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The variable coefficient Helmholtz equation

Au(x) + k(1 + q(x))u(x) =0 forall x € R?
can be used to model the scattering of waves from inhomogeneous media.
In many applications:

@ the wavenumber k is real-valued

@ the scattering potential g is smooth, positive and has compact support contained in
a disk Q of radius R centered at 0

@ the solution u, which is known as the total field, is the sum of a known incident field
u; satisfying the constant coefficient Helmholtz equation

Aui(x) + k2u,-(x) =0

and an unknown scattered field us which satisfies the Sommerfeld radiation condition

(re") — ikus(re™)| = 0.
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The goal is to obtain the scattered field us, which is the unique solution of the boundary
value problem

Aug(x) 4+ K*(1 + g(x))us(x) = —k*q(x)ui(x) for all x € R?

lim sup +/r aus(re’lt)—ikus(re"t) =0.

r—00 0<t<2m or

The scattered wave us becomes increasingly oscillatory as k grows, and it requires
N=0O (k2) data points to represent using standard methods (e.g., orthogonal

polynomials, finite element bases, collocation).

As a consequence, any method which using such a scheme for representing us has a
running time which grows at least as fast as N = O (kz).

In fact, most schemes have running times which grow superlinearly with N.



I will describe a method for calculating the scattered field in O (k log(k)) time.

The catch is that this method — at least in its present form — only applies to radially
symmetric potentials g.

It uses the method of separation of variables to reduce the two-dimensional problem to
O (k) instances of the one-dimensional problem, and exploits the fact that the
one-dimensional variable coefficient Helmholtz equation can be solved in O (log(k)) time.



The one-dimensional variable coefficient Helmholtz equation

If y(t) = exp(r(t)) solves
') + Kq(t)y(t) =0, (1)
then r satisfies the Riccati equation

r(8) + (7 (1))* + Kq(t) = 0. (2)

When g is positive, the solutions of (1) are oscillatory, with the frequency of their
oscillations increasing with k. Representing such functions using standard methods (e.g.,
expansions in orthogonal polynomials) requires O (k) data points.

Under mild conditions on g, (2) admits solutions which are nonoscillatory and can be
represented via standard methods using a number of data points which is independent of
k (when q is strictly positive or negative) and slowly growing with k when g has zeros.



The one-dimensional variable coefficient Helmholtz equation

That there are nonoscillatory solutions of the Riccati equation should not be surprising
given that the existence of such solutions is the basis of WKB approximation.

WKB approximations are not a numerically viable approach to computing nonoscillatory
solutions of the Riccati equation because:
@ they require the computation of high-order derivatives of the coefficient g

@ the handling of turning points is messy

There is a viable algorithm, however, which runs in time independent of the wavenumber
k in the case in which g is strictly positive and in O (log(k)) time in cases in which the
equation has turning points:

B— , On the numerical solution of second order differential equations in the
high-frequency regime. Applied and Computational Harmonic Analysis 44
(2018), 312-349.

It operates by solving the Riccati equation numerically. The only difficulty is computing
the correct initial conditions.



A numerical experiment
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time evaluation time
100 10° 1.79x107%3 5.51x107%
102 10° 3.10x107% 5.39x10~%7
108 10° 2.90x10~% 5.39x10~%7
10+ 10° 3.06x107% 5.61x107%
10° 10! 3.80x107% 4.77x10~%7
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10+ 10° 2.72x107% 4.76x10~%7
100 10° 357x107% 5.83x10~%7
102 10° 3.15x107% 5.78x107%7
100 10° 2.32x107% 5.51x107%
107 107 4.33x107% 5.73x107%7




Representation of us in the exterior of Q2

Since g has support contained in €2, the scattered wave us is a solution of the boundary
value problem

Aus(x) 4+ Kus(x) =0 for all x € Q°

lim sup +/r

r—o0 o< t<2n

Jdu .
8—:(r, t) — ikus(r, t)‘ =0
We can separate variables to see that in the exterior of Q, us can be represented as

us(r,t) = Z bnH,(kr) exp(int),

n=—oo

where H, is the Hankel function of the first kind of order n.



Representation of u in the interior of Q

The total field u satisfies
Au(x) + k> (14 q(r)) u(x) =0 forall x € Q.

Separating variables shows that u can be represented in the interior of Q via an expansion

of the form .

u(r,t) = Z an|a|(r) exp(int),
n=—oo
where, for each nonnegative integer n, 1, is a solution of the second order differential
equation
Py (r) + rdi(r) + (K (1 + q(r)r* = n*)ya(r) = 0
which is nonsingular at 0. Note that v, is only determined up to a nonzero multiplicative
constant, but the choice of this constant does not effect the form of (9), only the value
of the coefficient aj.



Determination of the scattered field via separation of variables

From standard elliptic regularity results, we know that u and its normal derivative are
continuous across the boundary 9Q2. Moreover, u = us + u;. It follows that

oo}

Z any|n|(R) exp(int) = Z bnHn(kR) exp(int) + ui(R, t)

n=—oo n=—o00

and

oo

Z an|s(R) exp(int) = i bnkH,(kR) exp(int) + %(R, t)

n=—o00 n=—o0o



Determination of the scattered field via separation of variables

If we let

ui(R,t) = Z cnexp(int)  and Bu, Z dn exp(int)

n=—o00 n=—o00
be the Fourier expansions of the restrictions of the incident wave u; and its derivative
with respect to r to the boundary 99 of €, then we can rewrite these equations as

oo

Z anin)(R) exp(int) = Z b,H,(R) exp(int) + Z cnexp(int)

n=—oo n=—o00 n=—o00

and

o)

> antn (R) exp(int) = i bokHy(kR) exp(int) + > dnexp(int).

n=—o00 n=—oo n=—o00



Determination of the scattered field via separation of variables

Owing to the orthogonality of the exponential functions, the equations

Z an|n(R) exp(int) Z b,HA(R) exp(int) + Z cnexp(int)
and
Z an(R) exp(int) = Z bnkH,(kR) exp(int) + Z dn exp(int).

are satisfied if and only if for each integer n,

antinl (R) = baHa(R) = ¢,
an|s(R) — bokHy(kR) = dh.



Determination of the scattered field via separation of variables

We can easily solve this system:
0 — —kH}, (kR) ¢y + H, (kR) d,,
" Ha (kR) ¥, (R) — k vy (R)H; (kR)

b, — *wfn\(R)Cn+l/J|n‘(R)d,,
" H.(kR) U1, (R) = k o (R)H, (kR)"

In the interior of Q:

oo

u(r,t) = Z an|n(r) exp(int).

n=—oo
In the exterior of Q:

us(r,t) = Z bnHn(kr) exp(int).

n=—o00



Numerical Algorithm

It is fairly straightforward to develop a numerical method based on the method of
separation of variables.

We first observe that since the incident wave u; satisfies the constant coefficient
Helmholtz equation at wavenumber k, we expect to be able to represent it and its normal
derivative using O (k) Fourier modes. That is, in typical cases, we will have high
accuracy approximations

ui(t,R) = Z cnexp(int)
au,-

E(t, R) ~ Z dn exp(int)

n=—m

with m = O (k). Moreover, the coefficients in these expansions can be computed via the
fast Fourier transform in O (mlog(m)) operations.



Numerical Algorithm

The number of terms in the expansion

ui(t,R) = Z cnexp(int)

n=—m

of the incident wave dictates the number of terms in the representations of total field u
and of the scattered field wus.

For each n =10,..., m, we must solve the perturbed Bessel equation
rzq/):,'(r) + rab(r) + (k2(1 + q(r))r2 — n2)1/),,(r) =0

to compute 1|,|. The cost for each solve is O (log(k)), and m = O (k), so the total cost
to compute the functions v, is O (k log(k)).

Computing the coefficients in the expansions of u and us requires O (k) operations.

So the total running time is O (k log(k)).



q(r) = x0,1(r) + 2x2,3(r),
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The general case?

In the two dimensional radially symmetric case, we represented the desired solution u of
Au(x) + k(1 + q(x))u(x) = 0

in the form

[e'<]

Z an|n|(r) exp(int)

n=—oo

with 1|, a solution of a second order differential equation whose logarithm is a
nonoscillatory solution of the one-dimensional Riccati equation.

In fact, the logarithm r of ¢)|,/(r) exp(int) is a solution of the two-dimensional Riccati
equation

Ar(x) + Vr(x) - Vr(x) + k(1 + q(x)) = 0.



The general case?

In other words, we are representing the solution u of
Bu(x) + K (1 + q(x)) u(x) = 0

as a sum of the form

> anexp(1n(x))

n=—00

where 7y, is a nonoscillatory solution of the Riccati equation
Ay(x) + V(x) - V(x) + k(1 + q(x)) = 0

such that exp(ya(x)) is a multiple of exp(inf) on 9%.



