University of Toronto
 SOLUTIONS to MAT 186H1F TERM TEST 2
 of Thursday, November 11, 2007

Duration: 60 minutes
TOTAL MARKS: 50
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

General Comments about the Test:

- All the questions on this test, with one exception, are considered to be very straightforward computations.
- The only exception is Question 5, for which part (a) is simply a statement of a theorem, but for which part (b) requires a little thought to set up.
- The implicit derivatives of Question 4 are easier to evaluate if you substitute the known information as soon as possible, so avoiding having to find general formulas for

$$
\frac{d y}{d x} \text { and } \frac{d^{2} y}{d x^{2}}
$$

- Some alternate solutions are included.

Breakdown of Results: 548 students wrote this test. The marks ranged from 0% to 98%, and the average was 68.7%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	8.2%
A	31.8%	$80-89 \%$	23.5%
B	23.5%	$70-79 \%$	23.5%
C	21.9%	$60-69 \%$	21.9%
D	10.0%	$50-59 \%$	10.0%
F	12.8%	$40-49 \%$	6.9%
		$30-39 \%$	2.2%
		$20-29 \%$	2.0%
		$10-19 \%$	1.5%
		$0-9 \%$	0.2%

1. [16 marks] This question has five parts and covers two pages. Let $f(x)=\frac{2 x}{x^{2}+1}$; for which

$$
f^{\prime}(x)=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}} \text { and } f^{\prime \prime}(x)=\frac{4 x^{3}-12 x}{\left(x^{2}+1\right)^{3}} .
$$

(a) [3 marks] Find the open intervals on which f is increasing and those on which it is decreasing.

Solution:

$$
\begin{aligned}
& \begin{aligned}
f^{\prime}(x) & =\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =2 \frac{(1-x)(1+x)}{\left(x^{2}+1\right)^{2}} \\
f \text { is increasing if } f^{\prime}(x)>0 & \Leftrightarrow(1-x)(1+x)>0 \\
& \Leftrightarrow-1<x<1
\end{aligned} \\
& \\
& f \text { is decreasing if } \begin{aligned}
f^{\prime}(x)<0 & \Leftrightarrow(1-x)(1+x)<0 \\
& \Leftrightarrow x<-1 \text { or } x>1
\end{aligned}
\end{aligned}
$$

(b) [4 marks] Find all the critical points of f and determine if they are maximum or minimum points.
Solution: $f^{\prime}(x)=0 \Leftrightarrow(1-x)(1+x)=0 \Leftrightarrow x= \pm 1$.

Using the first derivative test:

1. Since f is decreasing if $x<-1$ and f is increasing if $x>-1$, the point $(-1, f(-1))=(-1,-1)$ is a minimum point.
2. Since f is increasing if $x<1$ and f is decreasing if $x>1$, the point $(1, f(1))=(1,1)$ is a maximum point.

Using the second derivative test:

1. Since $f^{\prime \prime}(-1)=1>0$, the point $(-1, f(-1))=(-1,-1)$ is a minimum point.
2. Since $f^{\prime \prime}(1)=-1<0$, the point the point $(1, f(1))=(1,1)$ is a maximum point.
(c) [4 marks] Find the open intervals on which f is concave up, and those on which it is concave down.

Solution:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{4 x^{3}-12 x}{\left(x^{2}+1\right)^{3}} \\
& =\frac{4 x(x-\sqrt{3})(x+\sqrt{3})}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
f \text { is concave up if } f^{\prime \prime}(x)>0 & \Leftrightarrow x(x-\sqrt{3})(x+\sqrt{3})>0 \\
& \Leftrightarrow-\sqrt{3}<x<0 \text { or } x>\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& f \text { is concave down if } f^{\prime \prime}(x)<0 \Leftrightarrow x(x-\sqrt{3})(x+\sqrt{3})<0 \\
& \Leftrightarrow x<-\sqrt{3} \text { or } 0<x<\sqrt{3}
\end{aligned}
$$

(d) [3 marks] Find all the inflection points of f, if any.

Solution:

$$
\begin{aligned}
f^{\prime \prime}(x)=0 & \Leftrightarrow x(x-\sqrt{3})(x+\sqrt{3})=0 \\
& \Leftrightarrow x=0 \text { or } x=-\sqrt{3} \text { or } x=\sqrt{3}
\end{aligned}
$$

From part (c), there are inflection points at

1. $(-\sqrt{3}, f(-\sqrt{3}))=\left(-\sqrt{3},-\frac{\sqrt{3}}{2}\right)$
2. $(0, f(0))=(0,0)$
3. $(\sqrt{3}, f(\sqrt{3}))=\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$
(e) [2 marks] Find all the horizontal or vertical asymptotes to the graph of f, if any.
Solution: There are no vertical asymptotes since f is continuous for all x.

There is one horizontal asymptote, $y=0$, since

$$
\lim _{x \rightarrow \infty} f(x)=0 \text { and } \lim _{x \rightarrow-\infty} f(x)=0
$$

2. [7 marks] Find the following:
(a) [2 marks] $\frac{d}{d x} \tan (\cos x)$

Solution: Use the chain rule.

$$
\frac{d}{d x} \tan (\cos x)=\sec ^{2}(\cos x)(-\sin x)
$$

(b) [5 marks] $\frac{d}{d x}(\sec x)^{x}$. (Assume $\sec x>0$.)

Solution: Let $y=(\sec x)^{x}$ and use logarithmic differentiation.

$$
\begin{aligned}
\ln y=x \ln \sec x & \Rightarrow \frac{y^{\prime}}{y}=\ln \sec x+x \frac{\sec x \tan x}{\sec x} \\
& \Rightarrow y^{\prime}=y(\ln \sec x+x \tan x) \\
& \Rightarrow y^{\prime}=(\sec x)^{x}(\ln \sec x+x \tan x)
\end{aligned}
$$

3. [7 marks] Find the following limits.
(a) $[3$ marks $] \lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\ln (x+1)}$

Solution: Limit is in the $\frac{0}{0}$ form. Use L'Hopital's rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\ln (x+1)} & =\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{\frac{1}{x+1}} \\
& =\frac{2}{1}
\end{aligned}
$$

(b) [4 marks] $\lim _{x \rightarrow 0^{+}}\left(x+e^{-2 x}\right)^{3 / x}$

Solution: Limit is in the 1^{∞} form. Let the limit be L.

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow 0^{+}} \frac{3}{x} \ln \left(x+e^{-2 x}\right) \\
& =3 \lim _{x \rightarrow 0^{+}} \frac{\ln \left(x+e^{-2 x}\right)}{x}, \quad \text { which is in } \frac{0}{0} \text { form } \\
& =3 \lim _{x \rightarrow 0^{+}} \frac{1-2 e^{-2 x}}{x+e^{-2 x}}, \quad \text { by L'Hopital's rule } \\
& =3(1-2) \\
& =-3 \\
\Rightarrow L & =e^{-3}
\end{aligned}
$$

4. [7 marks] Find both $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(x, y)=(1,3)$ if

$$
x y=3 e^{3 x-y}
$$

Solution: Differentiate implicitly.

$$
x y^{\prime}+y=3 e^{3 x-y}\left(3-y^{\prime}\right)
$$

Substiute $x=1, y=3$:

$$
y^{\prime}+3=3 e^{0}\left(3-y^{\prime}\right) \Leftrightarrow y^{\prime}+3=9-3 y^{\prime} \Leftrightarrow y^{\prime}=\frac{3}{2}
$$

To find $y^{\prime \prime}$, differentiate implicitly once more:

$$
y^{\prime}+x y^{\prime \prime}+y^{\prime}=3 e^{3 x-y}\left(3-y^{\prime}\right)^{2}+3 e^{3 x-y}\left(-y^{\prime \prime}\right)
$$

Now substitute $x=1, y=3, y^{\prime}=\frac{3}{2}$:

$$
\begin{aligned}
& \frac{3}{2}+y^{\prime \prime}+\frac{3}{2}=3 e^{0}\left(3-\frac{3}{2}\right)^{2}+3 e^{0}\left(-y^{\prime \prime}\right) \\
\Leftrightarrow & 3+y^{\prime \prime}=\frac{27}{4}-3 y^{\prime \prime} \\
\Leftrightarrow & y^{\prime \prime}=\frac{15}{16}
\end{aligned}
$$

Alternate Solution: Use logarithmic differentiation.

$$
\ln x+\ln y=\ln 3+3 x-y \Rightarrow \frac{1}{x}+\frac{y^{\prime}}{y}=3-y^{\prime}
$$

Substiute $x=1, y=3$:

$$
1+\frac{y^{\prime}}{3}=3-y^{\prime} \Leftrightarrow y^{\prime}=\frac{3}{2}
$$

To find $y^{\prime \prime}$, differentiate implicitly once more:

$$
-\frac{1}{x^{2}}+\frac{y y^{\prime \prime}-y^{\prime} y^{\prime}}{y^{2}}=-y^{\prime \prime}
$$

Now substitute $x=1, y=3, y^{\prime}=\frac{3}{2}$:

$$
-1+\frac{3 y^{\prime \prime}-\frac{9}{4}}{9}=-y^{\prime \prime} \Leftrightarrow y^{\prime \prime}=\frac{15}{16}
$$

5. [6 marks; 3 marks for each part.]
(a) State the Mean Value Theorem.

Solution:

Hypotheses: f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).
Conclusion: there is a number c in the interval (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(b) Use the Mean Value Theorem to prove that if $f(x)=\left(x^{2}-x+9\right) \cos x+5 x$, then there is a number c such that $f^{\prime}(c)=5$.

Solution: f is continuous and differentiable for all values of x, so the Mean Value Theorem applies to f on every possible interval $[a, b]$. Pick the interval $[a, b]=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then for some number c in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$
\begin{aligned}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} & \Leftrightarrow f^{\prime}(c)=\frac{5\left(\frac{\pi}{2}\right)-5\left(-\frac{\pi}{2}\right)}{\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)}, \text { since } \cos \left(\pm \frac{\pi}{2}\right)=0 \\
& \Leftrightarrow f^{\prime}(c)=5
\end{aligned}
$$

6. [7 marks]
(a) [3 marks] Find an approximation to $9^{\frac{1}{3}}$ by using the linear approximation of $f(x)=x^{\frac{1}{3}}$ at $a=8$. (Express your answer to five decimal places.)

Solution: $f^{\prime}(x)=\frac{1}{3} \frac{1}{x^{2 / 3}}$, so the equation of the tangent line to f at $a=8$ is

$$
\begin{aligned}
\frac{y-f(8)}{x-8}=f^{\prime}(8) & \Leftrightarrow \frac{y-2}{x-8}=\frac{1}{3} \frac{1}{8^{2 / 3}} \\
& \Leftrightarrow y=2+\frac{1}{12}(x-8) . \\
\text { So } 9^{1 / 3}=f(9) & \simeq 2+\frac{1}{12}(9-8) \\
& =\frac{25}{12} \simeq 2.08333
\end{aligned}
$$

(b) [4 marks] Find an approximation to $9^{\frac{1}{3}}$ by applying Newton's method to the equation

$$
x^{3}-9=0
$$

start with $x_{0}=2$ and compute x_{1} and x_{2}. (Express your answers to five decimal places.)

Solution: $f(x)=x^{3}-9 ; f^{\prime}(x)=3 x^{2}$. So the recursive formula for Newton's method is

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
&=x_{n}-\frac{x_{n}^{3}-9}{3 x_{n}^{2}} \\
&=\frac{2 x_{n}^{3}+9}{3 x_{n}^{2}} \\
& x_{0}=2 \Rightarrow x_{1}=\frac{25}{12} \simeq 2.08333
\end{aligned}
$$

and

$$
x_{1}=\frac{25}{12} \Rightarrow x_{2}=\frac{23401}{11250} \simeq 2.08009
$$

