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Oscillatory differential equations

Eigenvalues are ? QL \/(g(t)) — (f(t))Q:
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Classical approaches

Step schemes which combine exponential integrators with preconditioning:

e Magnus methods: integrator is a truncated Magnus expansion — O (w)
e Modified Magnus methods: integrator is truncated Magnus expansion and
o A 3
preconditioning is done by freezing the coefficient matrix — O <w4)
e “Adibiatic integrators” of Lubich, et al.: exponential integrator with first order
eigenfunction preconditioner — O (y/w)

e WKB marching methods: WKB preconditioners applied to scalar equations —

O (vw)




Phase functions provide efficient representations

Theorem. Suppose that g(t,w) is a smooth positive function given on [a, b|,
and that g and its first 2M + N derivatives with respect to t are bounded
independent of w. Then there exist smooth functions « and & such that

{cos @) di (a(t))}

is a basis in the space of solutions of the equation

y//(t) +w2q(t7w)y(t) =0, a<t<b,

&<j>(t)
a'(t)

olt) = &(t) (1 +0 (ﬁ)) 28 wl— ool

the quantities are bounded independent of w for all j =0,1,... N

and



Oscillatory differential equations
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Numerical experiment
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The output of the solver is an efficient representation of a fundamental
matrix for the differential equation



All is not well

Trigonometric representations are expensive in the presence of turning
points:

a'(t)
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Solutions are associated Legendre functions P/ (tanh(t — ¢&5))



Trigonometric phase functions

z(a(t
o (t)

Use a transformation of the form y(t) = to map the solutions of

Z'(t) + z(t) =0

to those of
y'(t) + wq(t)y(t) =0

so that

{cos(a(t)) sin(a(t))}

is a basis in the solution space of the latter equation.

The trigonometric phase function « satisfies Kummer's equation

w2q(t) _ (Oél(t))Z n % (z//’((:))) - %(Z;/((tt)) =0.




Generalized phase functions

0
0)

Use a transformation of the form y(t) = to map the solutions of

Z'(t) + q(t)z(t) = 0

to those of

so that

u(At) v(A)

V()T VN )
where {u, v} is a basis in the solution space of the first equation, is a basis in
the solution space of the latter equation.

The generalized phase function ) satisfies the generalized Kummer's equation




Airy phase functions

. _ z(v(t) .
Use a transformation of the form y(t) = ) to map the solutions of
s
Z'(t) + tz(t) =0
to those of
Y'(t) +?q(t)y(t) =0, q(t) ~t,
so that

{Ai (y(2)) Bi (v(t))}

is a basis in the solution space of the latter equation.

The Airy phase function ~ satisfies the Airy-Kummer equation

w2q(t) _W(t) (’Y,(t))z n % (z/’/’((:))> _ 1 ,.y///(t) e

2 /(1)
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Efficient representations for equations with turning points

Theorem. Suppose that g(t,w) = t qo(t,w) where go is smooth and positive
on [—a, a], and that qo and its first 2M + N derivatives with respect to t are
bounded independent of w. Then there exist smooth functions v and 7 such
that

{Bi(q(t)) Ai(v(t))}

is a basis in the space of solutions of the equation

y'(t) + WPq(t,w)y(t) =0, —a<t<a,
79 (1)
¥ (t)

10 =30 (140 (g ) ) w0

the quantities are bounded independent of w for all j =0,1,..., N and
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Numerical calculation of Airy phase functions

Problem with the obvious approach: Almost all solutions of the

Airy-Kummer equation

oo -rt0 107 3 (FH0) - 1540 -

are rapidly varying and we need some mechanism to select the desired

slowly-varying solution.
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Numerical calculation of Airy phase functions

Problem with the obvious approach: Almost all solutions of the

Airy-Kummer equation

o)) =10 ')+ § (55) - 5378 =0

are rapidly varying and we need some mechanism to select the desired

slowly-varying solution.

Solution: Exploit the fact that a sparse discretization will only see the

slowly-varying solutions.
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Numerical calculation of Airy phase functions

The k-point Chebyshev spectral discretization of the Airy-Kummer equation on
an interval [—ao, ao] is

2
) D 02 3 D 2 © D -2 4 D 3 D o—1
w q—7° Y +— -— | o\ — -3 — ] 7|° Y =0.
ao 4 ao ao 2 ao ao

Choose k so that the slowly-varying solution is discretized, but the

rapidly-varying solutions are not.

Newton-Kantorovich implies that Newton's method converges provided w is
sufficiently large relative to |Zk|.

We then extend the solution to the whole interval [—a, a] by solving an initial
value problem.
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Numerical experiments
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Numerical experimen
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Numerical experiments
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Numerical experiments

y"(8) + (=12 + v(v + 1) sech (£ — &) ) y(t) = 0
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Applications to special functions

Precompute expansions of phase functions which vary with parameters to
efficiently represent a family of special functions:

e O (1) evaluation of the special functions

e (O (1) evaluation of their roots, as well as the weights of the associated
quadrature rules, Sturm-Liouville eigenvalues, etc.

e O (n) application of associated Sturm-Liouville eigentransform through the
evaluation of integrals such as

Jexp(ia(w, t))f(t)dt or JAi(v(w, t))f(t) dt
Spheriodal wave functions, Jacobi polynomials, ALFs, ...
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Ongoing work

Map the solutions of
Z'(t) +t7z(t) =0

to those of
Y'(t) +w?a(t)y(t) =0, q(t) ~ t7,

by solving the generalized Kummer equation

o) = (O (OF 5 (L) -358 -0

Then we have the following basis in the solution space of the original equation:

2 240
{uwr)), V(v(t))} ”(t)‘m#z<2+at )
VY (&) /() v(t) = VEL 1, (2%—#%{7)
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Ongoing work

y'(t) + (1 + %tcos(nt)) y(t)=0
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