MAT186H1F - Calculus I - Fall 2016

Solutions to Term Test 2 - November 22, 2016

Time allotted: 100 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments:

1.
2.
3.
4.

Breakdown of Results: 748 students wrote this test. The marks ranged from 25% to 97.5%, and the average was 68.0%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	2.4%
A	17.2%	$80-89 \%$	14.8%
B	35.0%	$70-79 \%$	35.0%
C	25.5%	$60-69 \%$	25.5%
D	12.4%	$50-59 \%$	12.4%
F	9.8%	$40-49 \%$	6.8%
		$30-39 \%$	2.3%
		$20-29 \%$	0.7%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

1. [avg: 6.6/10] Indicate if the following statements are True or False. No justification is required; 1 mark for each correct choice.
(a) If f is continuous on $[a, b]$ then it has an absolute maximum and an absolute minimum on $[a, b]$.
\bigoplus True \bigcirc False
(b) A point c is a critical point of f if and only if $f^{\prime}(c)=0$.

True \bigoplus False
(c) If f is continuous and has a local extremum at $x=c$, then f does not have an inflection point at $x=c$.
\bigcirc True \bigoplus False
(d) $f(x)=x^{2}$ has an absolute minimum on $(-1,1)$ but no absolute maximum. \oplus True

False
(e) Suppose F and G are antiderivatives of f on $[0,4]$. If $F(0)=G(0)+1$ then $F(4)=G(4)+5$.
\bigcirc True \bigoplus False
(f) Suppose F is an antiderivative of the continuous function f on $[-1,1]$ and $G(x)=\int_{-1}^{x} f(t) d t$ for $x \geq-1$. If $F(-1)=7$ then $F(x)=G(x)+7$.
\bigoplus True \bigcirc False
(g) The function $N(t)=\int_{0}^{t} e^{-w^{2}} d w$ is increasing for all $t>0$.
\bigoplus True \bigcirc False
(h) $\lim _{\theta \rightarrow \infty} \frac{\theta+\cos \theta}{\theta}$ does not exist.

True \bigoplus False
(i) $\lim _{u \rightarrow 0} \frac{\tan ^{-1} u}{u}=1$.
\bigoplus True \bigcirc False
(j) If f and g are continuous functions, then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(t) d t}{\int_{0}^{x} g(t) d t}$, if the limits both exist. \bigoplus True \bigcirc False
2. [avg: 7.7/10] Suppose $g(t)$ is continuous everywhere and all the derivatives of $g(t)$ exist except at $t=4$ and $t=6$. The following data for $g(t), g^{\prime}(t)$, and $g^{\prime \prime}(t)$ on $0 \leq t \leq 10$ are known:

t	0	1	2	3	4	5	6	7	8	9	10
$g(t)$	-4.1	-0.9	2.2	1.4	0.4	2.6	3.1	1.3	-0.3	-1.2	-3.7
$g^{\prime}(t)$	3.5	3.3	0	-0.8	DNE	1.6	DNE	-1.9	0	-0.9	-2.6
$g^{\prime \prime}(t)$	-0.2	-1.1	-0.2	-0.1	DNE	-1.2	DNE	1.1	0	-0.3	-0.2

Given that the table contains all values $t, 0 \leq t \leq 10$, for which $g^{\prime}(t)=0$ or $g^{\prime \prime}(t)=0$, and all values $t, 0 \leq t \leq 10$, for which $g^{\prime}(t)$ or $g^{\prime \prime}(t)$ does not exist (DNE), find the following for g on $[0,10]$:
(a) [3 marks] the values of t for which g is decreasing. (Express your answer in interval notation, set notation, or using inequalities, whichever you prefer.)

Solution: need intervals on which $g^{\prime}(t)<0$. Including end points is optional.

- In terms of open intervals: $t \in(2,4) \cup(6,8) \cup(8,10)$
- In terms of closed intervals: $t \in[2,4] \cup[6,10]$
(b) [2 marks] the absolute maximum and absolute minimum values of g.

Solution: the extreme values occur at an endpoint, $t=0$ or $t=10$, or a critical point, $t=2, t=4, t=6$ or $t=8$. Compare the values of g :

- the maximum value of g is 3.1 (at $t=6$), and
- the minimum value of g is -4.1 (at $t=0$.)
(c) [3 marks] the values of t for which g is concave down. (Express your answer in interval notation, set notation, or using inequalities, whichever you prefer.)

Solution: need intervals on which $g^{\prime \prime}(t)<0$. Including end points is optional.

- In terms of open intervals: $t \in(0,4) \cup(4,6) \cup(8,10)$
- In terms of closed intervals: $t \in[0,6] \cup[8,10]$
(d) [2 marks] all the inflection points of g.

Solution: need points at which $g^{\prime \prime}(t)<0$ on one side, but $g^{\prime \prime}(t)>0$ on the other side. The two inflection points are

- $(6,3.1)$
- $(8,-0.3)$

3. [avg: 7.1/10] Find and simplify the derivative of the following functions at the point $x=4$:
(a) [4 marks] $F(x)=\int_{\pi}^{\sqrt{x}} \sec ^{-1} t d t$

Solution: use the Fundamental Theorem of Calculus, Part 1, and the chain rule:

$$
F^{\prime}(x)=\sec ^{-1} \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}
$$

So

$$
F^{\prime}(4)=\left(\sec ^{-1} 2\right)\left(\frac{1}{4}\right)=\left(\frac{\pi}{3}\right)\left(\frac{1}{4}\right)=\frac{\pi}{12}
$$

(b) $[6$ marks $] G(x)=\frac{\left(x^{2}+9\right)^{3 / 2}}{\left(x^{3}+36\right)^{2}}$

Solution: use quotient rule or logarithmic differentiation:

$$
\begin{aligned}
& \ln G(x)=\ln \left(\frac{\left(x^{2}+9\right)^{3 / 2}}{\left(x^{3}+36\right)^{2}}\right)=\frac{3}{2} \ln \left(x^{2}+9\right)-2 \ln \left(x^{3}+36\right) \\
& \Rightarrow \frac{G^{\prime}(x)}{G(x)}=\frac{3}{2}\left(\frac{2 x}{x^{2}+9}\right)-2\left(\frac{3 x^{2}}{x^{3}+36}\right)=\frac{3 x}{x^{2}+9}-\frac{6 x^{2}}{x^{3}+36}
\end{aligned}
$$

At $x=4$,

$$
G(4)=\frac{25^{3 / 2}}{100^{2}}=\frac{1}{80}
$$

and

$$
G^{\prime}(4)=G(4)\left(\frac{12}{25}-\frac{96}{100}\right)=\frac{1}{80}\left(-\frac{48}{100}\right)=-\frac{3}{500}=-0.006
$$

4. [avg: 8.4/10] Let $e^{2 y}+x=y$.
(a) [4 marks] Find the value of $\frac{d y}{d x}$ at the point $(x, y)=(-1,0)$.

Solution: use implicit differentiation, using the chain rule:

$$
2 e^{2 y} \frac{d y}{d x}+1=\frac{d y}{d x}
$$

At $(x, y)=(-1,0)$,

$$
2 \frac{d y}{d x}+1=\frac{d y}{d x} \Leftrightarrow \frac{d y}{d x}=-1
$$

(b) [6 marks] Find the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(x, y)=(-1,0)$.

Solution: differentiate implicitly again, using the product rule and the chain rule:

$$
2\left(2 e^{2 y} \frac{d y}{d x}\right) \frac{d y}{d x}+2 e^{2 y} \frac{d^{2} y}{d x^{2}}+0=\frac{d^{2} y}{d x^{2}}
$$

At $(x, y)=(-1,0)$ from part (a),

$$
\frac{d y}{d x}=-1
$$

and so

$$
4(-1)^{2}+2 \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d x^{2}} \Leftrightarrow \frac{d^{2} y}{d x^{2}}=-4
$$

5. [avg: 7.5/10] Find the following limits.
(a) [4 marks] $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$

Solution: the limit is in the $0 / 0$ form; use L'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}} & =\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x} \\
\text { (L'H again) } & =\lim _{x \rightarrow 0} \frac{e^{x}}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(b) [6 marks] $\lim _{\theta \rightarrow \pi / 4^{-}} 3(\tan \theta)^{\tan (2 \theta)}$

Solution: apart from the constant factor 3, the limit is in the 1^{∞} form. Take the natural log of the limit and then use L'Hopital's rule:

$$
\begin{aligned}
L & =\lim _{\theta \rightarrow \pi / 4^{-}}(\tan \theta)^{\tan (2 \theta)} \\
\Rightarrow \ln L & =\lim _{\theta \rightarrow \pi / 4^{-}} \ln (\tan \theta)^{\tan (2 \theta)} \\
& =\lim _{\theta \rightarrow \pi / 4^{-}} \tan (2 \theta) \ln (\tan \theta) \\
& =\lim _{\theta \rightarrow \pi / 4^{-}} \frac{\ln (\tan \theta)}{\cot (2 \theta)}, \text { in } \frac{0}{0} \text { form } \\
(\mathrm{L}, \mathrm{H}) & =\lim _{\theta \rightarrow \pi / 4^{-}} \frac{\frac{\sec ^{2} \theta}{\tan \theta}}{-2 \csc ^{2}(2 \theta)} \\
& =-\frac{1}{2}\left(\frac{(\sqrt{2})^{2}}{1}\right) \\
& =-1 \\
\Rightarrow L & =e^{-1}
\end{aligned}
$$

So the final answer is

$$
\lim _{\theta \rightarrow \pi / 4^{-}} 3(\tan \theta)^{\tan (2 \theta)}=\frac{3}{e}
$$

6. [avg: 2.0/10] Suppose that a spherical snowball melts so that its volume decreases at a rate proportional to its surface area. (Recall: for a sphere of radius r its volume is $V=\frac{4 \pi r^{3}}{3}$ and its surface area is $S=4 \pi r^{2}$.) If the volume of the snowball is initially $1000 \mathrm{~cm}^{3}$ when it starts to melt, and its volume is $800 \mathrm{~cm}^{3}$ after 10 seconds, how long will it take to completely melt? (Give your answer to the nearest second.)

Solution: there is a constant k such that

$$
\frac{d V}{d t}=k S \Leftrightarrow \frac{d V}{d t}=4 k \pi r^{2}
$$

On the other hand, using the chain rule:

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

Compare these two equations and conclude that

$$
\frac{d r}{d t}=k
$$

Therefore $r=k t+r_{0}$, where r_{0} is the radius of the snowball at $t=0$. At $t=0$,

$$
1000=\frac{4 \pi}{3} r_{0}^{3} \Leftrightarrow r_{0}=\left(\frac{750}{\pi}\right)^{1 / 3} .
$$

At $t=10$,

$$
800=\frac{4 \pi}{3} r_{10}^{3} \Leftrightarrow r_{10}=\left(\frac{600}{\pi}\right)^{1 / 3} .
$$

Thus

$$
r_{10}=r_{0}+10 k \Leftrightarrow k=\frac{r_{10}-r_{0}}{10}
$$

Finally the snowball is totally melted when $r=0$

$$
\Leftrightarrow 0=r_{0}+k t \Leftrightarrow t=-\frac{r_{0}}{k}=\frac{10 r_{0}}{r_{0}-r_{10}}=\frac{10}{1-r_{10} / r_{0}}=\frac{10}{1-(0.8)^{1 / 3}} \approx 139.5
$$

So it will take 139 (or 140, accept either) seconds for the snowball to melt. You could also say it will take about 2 min and 20 sec .
7. [avg: 8.5/10] The parts of this question are unrelated.
(a) [4 marks] Find the value of $\int_{1}^{2}\left(\frac{x^{5}-1}{x}\right) d x$.

Solution: use Fundamental Theorem of Calculus, Part 2:

$$
\int_{1}^{2}\left(\frac{x^{5}-1}{x}\right) d x=\int_{1}^{2}\left(x^{4}-\frac{1}{x}\right) d x=\left[\frac{x^{5}}{5}-\ln x\right]_{1}^{2}=\frac{32}{5}-\ln 2-\frac{1}{5}=\frac{31}{5}-\ln 2
$$

(b) [6 marks] Approximate the solution to the equation $x^{3}-x-2=0$ by using Newton's method, starting with $x_{0}=2$, and calculating until the first four decimals of your approximations stop changing.

Solution: let $f(x)=x^{3}-x-2$; then $f^{\prime}(x)=3 x^{2}-1$ and Newtons's recursive formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{3 x_{n}^{3}-x_{n}-2}{3 x_{n}^{2}-1}=\frac{2 x_{n}^{3}+2}{3 x_{n}^{2}-1} \text {, for } n \geq 0
$$

Now use your calculator and calculate:

$$
\begin{gathered}
x_{0}=2 \Rightarrow x_{1}=1.636363636 \ldots \\
x_{1}=1.636363636 \cdots \Rightarrow x_{2}=1.530392052 \ldots \\
x_{2}=1.530392052 \cdots \Rightarrow x_{3}=1.521441465 \ldots \\
x_{3}=1.521441465 \cdots \Rightarrow x_{4}=1.521379710 \ldots \\
x_{4}=1.521379710 \cdots \Rightarrow x_{5}=1.521379707 \ldots
\end{gathered}
$$

and we can stop since the first four decimal places, actually the first seven, have stopped changing.
8. [avg: 6.6/10] The lower edge of a painting, 3 m in height, is 1 m above an observer's eye level. How far from the wall (on which the painting hangs) should the observer stand to maximize his or her viewing angle?

Solution: let the distance from the observer to the wall be x, let the angle from eye level to the bottom of the frame be α, let the angle from eye level to the top of the frame be β, let the angle subtended at the observer's eye by the painting be θ.

Then $\theta=\beta-\alpha$ and

$$
\tan \alpha=\frac{1}{x}, \quad \tan \beta=\frac{4}{x} .
$$

$$
\theta=\tan ^{-1}\left(\frac{4}{x}\right)-\tan ^{-1}\left(\frac{1}{x}\right) .
$$

The problem is to maximize θ for $x>0$. Find the critical point(s):

$$
\begin{gathered}
\frac{d \theta}{d x}=\frac{1}{1+(4 / x)^{2}}\left(-\frac{4}{x^{2}}\right)-\frac{1}{1+(1 / x)^{2}}\left(-\frac{1}{x^{2}}\right)=-\frac{4}{x^{2}+16}+\frac{1}{x^{2}+1} \\
\frac{d \theta}{d x}=0 \Rightarrow \frac{4}{x^{2}+16}=\frac{1}{x^{2}+1}=0 \Rightarrow 4 x^{2}+4=x^{2}+16 \Rightarrow 3 x^{2}=12 \Rightarrow x^{2}=4 \Rightarrow x=2
\end{gathered}
$$

since we are assuming $x>0$. Confirm a maximum value occurs at $x=2$:

$$
\frac{d^{2} \theta}{d x^{2}}=\frac{8 x}{\left(x^{2}+16\right)^{2}}-\frac{2 x}{\left(x^{2}+1\right)^{2}}
$$

and

$$
\left.\frac{d^{2} \theta}{d x^{2}}\right|_{x=2}=-\frac{3}{25}<0
$$

Conclusion: the observer should stand 2 m from the wall.
Alternate Solution: use the cosine law.

$$
9=16+x^{2}+1+x^{2}-2 \sqrt{16+x^{2}} \sqrt{1+x^{2}} \cos \theta \Rightarrow \cos \theta=\frac{4+x^{2}}{\sqrt{16+17 x^{2}+x^{4}}}
$$

After much calculation:

$$
-\sin \theta \frac{d \theta}{d x}=\frac{9 x\left(x^{2}-4\right)}{\left(16+17 x^{2}+x^{4}\right)^{3 / 2}} \text { and } \frac{d \theta}{d x}=0 \Rightarrow x=2,
$$

as before.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

