University of Toronto
 Solutions to MAT 186H1S TERM TEST
 of Thursday, March 6, 2008

Duration: 90 minutes
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

Instructions: Answer all questions. Present your solutions in the space provided. The value for each question is indicated in parantheses beside the question number.

TOTAL MARKS: 60

NAME:

STUDENT NUMBER:

SIGNATURE:

LOCATION: (eg HA403)

Results: 100 students wrote this test. The marks ranged from 13% to 88%, and the average was only 53.8%. Here is a histogram of the test marks, out of 60 .

1. [8 marks] Suppose $\sin x=-\frac{2}{3}$ and $\cos x<0$. Find the exact values of the following:
(a) $[2$ marks $] \cos x$

Solution:

$$
\begin{aligned}
\cos x & =-\sqrt{1-\sin ^{2} x} \\
& =-\sqrt{1-\left(-\frac{2}{3}\right)^{2}} \\
& =-\sqrt{\frac{5}{9}} \\
& =-\frac{\sqrt{5}}{3}
\end{aligned}
$$

(b) $[3$ marks $] \sin \left(x+\frac{\pi}{3}\right)$

Solution:

$$
\begin{aligned}
\sin \left(x+\frac{\pi}{3}\right) & =\sin x \cos (\pi / 3)+\cos x \sin (\pi / 3) \\
& =\left(-\frac{2}{3}\right)\left(\frac{1}{2}\right)+\left(-\frac{\sqrt{5}}{3}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =-\frac{2+\sqrt{15}}{6}
\end{aligned}
$$

(c) $[3$ marks $] \cos (2 x)$

Solution:

$$
\begin{aligned}
\cos (2 x) & =1-2 \sin ^{2} x \\
& =1-2\left(\frac{4}{9}\right) \\
& =\frac{1}{9}
\end{aligned}
$$

2. [8 marks] Find the following limits.
(a) $\left[3\right.$ marks] $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2} \\
& =\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right) \\
& =12
\end{aligned}
$$

(b) $[3$ marks $] \lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1} & =\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1} \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2} \\
& =\lim _{x \rightarrow 1} \frac{x+3-4}{(x-1)(\sqrt{x+3}+2)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+3}+2} \\
& =\frac{1}{4}
\end{aligned}
$$

(c) [2 marks] $\lim _{x \rightarrow 0} x^{2} \sin (-1 / x)$

Solution: use the squeeze law. For $x \neq 0$,

$$
\begin{aligned}
& -1 \leq \sin (-1 / x) \leq 1 \\
\Rightarrow & -x^{2} \leq x^{2} \sin (-1 / x) \leq x^{2} \\
\Rightarrow & 0=\lim _{x \rightarrow 0}\left(-x^{2}\right) \leq \lim _{x \rightarrow 0} x^{2} \sin (-1 / x) \leq \lim _{x \rightarrow 0} x^{2}=0 \\
\Rightarrow & \lim _{x \rightarrow 0} x^{2} \sin (-1 / x)=0
\end{aligned}
$$

3. [7 marks] Find the value of $\frac{d y}{d x}$ at the point $(x, y)=(1,1)$ if
(a) $[3$ marks $] y+1=2 e^{x-y}$

Solution: Differentiate implicitly.

$$
\begin{aligned}
y+1=2 e^{x-y} & \Rightarrow y^{\prime}=2 e^{x-y}\left(1-y^{\prime}\right) \\
\operatorname{sub} x=1, y=1 & \Rightarrow y^{\prime}=2\left(1-y^{\prime}\right) \\
& \Rightarrow 3 y^{\prime}=2 \\
& \Rightarrow y^{\prime}=\frac{2}{3}
\end{aligned}
$$

(b) [4 marks] $y+1=\left(x+x^{2}\right)^{y}$

Solution: Differentiate logarithmically.

$$
\begin{aligned}
y+1=\left(x+x^{2}\right)^{y} & \Rightarrow \ln (y+1)=y \ln \left(x+x^{2}\right) \\
& \Rightarrow \frac{y^{\prime}}{y+1}=y^{\prime} \ln \left(x+x^{2}\right)+y \frac{1+2 x}{x+x^{2}} \\
\text { sub } x=1, y=1 & \Rightarrow \frac{y^{\prime}}{2}=y^{\prime} \ln 2+\frac{3}{2} \\
& \Rightarrow y^{\prime}=\frac{3}{1-2 \ln 2}
\end{aligned}
$$

4. [7 marks] A pedestrian walks (on a level sidewalk) away from a lamppost that is 10 metres tall. The pedestrian walks at a constant rate of 1 metre per sec, and is 2 metres tall. At what rate is the pedestrian's shadow increasing when the pedestrian is 15 metres from the base of the lamppost?

Solution:

$$
\begin{aligned}
& \text { By similar triangles: } \\
& \qquad \frac{s}{2}=\frac{s+x}{10} \Rightarrow x=4 s \\
& \text { So } \\
& \qquad \frac{d s}{d t}=\frac{1}{4} \frac{d x}{d t} .
\end{aligned}
$$

Thus when $x=15$, the pedestrian's shadow is increasing at the rate of 0.25 $\mathrm{m} / \mathrm{sec}$.
5. [16 marks] This question has four parts and covers two pages. Let $f(x)=\frac{x^{1 / 3}+4}{x^{1 / 3}+1}$; for which

$$
f^{\prime}(x)=-\frac{1}{x^{2 / 3}\left(x^{1 / 3}+1\right)^{2}} \text { and } f^{\prime \prime}(x)=\frac{2}{3} \frac{2 x^{1 / 3}+1}{x^{5 / 3}\left(x^{1 / 3}+1\right)^{3}} .
$$

(a) [4 marks] On the following number line, label all critical points of f, if any, all discontinuities of f, if any; and indicate the intervals on which f is increasing, or decreasing.

So f is decreasing on $(-\infty,-1),(-1,0)$ and $(0, \infty) ; f$ is never increasing.
(b) [4 marks] On the following number line, label all inflection points of f, if any, all discontinuities of f, if any; and indicate the intervals on which f is concave up, or concave down.

So f is concave down on $(-\infty,-1)$ and $(-1 / 8,0) ; f$ is concave up on $(-1,-1 / 8)$ and $(0, \infty)$.
(c) [4 marks] Find all the horizontal and vertical asymptotes to the graph of f, if any.
Solution: Vertical asymptote at $x=-1$ since

$$
\lim _{x \rightarrow-1^{+}} \frac{x^{1 / 3}+4}{x^{1 / 3}+1}=\infty ; \lim _{x \rightarrow-1^{-}} \frac{x^{1 / 3}+4}{x^{1 / 3}+1}=-\infty
$$

Horizontal asymptote at $y=1$ since

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{1 / 3}+4}{x^{1 / 3}+1}=\lim _{x \rightarrow \pm \infty} \frac{1+4 / x^{1 / 3}}{1+1 / x^{1 / 3}}=\frac{1+0}{1+0}=1
$$

(d) [4 marks] Plot the graph of $y=f(x)$, labeling all critical points, all inflection points, and all asymptotes, if any.

Graph:

From Maple; not a very good picture.

Inflection points at:

$$
(-1 / 8,7) \text { and }(0,4)
$$

6. [7 marks] Let

$$
f(x)=\frac{\sin x}{2 x^{2}-3 \pi x} .
$$

Find all points where the function is not continuos, and at each such point $x=a$, calculate both

$$
\lim _{x \rightarrow a^{-}} f(x) \text { and } \lim _{x \rightarrow a^{+}} f(x),
$$

or explain why they do not exist.

Solution:

$$
2 x^{2}-3 \pi x=x(2 x-3 \pi)=0 \Leftrightarrow x=0 \text { or } x=\frac{3}{2} \pi .
$$

So the discontinuities of f are at $x=0$ and $x=3 \pi / 2$,
At $a=0$:

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{\sin x}{2 x^{2}-3 \pi x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x(x-3 \pi)} \\
& =-\frac{1}{3 \pi} \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
& =-\frac{1}{3 \pi} \cdot 1 \text { (by basic trig limit) } \\
& =-\frac{1}{3 \pi}
\end{aligned}
$$

So both

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\frac{1}{3 \pi} \text { and } \lim _{x \rightarrow 0^{+}} f(x)=-\frac{1}{3 \pi} .
$$

At $a=3 \pi / 2: \sin (3 \pi / 2)=-1$, so

$$
\lim _{x \rightarrow 3 \pi / 2^{-}} f(x)=\lim _{x \rightarrow 3 \pi / 2^{-}} \frac{\sin x}{x} \frac{1}{2 x-3 \pi}=\infty
$$

and

$$
\lim _{x \rightarrow 3 \pi / 2^{+}} f(x)=\lim _{x \rightarrow 3 \pi / 2^{+}} \frac{\sin x}{x} \frac{1}{2 x-3 \pi}=-\infty .
$$

7. [7 marks]
(a) [3 marks] Find an approximation to $25^{2 / 3}$ by using the linear approximation of $f(x)=x^{2 / 3}$ at $a=27$. (Express your answer to five decimal places.)
Solution:

$$
f^{\prime}(x)=\frac{2}{3} x^{-1 / 3} ; f(27)=9 ; f^{\prime}(27)=\frac{2}{9}
$$

so the tangent line to f at $a=27$ is

$$
y=9+\frac{2}{9}(x-27)
$$

Hence

$$
25^{2 / 3}=f(25) \simeq 9+\frac{2}{9}(25-27)=\frac{77}{9}=8.55555 \ldots
$$

(b) [4 marks] Find an approximation to $25^{2 / 3}$ by applying Newton's method to the equation

$$
x^{3 / 2}-25=0
$$

start with $x_{0}=9$ and compute x_{1} and x_{2}. (Express your answers to five decimal places.)
Soltuion:

$$
f(x)=x^{3 / 2}-25 \Rightarrow f^{\prime}(x)=\frac{3}{2} \sqrt{x}
$$

so Newton's iterative formula is

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{x_{n}^{3 / 2}-25}{3 \sqrt{x_{n}} / 2} \\
& =\frac{1}{3}\left(x_{n}+\frac{50}{\sqrt{x_{n}}}\right)
\end{aligned}
$$

Then:

$$
x_{0}=9 \Rightarrow x_{1}=\frac{77}{9}=8.55555 \ldots
$$

and

$$
x_{1}=\frac{77}{9} \Rightarrow x_{2}=\frac{77}{27}+\frac{50}{\sqrt{77}}=8.54988
$$

