University of Toronto
SOLUTIONS to MAT 186H1F TERM TEST 2
of Tuesday, November 4, 2008
Duration: 90 minutes
TOTAL MARKS: 50

Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

General Comments about the Test:

- Many students are still throwing away marks by using inappropriate notation or by not identifying what they are calculating.
- For Question 1: if you want to simplify $\ln x^{2}$ you must use $\ln x^{2}=2 \ln |x|$. But that actually makes things trickier since

$$
\frac{d}{d x} \ln |x|=\frac{1}{x}
$$

has to be calculated in terms of two cases: $x<0$ or $x>0$.

- Note in $1(\mathrm{~b}): f$ is not increasing on $(-1,1)$; you must have two separate intervals: $(-1,0)$ and $(0,1)$.
- In Question 1 if you assume (for some reason) that $x>0$ then you will forfeit half the marks in parts (b), (c), (e), (f) and (g), and will get at most 3 out of 4 for part (h). Parts (a) and (d) could still be done correctly, depending on what you've done.
- Questions 2, 3, 4 and 5 were almost carbon copies of questions from last year's test; there should have been no problems with these - for those who studied.

Breakdown of Results: 443 students wrote this test. The marks ranged from 11.7% to 100%, and the average was 75.5%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	24.2%
A	49.0%	$80-89 \%$	24.8%
B	21.7%	$70-79 \%$	21.7%
C	12.4%	$60-69 \%$	12.4%
D	7.4%	$50-59 \%$	7.4%
F	9.5%	$40-49 \%$	5.2%
		$30-39 \%$	2.0%
		$20-29 \%$	1.8%
		$10-19 \%$	0.5%
		$0-9 \%$	0.0%

1. [28 marks] This question has eight parts and covers three pages. Let $f(x)=\frac{2+\ln x^{2}}{x}$.
(a) [3 marks] Verify that $f^{\prime}(x)=-\frac{\ln x^{2}}{x^{2}}$.

Solution: use the quotient rule.

$$
f^{\prime}(x)=\frac{\left(\frac{2 x}{x^{2}}\right) x-(1)\left(2+\ln x^{2}\right)}{x^{2}}=\frac{2-2-\ln x^{2}}{x^{2}}=-\frac{\ln x^{2}}{x^{2}}
$$

(b) [4 marks] Find the open interval(s) on which f is increasing, and the open interval(s) on which f is decreasing.
Solution:

$$
\begin{aligned}
f \text { is increasing if } f^{\prime}(x)>0 & \Leftrightarrow \ln x^{2}<0 \\
& \Leftrightarrow 0<x^{2}<1 \\
& \Leftrightarrow 0<|x|<1 \\
& \Leftrightarrow-1<x<0 \text { or } 0<x<1
\end{aligned}
$$

$$
\begin{aligned}
f \text { is decreasing if } f^{\prime}(x)<0 & \Leftrightarrow \ln x^{2}>0 \\
& \Leftrightarrow x^{2}>1 \\
& \Leftrightarrow|x|>1 \\
& \Leftrightarrow x<-1 \text { or } x>1
\end{aligned}
$$

(c) [4 marks] Find all the critical points of f and determine if they are maximum or minimum points.
Solution: $f^{\prime}(x)=0 \Leftrightarrow \ln x^{2}=0 \Leftrightarrow x^{2}=1 \Leftrightarrow x= \pm 1$.

Using the first derivative test:

1. Since f is decreasing if $x<-1$ and f is increasing if $x>-1$, the point $(-1, f(-1))=(-1,-2)$ is a minimum point.
2. Since f is increasing if $x<1$ and f is decreasing if $x>1$, the point $(1, f(1))=(1,2)$ is a maximum point.

Using the second derivative test, and $f^{\prime \prime}(x)$ from the next page:

1. Since $f^{\prime \prime}(-1)=2>0$, the point $(-1, f(-1))=(-1,-2)$ is a minimum point.
2. Since $f^{\prime \prime}(1)=-2<0$, the point the point $(1, f(1))=(1,2)$ is a maximum point.
(d) [3 marks] Verify that $f^{\prime \prime}(x)=\frac{2\left(-1+\ln x^{2}\right)}{x^{3}}$.

Solution: use the quotient rule and the fact that $f^{\prime}(x)=-\frac{\ln x^{2}}{x^{2}}$:

$$
f^{\prime \prime}(x)=-\frac{\left(\frac{2 x}{x^{2}}\right) x^{2}-(2 x)\left(\ln x^{2}\right)}{x^{4}}=-\frac{2 x-2 x \ln x^{2}}{x^{4}}=\frac{2\left(-1+\ln x^{2}\right)}{x^{3}}
$$

(e) [4 marks] Find the open intervals on which f is concave up, and those on which it is concave down.
Solution: $x=0$ is a discontinuity of f (and hence of $f^{\prime \prime}(x)$) and

$$
f^{\prime \prime}(x)=0 \Leftrightarrow \ln x^{2}=1 \Leftrightarrow x^{2}=e \Leftrightarrow x= \pm \sqrt{e} .
$$

Check the sign of $f^{\prime \prime}(x)$ on the four intervals determined by $x=0, x= \pm \sqrt{e}$ by using test points in each interval:

$-\sqrt{e}$	0	\sqrt{e}
$f^{\prime \prime}(-e)=-2 / e^{3}$	$f^{\prime \prime}(-1)=2$	$f^{\prime \prime}(1)=-2$

So f is concave down if $f^{\prime \prime}(x)<0 \Leftrightarrow x<-\sqrt{e}$ or if $0<x<\sqrt{e}$; and f is concave up if $f^{\prime \prime}(x)>0 \Leftrightarrow-\sqrt{e}<x<0$ or $x>\sqrt{e}$.

OR, solve the inequalities directly:
f is concave up if $f^{\prime \prime}(x)>0 \Leftrightarrow \frac{2\left(-1+\ln x^{2}\right)}{x^{3}}>0$

$$
\begin{aligned}
& \Leftrightarrow \quad \ln x^{2}>1 \text { and } x>0 \text { or } \ln x^{2}<1 \text { and } x<0 \\
& \Leftrightarrow x>\sqrt{e} \text { or }-\sqrt{e}<x<0
\end{aligned}
$$

$$
\begin{aligned}
f \text { is concave down if } f^{\prime \prime}(x)<0 & \Leftrightarrow \frac{2\left(-1+\ln x^{2}\right)}{x^{3}}<0 \\
& \Leftrightarrow \ln x^{2}>1 \text { and } x<0 \text { or } \ln x^{2}<1 \text { and } x>0 \\
& \Leftrightarrow x<-\sqrt{e} \text { or } 0<x<\sqrt{e}
\end{aligned}
$$

(f) [2 marks] Find all the inflection points of f, if any.

Solution:

From part (e), there are inflection points at

$$
(-\sqrt{e}, f(-\sqrt{e}))=\left(-\sqrt{e},-\frac{3}{\sqrt{e}}\right) \text { and }(\sqrt{e}, f(\sqrt{e}))=\left(\sqrt{e}, \frac{3}{\sqrt{e}}\right)
$$

(g) [4 marks] Find all the horizontal or vertical asymptotes to the graph of f, if any. Justify your answers.
Solution: $x=0$ is a vertical asymptote since: $\lim _{x \rightarrow 0} \ln x^{2}=-\infty$ and

$$
\lim _{x \rightarrow 0^{+}} \frac{2+\ln x^{2}}{x}=-\infty ; \quad \lim _{x \rightarrow 0^{-}} \frac{2+\ln x^{2}}{x}=\infty
$$

$y=0$ is a horizontal asymptote on both sides of the graph since

$$
\lim _{x \rightarrow \pm \infty} \frac{2+\ln x^{2}}{x}=\lim _{x \rightarrow \pm \infty} \frac{2 x}{x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{2}{x}=0
$$

using L'Hopital's rule.
(h) [4 marks] Sketch the graph of f labelling all critical points, inflection points and asymptotes, if any.
Solution: Note you could have saved work for this entire problem by pointing out at the beginning that the graph of $f(x)$ is symmetric in the origin, since $f(-x)=-f(x)$. Then you would only have to analyze the graph for $x>0$.

The followiing details should be included on your graph:

1. $x=0$ is a vertical asymptote
2. $y=0$ is a horizontal asymptote
3. $(1,2)$ is a maximum point
4. $(-1,-2)$ is a minimum point
5. $\pm(\sqrt{e}, 3 / \sqrt{e})$ are inflection points
6. [8 marks] Find the following derivatives:
(a) [3 marks] $\frac{d}{d x} \sin \sqrt{x+1}$

Solution: Use the chain rule.

$$
\frac{d}{d x} \sin \sqrt{x+1}=(\cos \sqrt{x+1}) \frac{1}{2 \sqrt{x+1}}=\frac{\cos \sqrt{x+1}}{2 \sqrt{x+1}}
$$

(b) [5 marks] $\frac{d}{d x}\left(x^{\sec x}\right)$. (Assume $x>0$.)

Solution: Let $y=x^{\sec x}$ and use logarithmic differentiation.

$$
\begin{aligned}
\ln y=\sec x \ln x & \Rightarrow \frac{y^{\prime}}{y}=\sec x \tan x \ln x+\frac{\sec x}{x} \\
& \Rightarrow y^{\prime}=y\left(\sec x \tan x \ln x+\frac{\sec x}{x}\right) \\
& \Rightarrow y^{\prime}=x^{\sec x} \sec x\left(\tan x \ln x+\frac{1}{x}\right)
\end{aligned}
$$

3. [8 marks] Find the following limits.
(a) $[3$ marks $] \lim _{x \rightarrow 0} \frac{\sin (4 x)}{\ln (1-x)}$

Solution: Limit is in the $\frac{0}{0}$ form. Use L'Hopital's rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\ln (1-x)} & =\lim _{x \rightarrow 0} \frac{4 \cos (4 x)}{\frac{-1}{1-x}} \\
& =-4
\end{aligned}
$$

(b) [5 marks] $\lim _{x \rightarrow \infty}\left(2 x+3 e^{x}\right)^{5 / x}$

Solution: Limit is in the ∞^{0} form. Let the limit be L.

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow \infty} \frac{5}{x} \ln \left(2 x+3 e^{x}\right) \\
& =5 \lim _{x \rightarrow \infty} \frac{\ln \left(2 x+3 e^{x}\right)}{x}, \quad \text { which is in } \frac{\infty}{\infty} \text { form } \\
& =5 \lim _{x \rightarrow \infty} \frac{2+3 e^{x}}{2 x+3 e^{x}} \quad \text { (by L'Hopital's rule) } \\
& =5 \lim _{x \rightarrow \infty} \frac{3 e^{x}}{2+3 e^{x}} \quad \text { (by L'Hopital's rule again) } \\
& =5 \lim _{x \rightarrow \infty} \frac{3 e^{x}}{3 e^{x}} \quad \text { (by L'Hopital's rule yet again) } \\
& =5 \\
\Rightarrow L & =e^{5}
\end{aligned}
$$

4. [8 marks] Find both $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(x, y)=(1, \pi)$ if

$$
\sin (x y)=x+\cos y .
$$

Solution: Differentiate implicitly.

$$
\begin{align*}
\sin (x y) & =x+\cos y \tag{1}\\
\Rightarrow \cos (x y)\left(y+x y^{\prime}\right) & =1-y^{\prime} \sin y \tag{2}\\
\Rightarrow-\sin (x y)\left(y+x y^{\prime}\right)^{2}+\cos (x y)\left(y^{\prime}+y^{\prime}+x y^{\prime \prime}\right) & =-\left(y^{\prime}\right)^{2} \cos y-y^{\prime \prime} \sin y \tag{3}
\end{align*}
$$

To find y^{\prime} at $(x, y)=(1, \pi)$, substitute $x=1$ and $y=\pi$ into equation (2) and solve for y^{\prime} :

$$
\begin{aligned}
\cos (\pi)\left(\pi+y^{\prime}\right)=1-y^{\prime} \sin \pi & \Rightarrow \pi+y^{\prime}=-1 \\
& \Rightarrow y^{\prime}=-1-\pi
\end{aligned}
$$

To find $y^{\prime \prime}$ at $(x, y)=(1, \pi)$, substitute $x=1, y=\pi$ and $y^{\prime}=-1-\pi$ into equation (3) and solve for $y^{\prime \prime}$:

$$
\begin{aligned}
-\sin (\pi)(\pi+(-1-\pi))^{2}+\cos (\pi)\left(2(-1-\pi)+y^{\prime \prime}\right) & =-(-1-\pi)^{2} \cos \pi-y^{\prime \prime} \sin \pi \\
\Rightarrow-\left(-2-2 \pi+y^{\prime \prime}\right) & =(-1-\pi)^{2} \\
\Rightarrow 2(1+\pi)-y^{\prime \prime} & =(1+\pi)^{2} \\
\Rightarrow-y^{\prime \prime} & =(1+\pi)^{2}-2(1+\pi) \\
\Rightarrow-y^{\prime \prime} & =1+2 \pi+\pi^{2}-2-2 \pi \\
\Rightarrow-y^{\prime \prime} & =\pi^{2}-1 \\
\Rightarrow y^{\prime \prime} & =1-\pi^{2}
\end{aligned}
$$

Actually, its neater to substitute $x=1, y=\pi$ into equation (3) and solve for $y^{\prime \prime}$ in terms of y^{\prime} :

$$
\begin{aligned}
-\sin (\pi)\left(\pi+y^{\prime}\right)^{2}+\cos (\pi)\left(2 y^{\prime}+y^{\prime \prime}\right) & =-\left(y^{\prime}\right)^{2} \cos \pi-y^{\prime \prime} \sin \pi \\
\Rightarrow-\left(2 y^{\prime}+y^{\prime \prime}\right) & =\left(y^{\prime}\right)^{2} \\
\Rightarrow-y^{\prime \prime} & =\left(y^{\prime}\right)^{2}+2 y^{\prime} \\
\Rightarrow-y^{\prime \prime} & =y^{\prime}\left(y^{\prime}+2\right) \\
\Rightarrow y^{\prime \prime} & =-y^{\prime}\left(y^{\prime}+2\right)
\end{aligned}
$$

Now substitute $y^{\prime}=-1-\pi: y^{\prime \prime}=(1+\pi)(1-\pi)=1-\pi^{2}$
5. [8 marks]
(a) [4 marks] Find an approximation to $7^{\frac{2}{3}}$ by using the linear approximation of $f(x)=x^{\frac{2}{3}}$ at $a=8$. (Express your answer to five decimal places.)

Solution: $f^{\prime}(x)=\frac{2}{3} \frac{1}{x^{1 / 3}}$, so the equation of the tangent line to f at $a=8$ is

$$
\begin{aligned}
\frac{y-f(8)}{x-8}=f^{\prime}(8) & \Leftrightarrow \frac{y-4}{x-8}=\frac{2}{3} \frac{1}{8^{1 / 3}} \\
& \Leftrightarrow y=4+\frac{1}{3}(x-8) \\
\text { So } \quad 7^{2 / 3}=f(7) & \simeq 4+\frac{1}{3}(7-8) \\
& =\frac{11}{3} \simeq 3.66667
\end{aligned}
$$

(b) [4 marks] Find an approximation to $7^{\frac{2}{3}}$ by applying Newton's method to the equation

$$
x^{3 / 2}-7=0
$$

start with $x_{0}=4$ and compute x_{1} and x_{2}. (Express your answers to five decimal places.)

Solution: $f(x)=x^{3 / 2}-7 ; f^{\prime}(x)=\frac{3}{2} \sqrt{x}$. So the recursive formula for Newton's method is

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
&=x_{n}-\frac{x_{n}^{3 / 2}-7}{\frac{3}{2} \sqrt{x_{n}}} \\
&=\frac{x_{n}^{3 / 2}+14}{3 \sqrt{x_{n}}} \\
& x_{0}=4 \Rightarrow x_{1}=\frac{22}{6} \simeq 3.66667
\end{aligned}
$$

and

$$
x_{1}=\frac{11}{3} \text { or } 3.66667 \Rightarrow x_{2} \simeq 3.65931
$$

