MAT186H1F - Calculus I - Fall 2014
 Solutions to Term Test 2 - November 11, 2014

Time allotted: 100 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

This test consists of 8 questions. Each question is worth 10 marks.
Total Marks: 80

General Comments:

1. The results on this test were very good.
2. Question 7 caused lots of confusion: $L(x)=f(a)+f^{\prime}(a)(x-a)$ but $f(x) \approx f(a)+f^{\prime}(a)(x-a)$; so $\sqrt{5} \approx L(5)$. Similarly, in part (b), you should realize that every number your calculator gives you is an approximation, unless it has a finite number of decimals. Many students lost 1 or 2 marks on this question because they confused equal with approximately equal.

Breakdown of Results: 890 students wrote this test. The marks ranged from 18.8% to 100%, and the average was 78%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	20.1%
A	56.8%	$80-89 \%$	36.7%
B	21.6%	$70-79 \%$	21.6%
C	11.3%	$60-69 \%$	11.3%
D	5.1%	$50-59 \%$	5.1%
F	5.2%	$40-49 \%$	2.4%
		$30-39 \%$	1.6%
		$20-29 \%$	1.1%
		$10-19 \%$	0.1%
		$0-9 \%$	0.0%

MAT186H1F - Term Test 2

PART I : No explanation is necessary.

1. (avg: 6.5/10) The graph of the function f is given to the right. Decide if the following statements about f are True or False.

Circle your answers.

(a) f is increasing on the interval $(-1,1)$

True
(b) f is increasing on the interval $(-3,0)$

False
(c) f has three inflection points.

False
(d) f has a local maximum value at $x=-1$

True
(e) f has a vertical tangent line at $x=0$

False
(f) Excluding $x=-1, f$ has seven critical points.

True
(g) f has a maximum value at $x=1$ by the first derivative test.

True
(h) f has no absolute minimum value on the interval $(-1,1)$

True
(i) f has a minimum value at $x=-3$ by the second derivative test.

False
(j) f has a minimum value at $x=2$ by the second derivative test.

True

PART II : Present complete solutions to the following questions in the space provided.
2. (avg: 8.0/10) Let $f(x)=\frac{30 \ln x}{x^{2}}$, for which you may assume $f^{\prime}(x)=30\left(\frac{1-2 \ln x}{x^{3}}\right)$ and $f^{\prime \prime}(x)=$ $30\left(\frac{6 \ln x-5}{x^{4}}\right)$.
(a) [1 mark] Find the interval(s) on which f is decreasing.

Solution: for the whole question $x>0$ since the domain of $\ln x$ is $x>0$.
$f^{\prime}(x)<0 \Rightarrow 1-2 \ln x<0 \Rightarrow \ln x>1 / 2 \Rightarrow x>\sqrt{e}$; so f is decreasing on (\sqrt{e}, ∞).
(b) $[1$ mark $]$ Find the interval(s) on which f is increasing.

Solution: $f^{\prime}(x)>0 \Rightarrow 1-2 \ln x>0 \Rightarrow \ln x<1 / 2 \Rightarrow 0<x<\sqrt{e} ;$ so f is increasing on $(0, \sqrt{e})$.
(c) [1 mark] Find the interval(s) on which f is concave up.

Solution: $f^{\prime \prime}(x)>0 \Rightarrow 6 \ln x-5>0 \Rightarrow \ln x>5 / 6 \Rightarrow x>e^{5 / 6}$; so f is concave up on $\left(e^{5 / 6}, \infty\right)$.
(d) $[1$ mark $]$ Find the interval(s) on which f is concave down.

Solution:

$f^{\prime \prime}(x)<0 \Rightarrow 6 \ln x-5<0 \Rightarrow \ln x<5 / 6 \Rightarrow x<e^{5 / 6} ;$ so f is concave down on $\left(0, e^{5 / 6}\right)$.
(e) [2 marks] Find $\lim _{x \rightarrow \infty} f(x)$.

Solution: use L'Hopital's Rule: $\lim _{x \rightarrow \infty} \frac{30 \ln x}{x^{2}}=30 \lim _{x \rightarrow \infty} \frac{1 / x}{2 x}=15 \lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$.
(f) [4 marks] Sketch the graph of f labeling all critical points, inflection points and asymptotes.

Solution:

$$
x=0 \text { is a vertical asymptote; }
$$

$$
y=0 \text { is a horizontal asymptote; }
$$

$$
(\sqrt{e}, 15 / e) \text { is a maximum point; }
$$

$$
\left(e^{5 / 6}, 25 / e^{5 / 3}\right) \text { is an inflection point. }
$$

3. (avg: 9.1/10) Find and simplify $\frac{d y}{d x}$ at the point $(x, y)=(1, \pi)$ if
(a) [5 marks] $y \sin y=x^{4}-x$

Solution: differentiate implicitly.

$$
\frac{d y}{d x} \sin y+y \cos y \frac{d y}{d x}=4 x^{3}-1
$$

At $(x, y)=(1, \pi)$, we have

$$
0-\pi \frac{d y}{d x}=3 \Leftrightarrow \frac{d y}{d x}=-\frac{3}{\pi} .
$$

(b) [5 marks] $y=\left(4 \tan ^{-1} x\right)^{x}$.

Solution: differentiate logarithmically.

$$
\ln y=x \ln \left(4 \tan ^{-1} x\right) \Rightarrow \frac{1}{y} \frac{d y}{d x}=\ln \left(4 \tan ^{-1} x\right)+x\left(\frac{4 /\left(1+x^{2}\right)}{4 \tan ^{-1} x}\right) .
$$

At $(x, y)=(1, \pi)$, we have $\tan ^{-1} 1=\pi / 4$ and

$$
\frac{1}{\pi} \frac{d y}{d x}=\ln \pi+\left(\frac{4 / 2}{\pi}\right)
$$

Consequently,

$$
\frac{d y}{d x}=\pi \ln \pi+2
$$

4. (avg: 7.9/10) An inverted conical water tank with a height of 6 m and a radius of 3 m is drained through a hole in the vertex at a rate of $1 \mathrm{~m}^{3} / \mathrm{sec}$. What is the rate of change of the water depth when the water depth is 2 m ? (The volume of a conical tank is given by $V=\pi r^{2} h / 3$.)

Solution: let r be the radius of the surface of the water at depth h above the vertex.

By similar triangles, $\frac{r}{h}=\frac{3}{6} \Leftrightarrow r=\frac{1}{2} h$. So the volume of the water is $V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{h^{2}}{4}\right) h=\frac{1}{12} \pi h^{3}$.

Side view of cone

Now

$$
-1=\frac{d V}{d t}=\frac{\pi}{4} h^{2} \frac{d h}{d t},
$$

so when $h=2$,

$$
\frac{d h}{d t}=-\frac{4}{\pi} \frac{1}{4}=-\frac{1}{\pi}
$$

that is the depth of the water is decreasing at a rate of $1 / \pi$ meters per second.
5. (avg: 7.6/10) Find the following limits.
(a) [5 marks] $\lim _{x \rightarrow 0} \frac{e^{x}-1-\sin ^{-1} x}{x^{3}+4 x^{2}}$

Solution: this limit is in the $0 / 0$ form so use L'Hopital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1-\sin ^{-1} x}{x^{3}+4 x^{2}} & =\lim _{x \rightarrow 0} \frac{e^{x}-1 / \sqrt{1-x^{2}}}{3 x^{2}+8 x} \\
(\text { use L'H again) } & =\lim _{x \rightarrow 0} \frac{e^{x}-x /\left(1-x^{2}\right)^{3 / 2}}{6 x+8} \\
& =\frac{1}{8}
\end{aligned}
$$

(b) [5 marks] $\lim _{x \rightarrow \infty}\left(\cos \left(\frac{2}{x}\right)\right)^{x}$

Solution: this limit is in the 1^{∞} form, so take the \log of the limit, and then use L'Hopital's Rule.

$$
\begin{aligned}
L=\lim _{x \rightarrow \infty}\left(\cos \left(\frac{2}{x}\right)\right)^{x} \Rightarrow \ln L & =\lim _{x \rightarrow \infty} x \ln \left(\cos \left(\frac{2}{x}\right)\right) \\
& =\lim _{x \rightarrow \infty} \frac{\ln (\cos (2 / x))}{1 / x} \\
(\text { by L'H }) & =\lim _{x \rightarrow \infty} \frac{\sec (2 / x)\left(-\sin (2 / x)\left(-2 / x^{2}\right)\right.}{-1 / x^{2}} \\
& =-2 \lim _{x \rightarrow \infty} \tan (2 / x)=0 \\
\Rightarrow L & =e^{0}=1
\end{aligned}
$$

6. (avg: 8.7/10) Given that the acceleration function of an object moving along a straight line is $a(t)=$ $3 \sin (2 t)$, find the position function $s(t)$ if the initial velocity is $v(0)=1$ and the initial position is $s(0)=10$.

Solution:

$$
v=\int a d t=\int 3 \sin (2 t) d t=-\frac{3}{2} \cos (2 t)+C .
$$

To find C use $v(0)=1$:

$$
1=-\frac{3}{2} \cos 0+C \Leftrightarrow C=\frac{5}{2} .
$$

Then

$$
s=\int v d t=\int\left(-\frac{3}{2} \cos (2 t)+\frac{5}{2}\right) d t=-\frac{3}{4} \sin (2 t)+\frac{5}{2} t+D .
$$

To find D use $s(0)=10$:

$$
10=-\frac{3}{4} \sin 0+0+D \Leftrightarrow D=10
$$

Thus the position function is

$$
s(t)=-\frac{3}{4} \sin (2 t)+\frac{5}{2} t+10
$$

MAT186H1F - Term Test 2
7. (avg: 7.3/10) (a) [4 marks] Find a linear approximation to $\sqrt{5}$.

Solution: let $f(x)=\sqrt{x}$ and take $a=4$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ and the tangent line to f at $a=4$ has equation

$$
y=f(4)+f^{\prime}(4)(x-4)=2+\frac{1}{4}(x-4)=1+\frac{x}{4} .
$$

So to find a linear approximation to $\sqrt{5}$ take $x=5$; then

$$
\sqrt{5} \approx 1+\frac{5}{4}=2.25 .
$$

7.(b) [6 marks] Approximate $\sqrt{5}$ correct to 4 decimals using Newton's method. Hint: let $f(x)=x^{2}-5$.

Solution: let $f(x)=x^{2}-5$. Then $f^{\prime}(x)=2 x$ and Newton's recursive formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}(x)}=x_{n}-\frac{x_{n}^{2}-5}{2 x_{n}}=\frac{x_{n}^{2}+5}{2 x_{n}},
$$

for $n \geq 0$. If you pick $x_{0}=2.25$ (from part (a)) then

$$
x_{1} \approx 2.236111111, x_{2} \approx 2.236067978, x_{3} \approx 2.23606798
$$

so correct to 4 decimal places,

$$
\sqrt{5} \approx 2.2361
$$

8. (avg: 7.3/10)

Find the value of x that maximizes θ in the figure to the right. Note: there are easy ways and there are hard ways to solve this problem, and in a certain sense the answer is obvious. It's up to you to explain your solution as clearly and concisely as you can.

Solution: let α and β be angles as labeled in the diagram to the right, in which two more lengths have also been included. Since $\alpha+\beta+\theta=\pi$, to maximize θ is the same as minimizing $\alpha+\beta$.

4

We have:

$$
\alpha+\beta=\tan ^{-1}\left(\frac{3}{x}\right)+\tan ^{-1}\left(\frac{3}{4-x}\right)
$$

and

$$
\frac{d(\alpha+\beta)}{d x}=\frac{1}{1+(3 / x)^{2}}\left(-\frac{3}{x^{2}}\right)+\frac{1}{1+(3 /(4-x))^{2}}\left(-\frac{3(-1)}{(4-x)^{2}}\right)=-\frac{3}{x^{2}+9}+\frac{3}{(4-x)^{2}+9} .
$$

Then

$$
\frac{d(\alpha+\beta)}{d x}=0 \Rightarrow \frac{3}{x^{2}+9}=\frac{3}{(4-x)^{2}+9} \Rightarrow x^{2}=(4-x)^{2} \Rightarrow x^{2}=16-8 x+x^{2} \Rightarrow x=2
$$

Finally, confirm that $\alpha+\beta$ is actually at a minimum if $x=2$, by the second derivative test:

$$
\frac{d^{2}(\alpha+\beta)}{d x^{2}}=\frac{6 x}{\left(x^{2}+9\right)^{2}}+\frac{6(4-x)}{\left((4-x)^{2}+9\right)^{2}}
$$

which is positive for all $x \in[0,4]$.

Alternate Solution: If you use the cosine law for Question 8 you will obtain

$$
16=x^{2}+9+(4-x)^{2}+9-2 \sqrt{x^{2}+9} \sqrt{(x-4)^{2}+9} \cos \theta
$$

Solving for $\cos \theta$ gives

$$
\cos \theta=\frac{x^{2}-4 x+9}{\sqrt{x^{2}+9} \sqrt{(4-x)^{2}+9}}
$$

Differentiate implicitly to save some work:

$$
-\sin \theta \frac{d \theta}{d x}=\frac{288(x-2)}{\left(9+x^{2}\right)^{3 / 2}\left(25-8 x+x^{2}\right)^{3 / 2}},
$$

where we have used the quotient rule on the right side, although the details have been omitted.
As before:

$$
\frac{d \theta}{d x}=0 \Rightarrow x=2
$$

Use the first derivative test to establish that θ is actually maximized at $x=2$; but first you have to state that $\sin \theta>0$, since $0<\theta<\pi$. Then $-\sin \theta<0$ and:

$$
x<2 \Rightarrow \frac{d \theta}{d x}>0 \text { and } x>2 \Rightarrow \frac{d \theta}{d x}<0
$$

