University of Toronto
Solutions to MAT186H1S TERM TEST of Wednesday, March 5, 2014

Duration: 100 minutes
Only aids permitted: Casio FX-991 or Sharp EL-520 calculator.
Instructions: Answer all questions in the booklets provided. Each question is worth 10 marks. If a question has parts, the value of each part is indicated in brackets.

Total Marks: 60

1. Find $\frac{d y}{d x}$ at the point $x=0$ if
(a) [4 marks] $y=e^{x} \sin ^{-1} x$

Solution: by the product rule

$$
\frac{d y}{d x}=e^{x} \sin ^{-1} x+\frac{e^{x}}{\sqrt{1-x^{2}}}
$$

so at $x=0$ the derivative has value 1 .
(b) $\left[6\right.$ marks] $y=\ln \sqrt{\frac{3 x+9}{4 x+3}}$

Solution: simplifying gives $y=\frac{1}{2}(\ln (3 x+9)-\ln (4 x+3))$, so

$$
\frac{d y}{d x}=\frac{1}{2} \frac{3}{3 x+9}-\frac{1}{2} \frac{4}{4 x+3}
$$

At $x=0$ this is equal to $-1 / 2$.
2. Find the following limits:
(a) [4 marks] $\lim _{x \rightarrow 0^{+}} x^{2} \ln x$

Solution: this limit is in the $0 \cdot \infty$ form. Rearrange it as a fraction in the ∞ / ∞ form and use L'Hopital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x^{2} \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x^{2}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-2 / x^{3}} \\
& =-\frac{1}{2} \lim _{x \rightarrow 0^{+}} x^{2} \\
& =0
\end{aligned}
$$

(b) $[6$ marks $] \lim _{x \rightarrow 0^{+}}\left(e^{3 x}+x\right)^{2 / x}$

Solution: this limit is in the 1^{∞} form, so take the natural \log of the limit and then use L'Hoptial's Rule:

$$
\begin{aligned}
L=\lim _{x \rightarrow 0^{+}}\left(e^{3 x}+x\right)^{2 / x} \Rightarrow \ln L & =\lim _{x \rightarrow 0^{+}} \frac{2}{x} \ln \left(e^{3 x}+x\right) \\
& =2 \lim _{x \rightarrow 0^{+}} \frac{3 e^{3 x}+1}{e^{3 x}+x} \\
& =2\left(\frac{4}{1}\right) \\
& =8 \\
\Rightarrow L & =e^{8}
\end{aligned}
$$

3. The parts of this question are not related.
(a) [4 marks] Find all the asymptotes to the graph of $y=\frac{x^{2}+3}{x-2}$.

Solution: by long division $y=\frac{x^{2}+3}{x-2}=x+2+\frac{7}{x-2}$.

So the graph of y has two asymptotes: a vertical asymptote $x=2$, and a slant asymptote $y=x+2$.

(b) [6 marks] Find the maximum and the minimum value of the function $f(x)=2 x^{3}+3 x^{2}-12 x$ on the closed interval $[-3,3]$.

Solution: the extreme values of f will occur at an endpoint of the interval $[-3,3]$ or at a critical point of f. To find the critical points of f :

$$
f^{\prime}(x)=6 x^{2}+6 x-12=6(x-1)(x+2)=0 \Leftrightarrow x=-2 \text { or } x=1 .
$$

Compare the values of f at $x=-3,-2,1,3$:

$$
\begin{gathered}
f(-3)=9 \\
f(-2)=20 \\
f(1)=-7 \\
f(3)=45
\end{gathered}
$$

So the maximum value of f on $[-3,3]$ is $M=45$ and the minimum value of f on $[-3,3]$ is $m=-7$.
4. Sketch the graph of $f(x)=x^{4 / 3}+4 x^{1 / 3}$, for which you may assume

$$
f^{\prime}(x)=\frac{4}{3} \frac{(x+1)}{x^{2 / 3}} \text { and } f^{\prime \prime}(x)=\frac{4}{9} \frac{(x-2)}{x^{5 / 3}},
$$

labeling all critical points and inflection points, if any.

Solution: $f^{\prime}(x)>0 \Leftrightarrow x>-1, x \neq 0 ; f^{\prime}(x)<0 \Leftrightarrow x<-1$.
So f is decreasing for $x<-1$ and increasing for $x>-1$.
There is a min point at $(x, y)=(-1,-3)$ and a vertical tangent at $x=0$.

$$
\begin{gathered}
f^{\prime \prime}(x)>0 \Leftrightarrow x<0 \text { or } x>2 \\
f^{\prime \prime}(x)<0 \Leftrightarrow 0<x<2 .
\end{gathered}
$$

So f is concave up for $x<0$ or $x>2$ and concave down for $0<x<2$. The graph of f has two inflection points:

$$
(x, y)=(0,0) \text { and }\left(2,6\left(2^{1 / 3}\right)\right)
$$

5. A cylindrical can, open at the top, is to hold $500 \mathrm{~cm}^{3}$ of liquid. Find the height and radius that minimize the amount of material needed to manufacture the can.

Solution: let the radius of the can be r, its height h; then its volume V and surface area $S A$ are given by

$$
V=\pi r^{2} h \text { and } S A=\pi r^{2}+2 \pi r h .
$$

Now

$$
V=500 \Rightarrow h=\frac{500}{\pi r^{2}} \Rightarrow S A=\pi r^{2}+2 \pi r\left(\frac{500}{\pi r^{2}}\right)=\pi r^{2}+\frac{1000}{r} .
$$

The problem is: minimize $S A$ for $r>0$.
Critical Point:

$$
\frac{d S A}{d r}=0 \Rightarrow 2 \pi r-\frac{1000}{r^{2}}=0 \Rightarrow r=\frac{10}{(2 \pi)^{1 / 3}}
$$

Since

$$
\frac{d^{2} S A}{d r^{2}}=2 \pi+\frac{2000}{r^{3}}>0 \text { for all } r>0
$$

$S A$ is indeed minimized at the critical point. The amount of materials will be minimized for

$$
r=\frac{10}{(2 \pi)^{1 / 3}} \text { and } h=\frac{500}{\pi r^{2}}=\frac{5\left(2^{2 / 3}\right)}{\pi^{1 / 3}}=\frac{5(2)}{(2 \pi)^{1 / 3}}=r
$$

6. Two parallel paths 15 m apart run east-west through the woods. Brooke jogs west to east on one path at $4 \mathrm{~m} / \mathrm{sec}$, while Jamail walks east to west on the other path at $2 \mathrm{~m} / \mathrm{sec}$. If they pass each other at $t=0$ how far apart are they 3 seconds later, and how far is the distance between them changing at that moment?

Solution: Let Jamail's position at time t be $(y, 15)$ and let Brooke's position at time t be $(x, 0)$ as illustrated on the diagram below, where t is measured in seconds since they passed each other. Let D be the distance between them at time t. We have $x=4 t$ and $y=-2 t$ and $D^{2}=(x-y)^{2}+15^{2}$. Then:

$$
D^{2}=(4 t-(-2 t))^{2}+15^{2}=36 t^{2}+225
$$

and

$$
2 D \frac{d D}{d t}=72 t \Leftrightarrow \frac{d D}{d t}=\frac{36 t}{D} .
$$

So at $t=3$,

$$
D^{2}=36(9)+225 \Rightarrow D=\sqrt{549}=3 \sqrt{61}
$$

and

$$
\frac{d D}{d t}=\frac{36(3)}{3 \sqrt{61}}=\frac{36}{\sqrt{61}}
$$

