University of Toronto
 SOLUTIONS to MAT 186H1F TERM TEST 2
 of Tuesday, November 3, 2009
 Duration: 90 minutes
 TOTAL MARKS: 60

Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

General Comments about the Test:

- Many students are still throwing away marks by using inappropriate notation or by not identifying what they are calculating.
- Regarding Question 4(b): $|x|>1$ means $x<-1$ or $x>1$. Many students just assumed $x>1$ and ignored the other case. This cost you 2 marks.
- There is an easier way to do Question $4(\mathrm{~b})$: use $\sec ^{-1} x=\cos ^{-1}(1 / x)$ and let $\alpha=\sin ^{-1}(1 / x)$ and $\beta=\cos ^{-1}(1 / x)$. Then by basic trig $\alpha+\beta$ is constant, so the derivative must be zero.
- The related rates problem was an example chosen right out of the text book.
- The point of Question 7(a) is to pick a point a for which $a^{-1 / 3}$ can be calculated without a calculator such that a is close to 59 . So the only choice is $a=64$.

Breakdown of Results: 479 students wrote this test. The marks ranged from 10% to 100%, and the average was 75.6%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	19.4%
A	46.8%	$80-89 \%$	27.4%
B	24.2%	$70-79 \%$	24.2%
C	15.7%	$60-69 \%$	15.7%
D	7.5%	$50-59 \%$	7.5%
F	5.8%	$40-49 \%$	3.3%
		$30-39 \%$	1.7%
		$20-29 \%$	0.6%
		$10-19 \%$	0.2%
		$0-9 \%$	0.0%

1. [8 marks] Find $\frac{d y}{d x}$ if
(a) [4 marks] $y=e^{x^{3}} \tan x$.

Solution: use the product rule.

$$
\frac{d y}{d x}=3 x^{2} \cdot e^{x^{3}} \cdot \tan x+e^{x^{3}} \cdot \sec ^{2} x
$$

(b) [4 marks] $y=\sqrt{\ln \left(x^{2}+x+1\right)}$.

Solution: use the chain rule, twice.

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{\ln \left(x^{2}+x+1\right)}} \cdot \frac{1}{x^{2}+x+1} \cdot(2 x+1)
$$

2. [8 marks] Find all the points on the graph with equation $x^{2}+6 x+y^{2}+3=0$ such that the tangent line to each of the points passes through the origin.

Solution: let the point of contact be (a, b). Then

$$
a^{2}+6 a+b^{2}+3=0
$$

and the slope of the tangent line to the curve at (a, b) is

$$
m=\frac{b-0}{a-0}=\frac{b}{a},
$$

since the tangent line is to pass through the origin. On the other hand, by implicit differentiation,

$$
2 x+6+2 y \frac{d y}{d x}+0=0 \Rightarrow \frac{d y}{d x}=-\frac{x+3}{y} .
$$

So the slope of the tangent line to the curve at (a, b) is also given by

$$
m=-\frac{a+3}{b}
$$

Hence there are two equations that a and b must satisfy:

$$
\begin{gather*}
\frac{b}{a}=-\frac{a+3}{b} \Leftrightarrow b^{2}+a^{2}=-3 a \tag{1}\\
a^{2}+6 a+b^{2}+3=0 \Leftrightarrow a^{2}+b^{2}=-6 a-3 \tag{2}
\end{gather*}
$$

Comparing equations (1) and (2) implies

$$
-3 a=-6 a-3 \Leftrightarrow 3 a=-3 \Leftrightarrow a=-1 .
$$

Then, from equaiton (1),

$$
b^{2}=-3 a-a^{2}=(-3)(-1)-(-1)^{2}=2 \Rightarrow b= \pm \sqrt{2} .
$$

So there are two points on the graph with equation $x^{2}+6 x+y^{2}+3=0$ from which the tangent lines pass through the origin, namely

$$
(-1, \pm \sqrt{2})
$$

3. [9 marks] Find both $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(x, y)=\left(\frac{3}{2}, \frac{1}{2}\right)$ if $y+\sin (\pi y)=x$.

Solution: differentiate implicitly, with respect to x, twice:

$$
\begin{align*}
y+\sin (\pi y) & =x \tag{3}\\
\Rightarrow y^{\prime}+\cos (\pi y)\left(\pi y^{\prime}\right) & =1 \tag{4}\\
\Rightarrow y^{\prime \prime}-\sin (\pi y)\left(\pi y^{\prime}\right)\left(\pi y^{\prime}\right)+\cos (\pi y)\left(\pi y^{\prime \prime}\right) & =0 \tag{5}
\end{align*}
$$

To find y^{\prime} at $(x, y)=\left(\frac{3}{2}, \frac{1}{2}\right)$, substitute $y=\frac{1}{2}$ into equation (4) and solve for y^{\prime} :

$$
y^{\prime}+\cos \left(\frac{\pi}{2}\right)\left(\pi y^{\prime}\right)=1 \Rightarrow y^{\prime}+0=1 \Rightarrow y^{\prime}=1
$$

To find $y^{\prime \prime}$ at $(x, y)=\left(\frac{3}{2}, \frac{1}{2}\right)$, substitute $y=\frac{1}{2}$ and $y^{\prime}=1$ into equation (5) and solve for $y^{\prime \prime}$:

$$
\begin{aligned}
y^{\prime \prime}-\sin \left(\frac{\pi}{2}\right)\left(\pi^{2} \cdot(1)^{2}\right)+\cos \left(\frac{\pi}{2}\right)\left(\pi y^{\prime \prime}\right) & =0 \\
\Rightarrow y^{\prime \prime}-\pi^{2}+0 & =0 \\
\Rightarrow y^{\prime \prime} & =\pi^{2}
\end{aligned}
$$

4. [9 marks] Simplify the following derivatives as much as possible.
(a) $[4$ marks $] \frac{d}{d x}\left(\tan ^{-1}\left(\frac{1-x}{1+x}\right)\right)$

Solution: use the chain rule, and the quotient rule:

$$
\begin{aligned}
\frac{d}{d x}\left(\tan ^{-1}\left(\frac{1-x}{1+x}\right)\right) & =\frac{1}{1+\left(\frac{1-x}{1+x}\right)^{2}} \frac{d}{d x}\left(\frac{1-x}{1+x}\right) \\
& =\frac{1}{1+\left(\frac{1-x}{1+x}\right)^{2}}\left(\frac{-(1+x)-(1-x)}{(1+x)^{2}}\right) \\
& =\frac{-2}{(1+x)^{2}+(1-x)^{2}} \\
& =\frac{-2}{1+2 x+x^{2}+1-2 x+x^{2}} \\
& =-\frac{1}{1+x^{2}}
\end{aligned}
$$

(b) $[5$ marks $] \frac{d}{d x}\left(\sin ^{-1}\left(\frac{1}{x}\right)+\sec ^{-1} x\right)$, if $|x|>1$.

Solution: more chain rule:

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1}\left(\frac{1}{x}\right)+\sec ^{-1} x\right) \\
= & \frac{1}{\sqrt{1-(1 / x)^{2}}} \frac{d}{d x}\left(\frac{1}{x}\right)+\frac{1}{|x| \sqrt{x^{2}-1}} \\
= & \frac{|x|}{\sqrt{x^{2}-1}}\left(\frac{-1}{x^{2}}\right)+\frac{1}{|x| \sqrt{x^{2}-1}}, \text { since } \sqrt{x^{2}}=|x| \\
= & -\frac{1}{\sqrt{x^{2}-1}} \frac{1}{|x|}+\frac{1}{|x| \sqrt{x^{2}-1}}, \text { since } x^{2}=|x|^{2} \\
= & -\frac{1}{|x| \sqrt{x^{2}-1}}+\frac{1}{|x| \sqrt{x^{2}-1}} \\
= & 0
\end{aligned}
$$

5. [9 marks] Find the following limits.
(a) [4 marks] $\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{e^{x}-1-x}$

Solution: limit is in the $\frac{0}{0}$ form. Use L'Hopital's rule . . . twice:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{e^{x}-1-x} & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}-1}{e^{x}-1} \\
& =\lim _{x \rightarrow 0} \frac{\frac{-1}{(1+x)^{2}}}{e^{x}} \\
& =\frac{(-1)}{1} \\
& =-1
\end{aligned}
$$

(b) [5 marks] $\lim _{x \rightarrow 1}(2-x)^{7 \tan (\pi x / 2)}$

Solution: limit is in the 1^{∞} form. Let the limit be L.

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow 1} \ln \left((2-x)^{7 \tan (\pi x / 2)}\right) \\
& =\lim _{x \rightarrow 1} 7 \tan (\pi x / 2) \ln (2-x) \\
& =7 \lim _{x \rightarrow 1} \frac{\sin (\pi x / 2)}{\cos (\pi x / 2)} \ln (2-x) \\
& =7 \sin (\pi / 2) \lim _{x \rightarrow 1} \frac{\ln (2-x)}{\cos (\pi x / 2)}, \text { which is in the } \frac{0}{0} \text { form } \\
& =7 \lim _{x \rightarrow 1}\left(\frac{(-1)}{2-x}\right) /((-\sin (\pi x / 2))(\pi / 2)), \text { by L'Hopital's Rule } \\
& =7 \frac{(-1)}{(-\pi / 2)} \\
& =\frac{14}{\pi} \\
\Rightarrow L & =e^{14 / \pi}
\end{aligned}
$$

6. [8 marks] Suppose that liquid is to be cleared of sediment by allowing it to drain through a conical filter that is 16 cm high and has a radius of 4 cm at the top. Suppose also that the liquid is forced out of the cone at a constant rate of $2 \mathrm{~cm}^{3}$ per min. At what rate is the depth of the liquid in the filter changing when the liquid in the cone is 8 cm deep? (The volume of a cone is given by $V=\frac{\pi}{3} r^{2} h$.)

Solution: to the right is a side view of the conical filter. Let h be the depth of the fluid in the filter at time t; let r be the radius of the surface of the fluid at time t. By similar triangles,

$$
\frac{r}{h}=\frac{4}{16} \Leftrightarrow r=\frac{h}{4} .
$$

Thus the volume of the cone is given by

$$
V=\frac{\pi}{3}\left(\frac{h}{4}\right)^{2} h=\frac{\pi}{48} h^{3} .
$$

Differentiate implicitly with respect to t :

$$
\frac{d V}{d t}=\frac{3 \pi h^{2}}{48} \frac{d h}{d t}=\frac{\pi h^{2}}{16} \frac{d h}{d t} .
$$

Use $\frac{d V}{d t}=2$ and let $h=8:$

$$
2=\frac{\pi\left(8^{2}\right)}{16} \frac{d h}{d t} \Leftrightarrow \frac{d h}{d t}=\frac{1}{2 \pi} .
$$

So when the liquid in the cone is 8 cm deep, the depth of the liquid is decreasing at at rate of $\frac{1}{2 \pi} \mathrm{~cm} / \mathrm{min}$.
7. [9 marks] The parts of this question are unrelated.
(a) [4 marks] Find the linear approximation of $59^{-1 / 3}$. Give your answer to 4 decimal places.

Solution: let $f(x)=x^{-1 / 3}$ and pick $a=64$. Then $f^{\prime}(x)=-\frac{1}{3} x^{-4 / 3}$.

$$
\begin{aligned}
f(x) & \simeq f(a)+f^{\prime}(a)(x-a) \\
\Rightarrow f(59) & \simeq f(64)+f^{\prime}(64)(59-64) \\
& =64^{-1 / 3}-\left(\frac{1}{3}\right) 64^{-4 / 3}(-5) \\
& =\frac{1}{4}+\frac{5}{3} \frac{1}{256} \\
& =\frac{197}{768}=0.256510416 \ldots \\
\Rightarrow 59^{-1 / 3} & \simeq 0.2565, \text { to } 4 \text { decimal places }
\end{aligned}
$$

(b) [5 marks] Find the value of $\frac{d y}{d x}$ at the point $(x, y)=(2,16)$ if

$$
y=x^{x} \sqrt{x^{2}+12} .
$$

Solution: use logarithmic differentiation.

$$
\begin{aligned}
y=x^{x} \sqrt{x^{2}+12} & \Rightarrow \ln y=\ln x^{x}+\ln \sqrt{x^{2}+12} \\
& \Rightarrow \ln y=x \ln x+\frac{1}{2} \ln \left(x^{2}+12\right) \\
& \Rightarrow \frac{y^{\prime}}{y}=\ln x+\frac{x}{x}+\frac{1}{2} \frac{(2 x)}{x^{2}+12} \\
& \Rightarrow y^{\prime}=y\left(\ln x+1+\frac{x}{x^{2}+12}\right)
\end{aligned}
$$

At $(x, y)=(2,16)$,

$$
y^{\prime}=16\left(\ln 2+1+\frac{2}{4+12}\right)=16 \ln 2+18
$$

