

3. [3 marks] Use the Intermediate Value Property to explain why the equation $\cos x=x$ has a solution in the interval $[0, \pi / 2]$.
Solution: Let $f(x)=\cos x-x$, which is a continuous function on $[0, \pi / 2]$. Observe that

$$
f(0)=1-0=1>0 \text { and } f\left(\frac{\pi}{2}\right)=0-\frac{\pi}{2}=-\frac{\pi}{2}<0
$$

So by the Intermediate Value Property, there is a $c \in(0, \pi / 2)$ such that

$$
f(c)=0 \Leftrightarrow \cos c-c=0 \Leftrightarrow \cos c=c
$$

4. [8 marks] Find the following limits.
(a) [4 marks] $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2} & =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{x+2} \\
& =\lim _{x \rightarrow-2}\left(x^{2}-2 x+4\right) \\
& =(-2)^{2}-2(-2)+4 \\
& =12
\end{aligned}
$$

(b) $[4$ marks $] \lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{\sqrt{x+4}-2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{\sqrt{x+4}-2} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+1}-1}{\sqrt{x+4}-2}\right)\left(\frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}\right)\left(\frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt{x+1}+1}\right)\left(\frac{\sqrt{x+4}+2}{x}\right) \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{x+4}+2}{\sqrt{x+1}+1} \\
& =\frac{2+2}{1+1} \\
& =2
\end{aligned}
$$

5. [8 marks] Find the following limits.
(a) [2 marks] $\lim _{h \rightarrow 0} \frac{\sin (3 h)}{h}$

Solution:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sin (3 h)}{h} & =\lim _{h \rightarrow 0} \frac{3 \sin (3 h)}{3 h} \\
& =\lim _{k \rightarrow 0} \frac{3 \sin k}{k}, \text { with } k=3 h \\
& =3 \lim _{k \rightarrow 0} \frac{\sin k}{k} \\
& =3 \cdot 1 \\
& =3
\end{aligned}
$$

(b) [3 marks] $\lim _{x \rightarrow \pi} \frac{x-\pi}{\sin x}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \pi} \frac{x-\pi}{\sin x} & =\lim _{h \rightarrow 0} \frac{h}{\sin (h+\pi)}, \text { with } h=x-\pi \\
& =\lim _{h \rightarrow 0} \frac{h}{-\sin h} \\
& =-\lim _{h \rightarrow 0} \frac{h}{\sin h} \\
& =(-1) \cdot 1 \\
& =-1
\end{aligned}
$$

(c) [3 marks] $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$

Solution: Use Squeeze Law. For $x \neq 0$,

$$
-1 \leq \cos \left(\frac{1}{x}\right) \leq 1 \Rightarrow-x^{2} \leq x^{2} \cos \left(\frac{1}{x}\right) \leq x^{2}
$$

Since both

$$
\lim _{x \rightarrow 0}\left(-x^{2}\right)=0 \text { and } \lim _{x \rightarrow 0} x^{2}=0
$$

if follows that

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0
$$

as well.
6. [7 marks] Let

$$
f(x)=\frac{x^{2}-16}{x^{2}-3 x-4}
$$

Find all points where the function is not defined, and at each such point $x=a$, calculate both

$$
\lim _{x \rightarrow a^{-}} f(x) \text { and } \lim _{x \rightarrow a^{+}} f(x),
$$

or explain why they do not exist.

Solution: $f(x)$ is undefined if and only if

$$
x^{2}-3 x-4=0 \Leftrightarrow(x-4)(x+1)=0 \Leftrightarrow x=4 \text { or } x=-1 \text {. }
$$

At $x=4$,

$$
\begin{aligned}
\lim _{x \rightarrow 4} f(x) & =\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{(x-4)(x+1)} \\
& =\lim _{x \rightarrow 4} \frac{x+4}{x+1} \\
& =\frac{8}{5}
\end{aligned}
$$

so both

$$
\lim _{x \rightarrow 4^{-}} f(x)=\frac{8}{5} \text { and } \lim _{x \rightarrow 4^{+}} f(x)=\frac{8}{5}
$$

At $x=-1$,

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} \frac{x+4}{x+1}=-\infty, \text { since } x+1 \rightarrow 0^{-}
$$

and

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} \frac{x+4}{x+1}=+\infty, \text { since } x+1 \rightarrow 0^{+} .
$$

7. [6 marks] Find the equation of the tangent line to the graph of

$$
y=f(x)=\frac{3 x^{3}+1}{x^{2}+x}
$$

at the point $(x, y)=(1,2)$. Put your answer in the form $y=m x+b$.

Solution: Use Quotient Rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{9 x^{2}\left(x^{2}+x\right)-(2 x+1)\left(3 x^{3}+1\right)}{\left(x^{2}+x\right)^{2}} \\
\Rightarrow f^{\prime}(1) & =\frac{9(2)-3(4)}{2^{2}}=\frac{3}{2}
\end{aligned}
$$

The equation of the tangent line to $y=f(x)$ at $x=1$ is

$$
\begin{array}{ll}
& \frac{y-2}{x-1}=f^{\prime}(1)=\frac{3}{2} \\
\Leftrightarrow & y-2=\frac{3}{2}(x-1) \\
\Leftrightarrow & y=\frac{3}{2} x-\frac{3}{2}+2 \\
\Leftrightarrow & \quad y=\frac{3}{2} x+\frac{1}{2}
\end{array}
$$

8. [6 marks] Find the equation of the line passing through the origin and normal to the graph of the function

$$
y=f(x)=x+\frac{1}{x}
$$

Put your answer in the form $y=m x+b$.

Solution:

$$
f^{\prime}(x)=1-\frac{1}{x^{2}} .
$$

Let the point of intersection of the line and the graph be $(a, f(a))$; then the equation of the normal line to the graph of $y=f(x)$ at $x=a$ is

$$
\frac{y-f(a)}{x-a}=-\frac{1}{f^{\prime}(a)}=-\left(1-\frac{1}{a^{2}}\right)^{-1}=-\frac{a^{2}}{a^{2}-1}
$$

Since the normal line passes through $(x, y)=(0,0)$, substitute $x=0, y=0$ into the previous equation:

$$
\begin{aligned}
\frac{0-f(a)}{0-a}=-\frac{a^{2}}{a^{2}-1} & \Leftrightarrow \frac{f(a)}{a}=-\frac{a^{2}}{a^{2}-1} \\
& \Leftrightarrow\left(a^{2}-1\right)\left(a+\frac{1}{a}\right)=-a^{3} \\
& \Leftrightarrow a^{3}-a+a-\frac{1}{a}=-a^{3} \\
& \Leftrightarrow 2 a^{3}=\frac{1}{a} \\
& \Leftrightarrow a^{4}=\frac{1}{2} \\
& \Leftrightarrow a^{2}=\frac{1}{\sqrt{2}}, \text { since } a^{2} \geq 0
\end{aligned}
$$

Thus

$$
f^{\prime}(a)=1-\frac{1}{a^{2}}=1-\sqrt{2}
$$

and for the normal line

$$
m=-\frac{1}{f^{\prime}(a)}=-\frac{1}{1-\sqrt{2}}=1+\sqrt{2}
$$

So the equation of the line is

$$
y=(1+\sqrt{2}) x
$$

since $b=0$ if a line passes through the origin.

Some alternate solutions:

1.(c) You could use either of the alternatives

$$
\cos (2 x)=1-2 \sin ^{2} x \text { or } \cos (2 x)=\cos ^{2} x-\sin ^{2} x
$$

2. Substitute $\cos ^{2} x=1-\sin ^{2} x$ and the equation becomes

$$
\begin{array}{rlc}
4 \sin ^{2} x \cos ^{2} x=1 & \Leftrightarrow & 4 \sin ^{2} x\left(1-\sin ^{2} x\right)=1 \\
& \Leftrightarrow & 4 \sin ^{2} x-4 \sin ^{4} x=1 \\
& \Leftrightarrow & 4 \sin ^{4} x-4 \sin ^{2} x+1=0 \\
& \Leftrightarrow & \left(2 \sin ^{2} x-1\right)^{2}=0 \\
& \Leftrightarrow & \sin ^{2} x=\frac{1}{2} \\
& \Leftrightarrow & \sin x= \pm \frac{1}{\sqrt{2}} \\
& \Leftrightarrow & x=\frac{\pi}{4} \text { or } \frac{3 \pi}{4}
\end{array}
$$

8. Let the line be $y=m x$. Find the intersection of the line and the function $y=f(x)$:

$$
\left\{\begin{array}{l}
y=x+\frac{1}{x} \\
y=m x
\end{array}\right.
$$

At the intersection point

$$
\begin{gathered}
m x^{2}=x^{2}+1 \Leftrightarrow x^{2}=\frac{1}{m-1} \\
\text { so } m>1, \text { and } f^{\prime}(x)=1-\frac{1}{x^{2}}=1-(m-1)=2-m
\end{gathered}
$$

For the line to be normal to the graph at the point of intersection, we must have

$$
\begin{aligned}
2-m=-\frac{1}{m} & \Leftrightarrow m^{2}-2 m-1=0 \\
& \Leftrightarrow m=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2} \\
& \Rightarrow m=1+\sqrt{2}, \text { since } m>1
\end{aligned}
$$

Thus the line is

$$
y=(1+\sqrt{2}) x
$$

