
A fast algorithm for simulating scattering from a radially symmetric
potential

James Bremer

University of California, Davis

December 5, 2020



The variable coefficient Helmholtz equation

∆u(x) + k2(1 + q(x))u(x) = 0 for all x ∈ R2

can be used to model the scattering of waves from inhomogeneous media.

In many applications:

the wavenumber k is real-valued

the scattering potential q is smooth, positive and has compact support contained in
a disk Ω of radius R centered at 0

the solution u, which is known as the total field, is the sum of a known incident field
ui satisfying the constant coefficient Helmholtz equation

∆ui (x) + k2ui (x) = 0

and an unknown scattered field us which satisfies the Sommerfeld radiation condition

lim
r→∞

sup
0≤t<2π

√
r

∣∣∣∣∂us∂r (re it)− ikus(re
it)

∣∣∣∣ = 0.



The goal is to obtain the scattered field us , which is the unique solution of the boundary
value problem

∆us(x) + k2(1 + q(x))us(x) = −k2q(x)ui (x) for all x ∈ R2

lim
r→∞

sup
0≤t<2π

√
r

∣∣∣∣∂us∂r (re it)− ikus(re
it)

∣∣∣∣ = 0.

The scattered wave us becomes increasingly oscillatory as k grows, and it requires

N = O
(
k2
)

data points to represent it using standard methods (e.g., orthogonal

polynomials, finite element bases, collocation).

As a consequence, any method which using such a scheme for representing us has a

running time which grows at least as fast as N = O
(
k2
)

.

In fact, most schemes have running times which grow superlinearly with N.



I will describe a method for calculating the scattered field in O (k log(k)) time.

The catch is that this method — at least in its present form — only applies to radially
symmetric potentials q.

It operates by the method of separation of variables and exploits the fact that the
one-dimensional variable coefficient Helmholtz equation

y ′′(t) + k2q(t)y(t) = 0

can be solved in O (log(k)) time.



The one-dimensional variable coefficient Helmholtz equation

If y(t) = exp(r(t)) solves
y ′′(t) + k2q(t)y(t) = 0, (1)

then r satisfies the Riccati equation

r ′′(t) +
(
r ′(t)

)2
+ k2q(t) = 0. (2)

When q is positive, the solutions of (1) are oscillatory, with the frequency of their
oscillations increasing with k. Representing such functions using standard methods (e.g.,
expansions in orthogonal polynomials) requires O (k) data points.

Under mild conditions on q, (2) admits solutions which are nonoscillatory and can be
represented via standard methods using a number of data points which is independent of
k (when q is strictly positive or negative) and slowly growing with k when q has zeros.



The one-dimensional variable coefficient Helmholtz equation

That solutions of the Riccati equation can be approximated by nonoscillatory functions is
the basis of WKB approximation, and there are many examples from the theory of special
functions of second order differential equations which have solutions whose logarithms are
nonoscillatory.

For instance, the formula

w(z) :=
1

z
J2
ν+ 1

2
(z) +

1

z
Y 2
ν+ 1

2
(z) =

2

π

∫ ∞
0

exp(−tz)Pν

(
1 +

t2

2

)
dt

shows that the function w is completely monotone on (0,∞). It is related to a solution r
of the Riccati equation corresponding to the normal form of Bessel’s differential equation
via

r ′(t) = i
1

w(z)
+

1

2

w ′(z)

w(z)
.



The one-dimensional variable coefficient Helmholtz equation

WKB approximations are not a numerically viable approach to computing nonoscillatory
solutions of the Riccati equation because:

they require the computation of high-order derivatives of the coefficient q

the handling of turning points is messy

There is a viable algorithm, however, which runs in time independent of the wavenumber
k in the case in which q is strictly positive and in O (log(k)) time in cases in which the
equation has turning points:

B—, On the numerical solution of second order differential equations in the
high-frequency regime. Applied and Computational Harmonic Analysis 44
(2018), 312-349.

It operates by solving the Riccati equation numerically. The only difficulty is computing
the correct initial conditions.



A numerical experiment

q(t) =
ν2 sin(2t)2

0.1 + (t − 0.5)2
+ µ2 exp

(
−1

t

)

ν µ
Solve Average
time evaluation time

101 100 1.79×10−03 5.51×10−07

102 100 3.10×10−03 5.39×10−07

103 100 2.90×10−03 5.39×10−07

104 100 3.06×10−03 5.61×10−07

105 101 3.80×10−03 4.77×10−07

105 102 4.62×10−03 5.38×10−07

105 103 3.64×10−03 6.97×10−07

105 104 3.81×10−03 5.60×10−07

105 105 3.63×10−03 4.97×10−07

104 105 2.72×10−03 4.76×10−07

103 105 3.57×10−03 5.83×10−07

102 105 3.15×10−03 5.78×10−07

101 105 2.32×10−03 5.51×10−07

107 107 4.33×10−03 5.73×10−07



Representation of us in the exterior of Ω

Since q is compactly supported in Ω, the scattered wave us is a solution of the boundary
value problem

∆us(x) + k2us(x) = 0 for all x ∈ Ωc

lim
r→∞

sup
0≤t≤2π

√
r

∣∣∣∣∂us∂r (r , t)− ikus(r , t)

∣∣∣∣ = 0
(3)

We can separate variables in (3) to see that in the exterior of Ω, us can be represented as

us(r , t) =
∞∑

n=−∞

bnHn(kr) exp(int), (4)

where Hn is the Hankel function of the first kind of order n.



Representation of u in the interior of Ω

The total field u satisfies

∆u(x) + k2 (1 + q(r)) u(x) = 0 for all x ∈ Ω.

Separating variables shows that u can be represented in the interior of Ω via an expansion
of the form

u(r , t) =
∞∑

n=−∞

anψ|n|(r) exp(int), (5)

where, for each nonnegative integer n, ψn is a solution of the second order differential
equation

r 2ψ′′n (r) + rψ′n(r) + (k2(1 + q(r))r 2 − n2)ψn(r) = 0

which is nonsingular at 0. Note that ψn is only determined up to a nonzero multiplicative
constant, but the choice of this constant does not effect the form of (5), only the value
of the coefficient an.



Determination of the scattered field via separation of variables

From standard elliptic regularity results, we know that u and its normal derivative are
continuous across the boundary ∂Ω. Moreover, u = us + ui . It follows that

∞∑
n=−∞

anψ|n|(R) exp(int) =
∞∑

n=−∞

bnHn(kR) exp(int) + ui (R, t)

and
∞∑

n=−∞

anψ
′
|n|(R) exp(int) =

∞∑
n=−∞

bnkH
′
n(kR) exp(int) +

∂ui
∂r

(R, t)



Determination of the scattered field via separation of variables

If we let

ui (R, t) =
∞∑

n=−∞

cn exp(int) and
∂ui
∂r

(R, t) =
∞∑

n=−∞

dn exp(int)

be the Fourier expansions of the restrictions of the incident wave ui and its derivative
with respect to r to the boundary ∂Ω of Ω, then we can rewrite these equations as

∞∑
n=−∞

anψ|n|(R) exp(int) =
∞∑

n=−∞

bnHn(R) exp(int) +
∞∑

n=−∞

cn exp(int)

and

∞∑
n=−∞

anψ
′
|n|(R) exp(int) =

∞∑
n=−∞

bnkH
′
n(kR) exp(int) +

∞∑
n=−∞

dn exp(int).



Determination of the scattered field via separation of variables

Owing to the orthogonality of the exponential functions, the equations

∞∑
n=−∞

anψ|n|(R) exp(int) =
∞∑

n=−∞

bnHn(R) exp(int) +
∞∑

n=−∞

cn exp(int)

and

∞∑
n=−∞

anψ
′
|n|(R) exp(int) =

∞∑
n=−∞

bnkH
′
n(kR) exp(int) +

∞∑
n=−∞

dn exp(int).

are satisfied if and only if for each integer n,{
anψ|n|(R)− bnHn(R) = cn

anψ
′
|n|(R)− bnkH

′
n(kR) = dn.



Determination of the scattered field via separation of variables

We can easily solve this system:

an =
−kH ′n (kR) cn + Hn (kR) dn

Hn (kR)ψ′|n|(R)− k ψ|n|(R)H ′n (kR)

bn =
−ψ′|n|(R)cn + ψ|n|(R)dn

Hn (kR)ψ′|n|(R)− k ψ|n|(R)H ′n (kR)
.

In the interior of Ω:

u(r , t) =
∞∑

n=−∞

anψ|n|(r) exp(int).

In the exterior of Ω:

us(r , t) =
∞∑

n=−∞

bnHn(kr) exp(int).



Numerical Algorithm

It is fairly straightforward to develop a numerical method based on the method of
separation of variables.

We first observe that since the incident wave ui satisfies the constant coefficient
Helmholtz equation at wavenumber k, we expect to be able to represent it and its normal
derivative using O (k) Fourier modes. That is, in typical cases, we will have high
accuracy approximations

ui (t,R) ≈
m∑

n=−m

cn exp(int)

∂ui
∂r

(t,R) ≈
m∑

n=−m

dn exp(int)

with m = O (k). Moreover, the coefficients in these expansions can be computed via the
fast Fourier transform in O (m log(m)) operations.



Numerical Algorithm

The number of terms in the expansion

ui (t,R) ≈
m∑

n=−m

cn exp(int)

of the incident wave dictates the number of terms in the representations of total field u
and of the scattered field us .

For each n = 0, . . . ,m, we must solve the perturbed Bessel equation

r 2ψ′′n (r) + rψ′n(r) + (k2(1 + q(r))r 2 − n2)ψn(r) = 0

to compute ψ|n|. The cost for each solve is O (log(k)), and m = O (k), so the total cost
to compute the functions ψn is O (k log(k)).

Computing the coefficients in the expansions of u and us requires O (k) operations.

So the total running time is O (k log(k)).



q(r) = exp(−5r 2), ui (r , t) = exp(ikr cos
(
t − π

4

)
)
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k m Maximum absolute Precomp time Solve time
error (in seconds) (in seconds)

28 1608 2.17 × 10−12 4.60×10−01 2.44×10−02

29 3216 4.72 × 10−12 9.56×10−01 1.06×10−02

210 6433 8.54 × 10−12 1.96×10+00 9.27×10−02

211 12867 1.85 × 10−11 4.18×10+00 2.22×10−01

212 25735 6.13 × 10−11 8.99×10+00 2.25×10−02

213 51471 2.05 × 10−10 1.89×10+01 1.52×10−01

214 102943 1.51 × 10−09 4.08×10+01 1.56×10−01

215 205887 3.85 × 10−09 8.72×10+01 2.32×10−01

216 411774 2.16 × 10−08 1.93×10+02 2.46×10+00

217 823549 1.01 × 10−07 4.11×10+02 1.36×10+00
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q(r) = 14r 2 exp(−5r 2), ui (z) = H0(k|z − 6i |)
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k m Maximum absolute Precomp time Solve time
error (in seconds) (in seconds)

28 1608 2.44 × 10−12 4.61×10−01 2.44×10−02

29 3216 5.85 × 10−12 9.37×10−01 1.03×10−02

210 6433 9.34 × 10−12 1.98×10+00 9.11×10−02

211 12867 1.98 × 10−11 4.20×10+00 2.27×10−01

212 25735 4.80 × 10−11 9.00×10+00 2.64×10−02

213 51471 4.35 × 10−10 1.90×10+01 1.49×10−01

214 102943 1.91 × 10−09 4.09×10+01 1.53×10−01

215 205887 6.93 × 10−09 8.75×10+01 2.34×10−01
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217 823549 1.08 × 10−07 4.17×10+02 1.13×10+00
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q(r) = χ(0,1)(r) + 2χ(2,3)(r), ui (z) = exp
(
ikr cos

(
t − π

4

))
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k m Maximum absolute Time
error (in seconds)
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The general case?

In the two dimensional radially symmetric case, we represented the desired solution u of

∆u(x) + k2(1 + q(x))u(x) = 0

in the form
∞∑

n=−∞

anψ|n|(r) exp(int)

with ψ|n| a solution of a second order differential equation whose logarithm is a
nonoscillatory solution of the one-dimensional Riccati equation.

In fact, the logarithm r of ψ|n|(r) exp(int) is a solution of the two-dimensional Riccati
equation

∆r(x) +∇r(x) · ∇r(x) + k2(1 + q(x)) = 0.



The general case?

In other words, we are representing the solution u of

∆u(x) + k2 (1 + q(x)) u(x) = 0

as a sum of the form
∞∑

n=−∞

an exp(γn(x))

where γn is a nonoscillatory solution of the Riccati equation

∆γ(x) +∇γ(x) · ∇γ(x) + k2(1 + q(x)) = 0

such that exp(γn(x)) is a multiple of exp(inθ) on ∂Ω.


