Basic Algebra Test Solutions.

Answers to the Test:

1. T
2. F 3. F
3. T
4. T
5. F
6. C
7. A
8. B 10. D

Solutions and Comments:

1. $\sqrt[3]{-1}=-1$ is True.

You can take the cube root of a negative number; you can take the cube root of any number. Some calculators don't accept negative arguments for their $\sqrt[x]{y}$ button, but that is a shortcoming of the way the calculator is programmed.
2. $\sqrt{a^{2}}=a$ is False.

The $\sqrt{ }$ symbol means the positive square root. (If you want both roots you have to write $\pm \sqrt{ }$.) In this question, the statement $\sqrt{a^{2}}=a$ is false if $a<0$. The statement that is always true is

$$
\sqrt{a^{2}}=|a| .
$$

3. $\sqrt{a^{2}+b^{2}}=a+b$ is False.

There is no easy way to simplify $\sqrt{a^{2}+b^{2}}$. Observe that

$$
\begin{aligned}
\sqrt{a^{2}+b^{2}}=a+b & \Rightarrow a^{2}+b^{2}=(a+b)^{2} \\
& \Rightarrow a^{2}+b^{2}=a^{2}+2 a b+b^{2} \\
& \Rightarrow a b=0
\end{aligned}
$$

So $\sqrt{a^{2}+b^{2}}=a+b$ is true if both $a=0$ and $b=0$, or if one is zero and the other is positive. Consequently $\sqrt{a^{2}+b^{2}}=a+b$ is never true if both $a, b \neq 0$.
4. $\sqrt{3^{2 x}+2+3^{-2 x}}=3^{x}+3^{-x}$ is True.

The expression inside the square root sign is a perfect square:

$$
a^{2}+2 a b+b^{2}=(a+b)^{2},
$$

with $a=3^{x}$ and $b=3^{-x}$. Thus

$$
\begin{aligned}
\sqrt{3^{2 x}+2+3^{-2 x}} & =\sqrt{\left(3^{x}+3^{-x}\right)^{2}} \\
& =\left|3^{x}+3^{-x}\right| \\
& =3^{x}+3^{-x}, \text { since both } 3^{x}>0 \text { and } 3^{-x}>0
\end{aligned}
$$

5. If $a \neq 0, b \neq 0, a+b \neq 0$, then

$$
\frac{a+b}{\frac{1}{a}+\frac{1}{b}}=a b
$$

is True.
Simplify left side:

$$
\frac{a+b}{\frac{1}{a}+\frac{1}{b}}=\frac{a+b}{\frac{b+a}{a b}}=(a+b) \frac{a b}{(a+b)}=a b
$$

6. $|x|^{3}=x^{3}$ is False.

The statement is true if $x \geq 0$, but not true if $x<0$:

$$
x<0 \Rightarrow|x|=-x \Rightarrow|x|^{3}=(-x)^{3}=-x^{3} .
$$

7. If $x^{2}-x-6>0$, then $x<-2$ or $x>3$.

There are at least two ways to see this. Both require that you factor $x^{2}-x-6$.

Let

$$
y=x^{2}-x-6=(x-3)(x+2 .)
$$

The graph of y is a parabola opening upwards with x intercepts $x=-2$ and $x=3$. So the graph of y is above the x axis if $x<-2$ or $x>3$.

Or you can solve the inequality by taking cases:

$$
\begin{aligned}
x^{2}-x-6>0 & \Leftrightarrow(x-3)(x+2)>0 \\
& \Leftrightarrow x-3>0 \text { and } x+2>0, \text { or, } x-3<0 \text { and } x+2<0 \\
& \Leftrightarrow x>3 \text { or } x<-2
\end{aligned}
$$

8. The vertex of the parabola with equation $y=5+6 x-x^{2}$ is $(x, y)=(3,14)$.

There are at least two ways to do this: one way using algebra, one way using calculus. You can complete the square:

$$
y=5+6 x-x^{2}=14-9+x-x^{2}=14-\left(9-x+x^{2}\right)=14-(x-3)^{2}
$$

so the vertex is $x=3$ and $y=14$.
Or you can find the vertex by setting $y^{\prime}=0$:

$$
\frac{d y}{d x}=6-2 x=0 \Leftrightarrow x=3
$$

Then $y=5+18-9=14$, as before.
9. The centre and radius of the circle with equation $x^{2}+2 x+y^{2}-4 y=4$ are

$$
\text { centre: }(x, y)=(-1,2) ; \quad \text { radius: } r=3
$$

This is an exercise in completing the square, both in the x variable, and in the y variable.

$$
\begin{aligned}
x^{2}+2 x+y^{2}-4 y=4 & \Leftrightarrow x^{2}+2 x+1+y^{2}-4 y+4=4+1+4 \\
& \Leftrightarrow(x+1)^{2}+(y-2)^{2}=9 \\
& \Leftrightarrow(x+1)^{2}+(y-2)^{2}=3^{2}
\end{aligned}
$$

So the centre of the circle is $(x, y)=(-1,2)$ and its radius is $r=3$.
10 . If $x<-1$, then

$$
\sqrt{x^{2}+x}+x=\frac{-1}{\sqrt{1+1 / x}+1} .
$$

This is quite tricky. First of all, there are restrictions on x since

$$
x^{2}+x \geq 0 \Leftrightarrow x(x+1) \geq 0 \Leftrightarrow x \leq-1 \text { or } x \geq 0 .
$$

The expression simplifies differently in each case. If $x>0$, then the answer is actually B. In either case, you start by rationalizing the numerator:

$$
\begin{aligned}
\sqrt{x^{2}+x}+x & =\left(\sqrt{x^{2}+x}+x\right)\left(\frac{\sqrt{x^{2}+x}-x}{\sqrt{x^{2}+x}-x}\right) \\
& =\frac{x^{2}+x-x^{2}}{\sqrt{x^{2}+x}-x} \\
& =\frac{x}{\sqrt{x^{2}+x}-x} \\
& =\frac{x}{\sqrt{x^{2}(1+1 / x)}-x}
\end{aligned}
$$

If $x>0$, then $\sqrt{x^{2}(x+1 / x)}=x \sqrt{1+1 / x}$, and

$$
\frac{x}{\sqrt{x^{2}(1+1 / x)}-x}=\frac{x}{x \sqrt{1+1 / x}-x}=\frac{1}{\sqrt{1+1 / x}-1} ;
$$

but if $x<-1$, then $\sqrt{x^{2}}=|x|=-x$, so

$$
\frac{x}{\sqrt{x^{2}(1+1 / x)}-x}=\frac{x}{-x \sqrt{1+1 / x}-x}=\frac{1}{-\sqrt{1+1 / x}-1}=\frac{-1}{\sqrt{1+1 / x}+1} .
$$

