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Abstract. We describe an approach to the numerical solution of the integral equations of scattering theory
on planar curves with corners. It is rather comprehensive in that it applies to a wide variety of boundary

value problems; here, we treat the Neumann and Dirichlet problems as well as the boundary value problem

arising from acoustic scattering at the interface of two fluids. It achieves high accuracy, is applicable to large-
scale problems and, perhaps most importantly, does not require asymptotic estimates for solutions. Instead,

the singularities of solutions are resolved numerically. The approach is efficient, however, only in the low-
and mid-frequency regimes. Once the scatterer becomes more than several hundred wavelengths in size, the

performance of the algorithm of this paper deteriorates significantly. We illustrate our method with several

numerical experiments, including the solution of a Neumann problem for the Helmholtz equation given on a
domain with nearly 10000 corner points.

This work is founded on two simple observations. The first is that certain classes of integral operators
given on Lipschitz curves are well-conditioned when considered as operators on spaces of square integrable
functions. This is a consequence of the resistance of L2 estimates to pathologies situated on sets of measure
zero. The second observation is that the “scattering matrix” formalism of physics provides a mechanism for
accelerating the numerical calculations necessary to solve non-oscillatory elliptic boundary value problems.
When combined, these ideas yield a comprehensive approach to the solution of the boundary value problems
of scattering theory on singular domains, assuming only that the scatterer is relatively small when measured
in wavelengths.

We concentrate here on a particularly simple class of elliptic boundary value problems: those associated
with the constant coefficient Helmholtz equation given on planar domains with corners points. Problems of
this type can be profitably reformulated as boundary integral equations and our method is based on such an
approach.

The numerical solution of integral equations given on planar domains with corners has been widely studied,
but only a few existing approaches are capable of achieving high accuracy. The article [20] introduced one
of the first such methods. However, because this method makes use of a global quadrature rule it requires
modification in order to apply it to domains with more than one corner point. Moreover, it relies on analytic
estimates applicable only to the Dirichlet problem for Laplace’s equation. The contribution [8] is similar in
spirit to [20]. It introduces a scheme for the numerical solution of Neumann problems for Laplace’s equation
given on planar domains with corners. Unlike the Dirichlet problem for Laplace’s equation, the solutions
of the standard integral equation formulation of the Neumann problem for Laplace’s equation can exhibit
singularities which are unbounded in L∞ norm. This is addressed in [8] through subtraction of singularities
and specialized global quadrature rules. While this approach is able to achieve high-accuracy, it suffers
from the same drawbacks as [20]: limited applicability due to the use of extensive analytic knowledge of
solutions and global quadrature. The article [1] describes a scheme for solving Neumann problems for the
Helmholtz equation given on domains with corners based on a nonstandard integral equation formulation
whose solutions do not exhibit unbounded singularities. This is a promising approach, but it is not yet clear if
it can be extended to the many boundary integral formulations which arise from electromagnetic and acoustic
scattering on surfaces.

The work described in [17, 18, 16, 15], which centers on an approach dubbed “compressed inverse precon-
ditioning,” is quite generally applicable. High-accuracy results for large-scale crack problems are shown in
[17] and [12] and impressive numerical experiments for the well-known problem of determining the electro-
static conductivity of a “random checkerboard” are presented in [15]. The compressed inverse preconditioning
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scheme is a technique for simultaneously accelerating the application of matrices discretizing integral oper-
ators given over domains with singularities and overcoming the negative effects that ill-conditioning has on
iterative methods. The approach of this paper is different in several respects, the most salient being that
we avoid ill-conditioning entirely by forming discretizations of integral operators which capture their action
on spaces of square integrable functions rather than their pointwise behavior and that our approach is direct
rather than iterative.

While neither of the observations underlying this article is new, the fact that the two can be combined
to yield an effective scheme for a large class of elliptic corner problems does not appear to be known (or, at
least, not widely known). Moreover, our scheme deviates from standard methods in numerous respects. In
Section 1, we describe integral equation formulations of the Neumann and Dirichlet problems for the Helmholtz
equation and for the boundary value problem arising from scattering from the interface of two fluids. Our
approach to the Dirichlet problem and to interface boundary conditions is standard; however, we introduce
a new mechanism in order to treat the “spurious resonance” problem associated with Neumann boundary
conditions.

Section 2 is concerned with the discretization of integral operators. The approach described there is a novel
generalization of the modified Nyström scheme introduced in [4]. The standard Nyström approach to the
discretization of integral equations, which calls for representing solutions of the equations by sampling their
values at a collection of points, will obviously lead to conditioning problems when solutions are unbounded with
respect to pointwise norms. Since integral operators given on domains with corner points are often unbounded
in L∞ norm, Galerkin type methods, which are able to capture the L2 action of an integral operator rather
than its pointwise behavior, are generally used for the class of problems considered in this article. The
disadvantage of such an approach is that Galerkin discretization requires the numerical evaluation of many
double integrals. The discretization schemes of [4] and this paper are mathematically equivalent to Galerkin
discretization but avoid this difficulty. They differ in that the scheme of [4] is only able to address integral
operators whose kernels are smooth, while the approach of Section 2 applies to operators with logarithmically
singular kernels.

In Section 3, we describe a mechanism for accelerating the numerical solution of the integral equations
treated in this article. It is based on the “scattering matrix” formulation of physics. Approaches of this type
have been described in [28, 22, 13]. Our scheme differs from previous algorithms in several respects, the most
notable being that our approach explicitly incorporates user-supplied assumptions about boundary data and
the desired outputs.

Finally, Section 4 presents the results of numerical experiments conducted to assess the approach of this
article.

1. Three boundary value problems of scattering theory

In this section, we formulate three of the boundary value problems of scattering theory as integral equations.
With the exception of the formulation used in Section 1.2, these formulations are well known. We include
them for the reader’s convenience and so that we may reference them later in this article.

1.1. Sound-soft scattering. Sound-soft scattering from an obstacle Ω ⊂ R2 can be modeled through the
boundary value problem

∆u+ ω2u = 0 in Ωc

u = g on ∂Ω√
|x|
(

∂

∂|x|
− iω

)
u(x)→ 0 as |x| → ∞.

(1.1)

This problem can be reduced to an integral equation on ∂Ω by representing the solution u of (1.1) as

u(x) =
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

σ(y)ds(y) +
i

4

∫
∂Ω

H0 (ω|x− y|)σ(y)ds(y). (1.2)

Here, H0 and H1 are the Hankel functions of the first kind of order 0 and 1, ds refers to the arclength measure
on the curve ∂Ω, and ηy is the outward-pointing unit normal to ∂Ω at the point y. This representation leads
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to the integral equation

1

2
σ(x)+

i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

σ(y)ds(y)

+
i

4

∫
∂Ω

H0 (ω|x− y|)σ(y)ds(y) = g(x), x ∈ ∂Ω.

(1.3)

That is, the solution σ of the equation (1.3) is the charge distribution which, when inserted into (1.2), yields
the solution u of (1.1).

Equation (1.3), which is often referred to as a combined field integral equation due to the presence of terms
involving both the single and double layer acoustic potentials, is uniquely solvable for appropriately chosen g
(see, for instance, [11]). Indeed, obtaining unique solvability is the motivation for the two-term representation
(1.2) of the solution u. When the solution is represented as

u(x) =
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

σ(y)ds(y)

in analogy with the standard approach for Laplace’s equation, the resulting integral equation

1

2
σ(x) +

i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

σ(y)ds(y) = g(x), x ∈ ∂Ω, (1.4)

is not uniquely solvable in L2(∂Ω) for all wavenumbers ω. It is, however, alway solvable — the issue is that
for certain wavenumbers ω, which depend on the curve ∂Ω, the operator

Tσ(x) =
1

2
σ(x) +

i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

σ(y)ds(y) (1.5)

can have a nontrivial nullspace. The addition of a single-layer term to (1.5) is one way to perturb the spectrum
of the operator T so as to eliminate the nullspace.

1.2. Sound-hard scattering. The Neumann boundary value problem

∆u+ ω2u = 0 in Ωc

∂u

∂η
= g on ∂Ω√

|x|
(

∂

∂|x|
− iω

)
u(x)→ 0 as |x| → ∞.

(1.6)

models sound-hard scattering from the obstacle Ω. Here, η refers to the outward-pointing unit normal of ∂Ω
and the condition on the normal derivative of u is to be understood as a nontangential limit. As in the case
of the Dirichlet problem, the representation of the solution u as

u(x) =
i

4

∫
∂Ω

H0 (ω|x− y|)σ(y)ds(y)

in analogy with the standard approach for Laplace’s equation leads to the integral equation

−1

2
σ(x) +

i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

σ(y)ds(y) = g(x), x ∈ ∂Ω,

which is not necessarily uniquely solvable in L2(∂Ω). Once again, for certain values of ω, the associated
integral operator has a nontrivial nullspace.

A combined layer representation of u of the form (1.2) is unsuitable because it results in an integral equation
one term of which is a multiple of the operator

Hσ(x) =

∫
∂Ω

(
∂

∂ηx

∂

∂ηy
H0 (ω |x− y|)

)
σ(y)ds(y), (1.7)

which is not bounded L2(∂Ω) → L2(∂Ω). It is standard practice to instead use a representation of the
solution u of (1.6) which involves a composition of integral operators. Modifications of this type can be used
to obtain integral equations whose associated operators are well-conditioned on various function spaces. The



4 JAMES BREMER

use of a composition to “regularize” a hypersingular integral operator goes back at least to [24]; a more recent
treatment can be found in [10].

We take a somewhat different tack and represent the solution u of (1.6) as

u(x) =
i

4

∫
∂Ω

H0 (ω|x− y|)σ(y)ds(y) +
i

4

∫
Γ

H0 (ω|x− y|) τ(y)ds(y) (1.8)

where Γ is a simply closed contour contained in the interior of Ω and τ is a newly introduced auxiliary charge
distribution on Γ. This yields the equation

−1

2
σ(x)+

i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

σ(y)ds(y)

+
i

4

∫
Γ

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

τ(y)ds(y) = g(x), x ∈ ∂Ω,

(1.9)

in the unknowns σ and τ , which is not uniquely solvable. However, this problem can be easily overcome by
requiring that

−1

2
τ(x)+

i

4

∫
Γ

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

τ(y)ds(y)

+
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

σ(y)ds(y) = 0, x ∈ Γ.

(1.10)

In the case of a domain with m connected components, we add auxiliary contours Γ1, . . . ,Γm, one in the
interior of each connected component, introduce auxiliary charge distributions τ1, . . . , τm on the Γj , and add
m conditions of the form (1.10), one for each connected component.

The condition numbers of the linear systems which result from the discretization of (1.9) and (1.10) are
typically small at low wavenumbers. For instance, Table 1 shows the condition numbers of certain linear
systems obtained by applying this approach to unit circle U . The chosen wavenumbers ω are high-accuracy
approximations of roots of the Bessel function J1(z) of the first kind of order 1. It is well known that the
integral operator

Tσ(x) =
1

2
σ(x) +

i

4

∫
U

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

σ(y)ds(y)

has a nontrivial nullspace when ω takes on one of these values.

ω κ ω κ

3.831705970207512 9.15×10+00 82.46225991437356 7.07×10+01

10.17346813506272 9.13×10+00 161.0042944053620 5.73×10+02

22.76008438059277 9.25×10+00 201.8454701561909 4.01×10+02

41.61709421281445 1.71×10+01 321.2266814345928 3.61×10+02

Table 1. The condition numbers of the linear systems obtained by applying the approach
of Section 1.2 to the unit circle, as a function of wavenumber.

Remark 1.1. The operator H defined by (1.7) is unbounded L2(∂Ω) → L2(∂Ω), but it is bounded as an
operator W 1,2(∂Ω) → L2(∂Ω), where W 1,2(∂Ω) is the Sobolev space of square integral functions f on ∂Ω
whose first derivatives with respect to arclength measure are also square integrable. Indeed, H can be viewed
as a linear combination of the derivative of the Hilbert transform and an integral operator whose kernel is
smooth (see [19], for instance).

An integral equation method for electromagnetic scattering problems which exploits the boundedness of H on
Sobolev spaces is described in [2]. Moreover, the approach of the next section to discretizing integral operators
defined on spaces of square integrable functions can be modified so as to exploit this observation and produce
discretizations of the operator H which are well-conditioned. A scheme of this type will be reported at a later
date.
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1.3. Fluid interfaces. In order to formulate the boundary value problem

∆u+ ω2
1u = 0 in Ω

∆v + ω2
2v = 0 in Ωc

u− v = g on ∂Ω

∂u

∂η
− ∂v

∂η
=
∂g

∂η
on ∂Ω√

|x|
(

∂

∂|x|
− iω2

)
v(x)→ 0 as |x| → ∞,

(1.11)

which models scattering from an interface between two fluids, as an integral equation we follow the approach
of [25]. That is, we represent u as

u = Dω1σ + Sω1τ

and v as

v = Dω2σ + Sω2τ,

where Sω and Dω are defined by

Sωf(x) =
i

4

∫
∂Ω

H0 (ω |x− y|) f(x)ds(y)

and

Dωf(x) =
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

f(y)ds(y).

This choice of representations leads to the system of integral equations(
Dω1
−Dω2

− I Sω1
− Sω2

D′ω1
−D′ω2

S′ω1
− S′ω2

+ I

)(
σ
τ

)
=

(
g
∂g
∂η

)
. (1.12)

Here, S′ω and D′ω are the operators defined by

S′ωf(x) =
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

f(y)ds(y)

and

D′ωf(x) =
i

4

∫
∂Ω

(
∂

∂νx

∂

∂νy
H0 (ω |x− y|)

)
f(y)ds(y).

Note that due to cancellation of singularities, the operators in each entry of the matrix appearing in (1.12)
are bounded L2(∂Ω)→ L2(∂Ω).

2. Discretization of integral operators

Here we describe a Nyström scheme for the discretization of certain integral operators given over planar
domains with corners. Throughout we view our operators as acting on spaces of square integrable functions
and our aim is to discretize them as such. This is a departure from the standard Nyström approach which
proceeds by approximating the pointwise action of an integral operator. Such an approach is contraindicated
when considering integral operators on Lipschitz domains as they tend to be unbounded with respect to
pointwise (Hölder and L∞) norms but bounded with respect to Lp norms.

Much has been written on the analysis of integral operators on Lipschitz domains; see [9] for a treatise
on the subject written by two of its leading practitioners. The article [4] contains a detailed discussion of
the pitfalls encountered when standard Nyström discretization methods are applied to integral operators on
Lipschitz domains.
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2.1. Decompositions of planar curves. For our purposes, a decomposition of a planar curve Γ is a finite
sequence

{rj : Ij → Γ}nj=1

of smooth unit speed parameterizations each of which is given on a compact interval Ij of R and such that the
sets rj(Ij) form a disjoint union of Γ. By smooth parameterization r : I → Γ, we mean a parameterization
such that r′(t) is defined for each point t in the interior of the compact interval I and that the limit of |r′(t)|
as t goes to the endpoints of I exists and is finite. Unit speed refers to that requirement that |r′(t)| = 1 for
all t in the interior of I. We now associate with each decomposition of Γ a subspace S of the space L2(Γ) of
measurable functions on Γ which are square integrable with respect to arclength measure and an isomorphism
of S with a complex Cartesian space. This construction will be the basis of our approach to discretization.

To that end, we fix a positive integer k and let, for each j = 1, . . . , n,

t1,j , t2,j , . . . , tk,j , w1,j , w2,j , . . . , wk,j

denote the nodes and weights of the k-point Legendre quadrature rule on the interval Ij . We also define, for
each j = 1, . . . , n, Sj to be the span of all functions f : Γ→ C of the form

f(x) =

{
p
(
r−1
j (x)

)
for x ∈ rj(Ij)

0 for x /∈ rj(Ij)

where p is a Legendre polynomial of degree k − 1 on Ij . The mapping

Φj : Sj ⊂ L2(Γ)→ Ck

defined by

Φj(f) =


f (rj (t1,j))

√
w1,j

f (rj (t2,j))
√
w2,j

...
f (rj (tk,j))

√
wk,j


is evidently an isomorphism: if f and g are in the space Sj then we have∫

Γ

fg =

∫
rj(Ij)

fg

=

∫
Ij

f(rj(t))g(rj(t))dt

=

k∑
i=1

f (rj (ti,j)) g (rj (ti,j))
√
wi,j

= Φ(f) · Φ(g).

The third equality follows from the fact that the functions

f ◦ rj and g ◦ rj
are Legendre polynomials of degree k − 1 on Ij and the Legendre quadrature rule of order k on Ij integrates
products of all such functions. The subspace S is now defined as the union of the subspaces Sj and the map

Φ : S →
(
Ck
)n ≡ Ckn

is obtained by setting

Φ(f) =


Φ1(f1)
Φ2(f2)

...
Φn(fn)

 ,

where fj denotes the restriction of f to rj(Ij). Finally, we introduce two pieces of terminology which will be
useful later. We will refer to the points

r1(t1,1), r1(t2,1), . . . , r1(tk,1), . . . , rn(t1,n), rn(t2,n), . . . , rn(tk,n) (2.1)
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as the discretization nodes of the decomposition. And, given a function f on Γ which is defined at these
nodes, we call the unique function g in S such that

f (rj (ti,j)) = g (rj (ti,j)) , i = 1, . . . , k, j = 1, . . . , n,

the interpolant of f in S.

Remark 2.1. The requirement that the parameterizations rj be unit speed can be dropped. In that event, the
definition of Φj should be modified to read

Φj(f) =


f (rj (t1,j))

√
w1,j

∣∣r′j (t1,j)
∣∣

f (rj (t2,j))
√
w2,j

∣∣r′j (t2,j)
∣∣

...

f (rj (tk,j))
√
wk,j

∣∣r′j (tk,j)
∣∣


and the definition of the Sj must be adjusted accordingly.

2.2. Discretization of operators acting on spaces of square integrable functions. A decomposition

D = {rj : Ij → Γ}nj=1

of a planar curve Γ gives rise to a scheme for the discretization of certain operators T : L2(Γ)→ L2(Γ), which
we now describe. We denote by S and by Φ : S → Cnk the subspace of L2(Γ) and the isomorphism associated
with the decomposition D. Moreover, we let P designate the mapping which takes functions f which are
defined at the discretization nodes of the decomposition to their interpolants in S; that is, P (f) is the unique
function g in S which agrees with f at the nodes (2.1). If T : L2(Γ) → L2(Γ) is such that Tf is defined at
each of the discretization nodes of D whenever f is a function in S, then we call the nk × nk matrix A such
that the diagram

S ⊂ L2(Γ)
PT−−−−→ S ⊂ L2(Γ)yΦ

yΦ

Cnk A−−−−→ Cnk

(2.2)

commutes the discretization of the operator T induced by the decomposition D. The salient feature of this
definition is that that the singular values of A are identical to those of the operator PT . It follows that the
l2
(
Cnk

)
→ l2

(
Cnk

)
condition number of the matrix A is equal to the L2(Γ) → L2(Γ) condition number of

the operator PT . Many of the integral operators of mathematical physics are well-conditioned when viewed
as operators on spaces of square integral functions but are not well-behaved with respect to pointwise norms.
This is certainly true of the operators which arise from the formulations of Section 1 when considered on
Lipschitz domains. They are typically unbounded on Hölder spaces but are bounded on spaces of square
integrable functions (see [9], for instance).

In a similar vein, decompositions of two disjoint contours Γ1 and Γ2 give rise to a scheme for discretizing
certain operators T : L2(Γ1)→ L2(Γ2). Denote by

Φ1 : S1 ⊂ L2(Γ1)→ Cnk

the isomorphism associated with the decomposition of Γ1 and by

Φ2 : S2 ⊂ L2(Γ2)→ Cmk

the isomorphism associated with Γ2. Moreover, let P2 be the operator taking functions f defined on Γ2 to their
interpolants in S2. If T : L2(Γ1)→ L2(Γ2) has the property that Tf is pointwise defined at the discretization
nodes of Γ2 whenever f is a function in S1, then we say the mk × nk matrix

Φ2P2TΦ−1
1
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is the discretization of T arising from the given decompositions of Γ1 and Γ2. In other words, the discretization
of T is the matrix B such that

S1 ⊂ L2(Γ1)
P2T−−−−→ S2 ⊂ L2(Γ2)yΦ1

yΦ2

Cnk B−−−−→ Cmk
commutes.

2.3. Numerical approximation of matrices discretizing a class of integral operators. We now de-
scribe a method for the numerical approximation of the entries of the matrix A defined by the diagram (2.2)
in the event that T : L2 (Γ)→ L2 (Γ) is an integral operator

Tf(x) =

∫
Γ

K(x, y)f(y)ds(y)

whose kernel is of the form
K(x, y) = log |x− y| f(x, y) + g(x, y)

with f and g smooth functions Γ× Γ→ C. For j = 1, . . . , n and i = 1, . . . , k set

xi,j = rj (ti,j) ,

where t1,j , . . . , tk,j once again denote the nodes of the k-point Legendre quadrature rule on the interval Ij .
Also, for j = 1, . . . , n, let

w1,j , w2,j , . . . , wk,j

be the weights of the k-point Legendre quadrature formula on the interval Ij . Then the matrix A is obviously
the mapping which takes the scaled values

f (xi,j)
√
wi,j , i = 1, . . . , k, j = 1, . . . , n

of the function f to the scaled values∫
Γ

√
wi,jK(xi,j , y)f(y)ds(y), i = 1, . . . , k, j = 1, . . . , n (2.3)

of the function Tf . Each of the integrals in (2.3) can be decomposed as
n∑
s=1

∫
rs(Is)

√
wi,jK(xi,j , y)f(y)ds(y)

and it is in this form that we will evaluate them. That is, we will show how to evaluate∫
rs(Is)

√
wi,jK(xi,j , y)f(y)ds(y),

where xi,j is a discretization node on one of the contours rj(Ij) and wi,j is the corresponding quadrature
weight, using the scaled values

f (x1,s)
√
w1,s, . . . , f (xk,s)

√
wk,s

of f at the discretization nodes on a “source” contour rs(Is). The discretization matrix A can plainly be
formed using this construction.

In the event that xi,j is distant from the interval rs (Is), the relevant integral can be approximated as∫
rs(Is)

√
wi,jK(xi,j , y)f(y)ds(y) ≈

k∑
l=1

K (xi,j , xl,s)
√
wi,j
√
wl,s

(
f (xl,s)

√
wl,s

)
;

that is, using the Legendre quadrature formula on the interval Is. For the solver of this paper, a bounding
circle Cs is found for each of the contours rs (Is) and a point x is considered sufficiently distant from rs(Is)
if x is in the exterior of the circle 2Cs.

If the node xi,j is within the annulus 2Cs \Cs, then we use a specialized “near” quadrature rule to perform
the necessary evaluation. In particular, we make use of a quadrature formula of the form∫ 1

−1

log |t− y| f(y) + g(y) ds(y) ≈
m∑
l=1

(log |t− zl| f(zl) + g(zl)) vl (2.4)
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which holds when g and f are polynomials of degree 2k and t is either a point in [−2,−1] ∪ [1, 2] or on the
circle of radius 1.1 centered at 0. Quadratures of this type can be constructed using the algorithm of [5]. The
integral ∫

rs(Is)

√
wi,jK(xi,j , y)f(y)ds(y)

is evaluated by first interpolating the function f from its scaled values at the nodes x1,s, . . . , xk,s to its scaled
values at rs(z1), . . . , rs(zm); that is, the quantities

f(x1,s)
√
w1,s, . . . , f(xk,s)

√
wk,s

are used to compute

f(rs(z1))
√
v1, . . . , f(rs(zm))

√
vm. (2.5)

The m× k matrix which performs this mapping can be constructed quite easily. Indeed, if

t1, . . . , tk, w1, . . . , wk

are the nodes and weights of the k-point Legendre quadrature rule on the interval [−1, 1] and p0, . . . , pk−1

denote the normalized Legendre polynomials of degree 0 through k− 1 on [−1, 1], then the relevant matrix is
simply 

p0(z1)
√
v1 · · · pk−1(z1)

√
v1

p0(z2)
√
v2 · · · pk−1(z2)

√
v2

...
. . .

...
p0(zm)

√
vm · · · pk−1(zm)

√
vm




p0(t1)
√
w1 · · · p0(tk)

√
wk

p1(t1)
√
w1 · · · p1(tk)

√
wk

...
. . .

...
pk−1(t1)

√
w1 · · · pk−1(tk)

√
wk

 . (2.6)

The formula (2.4) can be used to approximate the desired integral from the values (2.5). Note that both of
the matrices appearing in (2.6) have orthogonal columns. This follows from the fact that the quadrature rules
t1, . . . , tk, w1, . . . , wk and z1, . . . , zm, v1, . . . , vm integrate products of the Legendre polynomials of degree k−1
on [−1, 1]. As a consequence, the singular values of the interpolation matrix are all either 1 or 0.

When the target xi,j is one of the nodes x1,s, . . . , xk,s on the source contour rs(Is), the procedure used to
evaluate the integral ∫

rs(Is)

√
wi,jK(xi,j , y)f(y)ds(y)

is almost identical to that just described. The only difference is that quadratures for integrals of the form∫ 1

−1

log |ti − y| f(y) + g(y) ds(y),

where f and g are polynomials of degree 2k and ti is one of the nodes of the k-point Legendre quadrature
rule, are used in place of (2.4). The necessary quadrature rules can be constructed using the approach of [5].

Remark 2.2. The algorithm of this section can plainly be used to discretize an operator

T : L2(Γ1)→ L2(Γ2)

which maps square integrable functions on the contour Γ1 to square integral functions on a contour Γ2 which
is disjoint from Γ1 provided that T is of the form

Tf(x) =

∫
Γ1

K(x, y)f(y)ds(y)

with K as in (2.3).

Remark 2.3. It is well known that

H0 (z) =
2i

π
log
(z

2

)
J0 (z) + f(z), (2.7)

where J0(z) is the Bessel function of the first kind of order 0 and f(z) is analytic. This fact can be used to
obtain an alternate approach to evaluating integrals involving the Hankel functions H0 and H1. In particular,
it allows us to write the integrands as

log |x− y| k1(x, y) + k2(x, y)
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with k1 and k2 smooth functions which can be evaluated at arbitrary points. Quadrature rules for smooth
functions and for integrals of the form∫ 1

−1

log |z − x|

 n∑
j=1

αjPj(x)

 dx, (2.8)

where Pj denotes the Legendre polynomial of degree j and z is a fixed point in C /∈ {−1, 1}, can then be used to
evaluate the integrals. A quadrature rule x1, . . . , xn, w1, . . . , wn for functions of the form (2.8) can be formed
by letting x1, . . . , xn be the nodes of the n-point Legendre quadrature and constructing weights with the help of
the formula ∫ 1

−1

log |z − x| Pn(x)dx =
2Qn+1(z)− 2Qn(z)

2n+ 1
. (2.9)

Here, Qn denotes the Legendre function of the second kind of order n. The branch cuts of Qn must be chosen
depending on the location of z in order to make formula (2.9) hold. See Chapter 12 of [21] for a similar
approach.

3. Scattering matrices as a tool for accelerating numerical calculations

The reduction of a boundary value problem to an integral equation does not immediately yield a computa-
tionally feasible scheme for its solution. The discretization of an integral equation typically results in a dense
system of linear equations and in most cases, the direct solution of the system is prohibitively expensive.
Iterative methods can improve the situation considerably, but by themselves they still fall far short of what
is required for large-scale problems.

In the 1980s, a number of fast solvers for integral equations were introduced. These first generation solvers,
the most prominent of which are the various fast multipole methods described in [28, 26, 27], are schemes for
the rapid application of the matrices arising from the discretization of certain classes of integral operators.
When combined with an iterative method for solving linear systems, like the GMRES algorithm, such a
scheme allows for the rapid solution of integral equations. The limitations of first generation solvers are well
known by now: the number of iterations required and the accuracy of the obtained solution are sensitive to
the condition number of the linear system and they are not particularly effective for problems involving many
right-hand sides.

A second generation of fast solvers for integral equations that address many of the shortcomings of iterative
methods emerged in the early part of the last decade. These new solvers, generally referred to as fast direct
solvers, proceed by producing compressed representations of the inverses of matrices discretizing integral
equations. Because the approach is direct rather than iterative, these solvers are much more resistant to
ill-conditioning then earlier solvers. Moreover, once a coefficient matrix has been processed, the linear system
of equations associated with it can be solved efficiently for many right-hands sides. Many variants of this
approach have now been described in the literature; the solver we now describe is similar to those described
in [22] and [13].

In order to simplify this discussion, we will limit ourselves to the exterior Dirichlet problem (1.1). In typical
scattering problems, the boundary data g will be a potential emanating from some collection of sources outside
of the domain Ω. Likewise, we are usually only interested in the values of the solution u at some distance
from the domain Ω. Our solver takes advantage of these facts by requiring that the user make the possible
inputs to the problem and the desired outputs explicit. More specifically, the user must specify a contour Γin

such that the boundary data g in (1.1) is in the image of the operator Tin : L2(Γin)→ L2(∂Ω) defined by

Tinf(x) =
i

4

∫
Γin

H0 (ω |x− y|) f(y)ds(y) (3.1)

and a contour Γout such that the desired output for the problem is the image of the charge distribution σ
which is solution of equation (1.3) under the operator Tout : L2(∂Ω)→ L2(Γout) defined by

Toutf(x) =
i

4

∫
∂Ω

H0 (ω |x− y|) f(y)ds(y) +
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

f(y)ds(y). (3.2)
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Note that if Γout is a simple closed curve enclosing the domain Ω, then the values of u on the exterior of Γout

are determined by its values on the contour Γout. Similarly, if Γin is a simple closed curve, then potentials
generated by sources in the noncompact domain bounded by Γin are in the image of Tin.

We would like to form an operator which takes any g in the image of Tin to a charge distribution σ on ∂Ω
such that Toutσ agrees with the solution u of (1.1) on Γout. There is a unique operator with this property: the
inverse T∂Ω

−1 of the operator T∂Ω : L2(∂Ω)→ L2(∂Ω) defined by

T∂Ωf(x) =
1

2
f(x)+

i

4

∫
∂Ω

H0 (ω |x− y|) f(y)ds(y)

+
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

f(y)ds(y).

(3.3)

However, since the singular values of the operator T∂Ω
−1 are bounded away from zero, there is no finite-

dimensional operator which accurately approximates it. But due to the compactness of Tin and Tout, there
exist many compact operators S : L2(∂Ω)→ L2(∂Ω) such that

‖ToutSTin − ToutT∂Ω
−1Tin‖2 < ε. (3.4)

We call an operator S with this property an ε-scattering matrix. The output of our solver will be a matrix
which represents an operator S with this property. We will make precise the exact nature of the inputs and
outputs of our algorithm in what follows.

Remark 3.1. In many of the numerical experiments of this paper, Γin is taken to be a contour inside of
the domain Ω under consideration rather than a contour enclosing it. This is because it is quite simple to
construct known solutions to the boundary value problems of Section 1 in this fashion. In typical scattering
problems, the incoming potentials are generated by sources outside of the domain.

3.1. Discretization of the problem. We now begin the description of the algorithm proper with a discussion
of the discretization of the operators introduced above. Our algorithm takes as input a precision ε0 >
0, a decomposition for ∂Ω, and decompositions for the two contours Γin and Γout. Let A∂Ω denote the
discretization of the operator T∂Ω induced by the given decomposition of ∂Ω and let Ain and Aout be the
induced discretizations of Tin and Tout, respectively. The output of the algorithm will be a matrix S such that

AoutA∂Ω
−1Ain ≈ AoutSAin. (3.5)

Assuming that the given decompositions are properly chosen, a bound of the form (3.4) follows sinceAoutA∂Ω
−1Ain

will be an approximation of the operator ToutT∂Ω
−1Tin. Note, however, that the error in this approximation

will not necessarily be bounded by ε0. The relationship between the specified precision and the resulting error
bound is quite complicated and an investigation of that relationship is beyond the scope of this paper.

Owing to the procedure used to construct them, each row or column of the matrices Ain, Aout and A∂Ω is
associated with a discretization node on one of the contours Γin, Γout or ∂Ω. For instance, if we denote by
x1, x2, . . . , xnin the discretization nodes on Γin and by w1, w2, . . . , wnin their corresponding weights and if we
let y1, y2, . . . , yn, v1, . . . , vn be the discretization nodes on ∂Ω and their corresponding weights, then Ain is the
n× nnin matrix which maps the scaled values

f(x1)
√
w1

f(x2)
√
w2

...
f(xnin)

√
wnin


of a function f in the discretization subspace associated with the decomposition of Γin to the scaled values

h(y1)
√
v1

h(y2)
√
v2

...
h(yn)

√
vn
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of the interpolant h of Tinf in the discretization subspace associated with the decomposition given on ∂Ω. We
can therefore associate rows of Ain with discretization nodes xj on Γin and columns of Ain with discretization
nodes yj on ∂Ω.

In what follows, we will often subsample the matrices Ain, Aout and A∂Ω by retaining those rows and
columns associated with particular ordered sets of discretization nodes. The construction is used frequently
enough that it warrants the following definition.

Let Yin be an ordered set

y1, y2, . . . , ym

of discretization nodes on ∂Ω and Γin, and let Xout be an ordered set

x1, x2, . . . , xn

of discretization nodes on ∂Ω and Γout. We use the notation A(Xout, Yin) to denote the n×m matrix whose
entries are obtained in the following fashion. If xi and yj are nodes on ∂Ω then we let Aij be the entry of
the matrix A∂Ω in the row corresponding to the node xi and the column corresponding to the node yj . If xi
is a node on Γout and yj is a node on ∂Ω, then the entry Aij is taken to be the entry of Aout in the column
corresponding to yj and the row corresponding to xi. Finally, if xi is a node on ∂Ω and yj is a node on Γin,
then the entry Aij is taken to be the entry of Ain in the row corresponding to xi and the column corresponding
to yj . As we do not allow nodes from Γout to be in the ordered set Yin and nodes from Γin to be in the ordered
set Xout, we have exhausted all possible combinations.

Moreover, we will have occasion to introduce points on artificial “auxiliary” contours into the sets Yin and
Xout. Let Λ denote such a contour and assume a decomposition of Λ is given. Denote by AΛ→∂Ω and by
A∂Ω→Λ the induced decompositions of the operators TΛ→∂Ω : L2(Λ)→ L2(∂Ω) and T∂Ω→Λ : L2(∂Ω)→ L2(Λ)
given by

TΛ→∂Ωf(x) =
i

4

∫
Λ

H0 (ω |x− y|) f(y)ds(y) +
i

4

∫
Λ

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

f(y)ds(y)

and

T∂Ω→Λf(x) =
i

4

∫
∂Ω

H0 (ω |x− y|) f(y)ds(y) +
i

4

∫
∂Ω

ω|x− y|H1 (ω|x− y|) (x− y) · ηy
|x− y|2

f(y)ds(y),

respectively. If yj ∈ Yin is in Λ and xi ∈ Xout is a discretization node on ∂Ω then we take the ij entry of
A(Xout, Yin) to be the entry in the row of AΛ→∂Ω corresponding to xi and the column corresponding to yj .
Similarly, if xi is in Λ and yj is a discretization node on ∂Ω, then we take the ij entry of A(Xout, Yin) to be
the entry in the row of A∂Ω→Λ corresponding to xi and the column corresponding to yj . We could adopt the
obvious extension of these definitions to the case of interactions of points in Γin and Γout with points in an
auxiliary contour Λ, but no such interactions will arise.

3.2. A single-level algorithm. In this section, we describe a one-level scheme for constructing a matrix S
with the property (3.5). The algorithm proceeds by first constructing an approximate factorization

‖Ain −RÃin‖ < ε0 (3.6)

where Ãin is a matrix consisting of kin rows of Ain. A factorization of this type with kin approximately equal
to the numerical rank of the matrix Ain to precision ε0 can be formed in a stable fashion using the algorithm
of [14] (see [23]). Since the factorization (3.6) samples rows of Ain, we can view it as as identifying an ordered
set Zin of discretization nodes on the contour ∂Ω. Denote these nodes by

yj1 , yj2 , . . . , yjkin

and let Y be the n× kin matrix with entries

Yst =

{
1 s = jt

0 otherwise.
(3.7)

Next, we form an approximate factorization

‖Aout − ˜AoutL‖ < ε0 (3.8)
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where ˜Aout consists of kout columns of Aout with kout approximately equal to the numerical rank of the matrix
Aout to precision ε0. Let Zout be the ordered set

xi1 , xi2 , . . . , xikout

of discretization nodes on the contour ∂Ω identified by the factorization (3.8) and denote by X the kout × n
matrix constructed in analogy with the matrix Y defined in (3.7).

- 3 - 2 - 1 1 2 3

- 3

- 2

- 1

1

2

- 3 - 2 - 1 1 2 3

- 3

- 2

- 1

1

2

Figure 1. The nodes of an incoming (left) and outgoing (right) skeleton on the boundary
of a Lipschitz domain.

The n× n matrix
S = Y LA∂Ω

−1RX

is the desired scattering matrix since

AoutSAin = AoutY LA∂Ω
−1RXAin = ˜AoutLA∂Ω

−1RÃin ≈ AoutA∂Ω
−1Ain.

Because the effect of applying X to Aout from the right is simply to subsample and permute the columns
of Aout and the effect of applying Y to Ain from the left is to do likewise to the rows of Ain, computations
involving the matrix S can be carried out using only the kout × kin submatrix

S̃ = LA∂Ω
−1R

of S.
Indeed, the matrix S itself is principally a notational convenience. Whenever computations involving a

scattering matrix S are described, it will be assumed that those computations are performed in an efficient
manner using only the submatrix S̃. For instance, in order to solve the boundary value problem (1.1) using
this matrix, we form the vector v whose entries are the scaled values g(yj1)

√
wj1

...
g(yjkin )

√
wjkin


of the boundary data g at the points in Zin and apply the matrix S̃ to the vector v. This yields the scaled
values  σ(xi1)

√
wi1

...
σ(xikout )√wikout


of a charge distribution σ which is defined at the nodes in Zout. To evaluate the solution u of (1.1) at a point
z we calculate sum

i

4

kout∑
l=1

(
H0 (ω |z − xil |)

√
wil + ω|z − xil |H1 (ω|z − xil |)

(z − xil) · ηxil

|x− xil |
2

√
wil

)
σ(xil)

√
wil . (3.9)
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That is, the inputs need only be evaluated at the nodes in Zin, the outputs only at the nodes in Zout and only
the values of the submatrix S̃ of S are required to perform the computation. By construction, we are assured
that the value of the sum (3.9) will approximate u(z) whenever z is a discretization node on Γout. If Γout is
a simple closed curve enclosing the domain Ω, then this approximation of u will be accurate for points in the
exterior of Γout as well. To indicate the procedure described in this paragraph we will simply say that the
scattering matrix S was applied to the incoming potential g in order to form the outgoing charge distribution
σ and leave the details to the reader.

We call the set Zin an incoming skeleton for the contour ∂Ω and the set Zout an outgoing skeleton for ∂Ω.
We refer to the process by which we constructed the matrix S as the skeletonization of the contour ∂Ω and
we will refer to the matrix S as a scattering matrix for ∂Ω. Note that all of these objects are non-unique.
Figure 1 shows an incoming and an outgoing skeleton on the boundary of a Lipschitz domain which were
constructed in the course of performing the experiments of Section 4.

Remark 3.2. The solver of this paper uses pivoted Gram-Schmidt with reorthogonalization in lieu of the
algorithm of [14]. It is well known that in practice, as long as reorthogonalization is performed, the pivoted
Gram-Schmidt algorithm can be substituted for the more complicated scheme of [14] with little chance of ill
effects. See [3] for a discussion of the issue.

3.3. Scattering matrices for subsets of discretization nodes on ∂Ω. With this section, we begin the
description of a divide and conquer approach to the construction of scattering matrices. It is based on the
observation that we can just as easily compute a scattering matrix for a portion of the curve ∂Ω as for ∂Ω
itself.

Let Z∂Ω denote the set of all discretization nodes on ∂Ω and let Z be an ordered subset of Z∂Ω. We take
Yin to be the union of the discretization nodes on Γin and the set Z∂Ω \Z. Similarly, we let Xout be the union
of the discretization nodes on Γout and the set Z∂Ω \ Z. A scattering matrix for Z is a matrix S such that

A(Xout, Z)A(Z,Z)−1A(Z, Yin) ≈ A(Xout, Z)SA(Z, Yin).

A matrix S with this property can be constructed by applying the procedure of the preceding section with
A(Z,Z) in place of A∂Ω, A(Xout, Z) in place of Aout and A(Z, Yin) in place of Ain. In particular, approximate
factorizations

‖A(Z, Yin)−RÃ(Z, Yin)‖2 < ε0, (3.10)

where Ã(Z, Yin) is a subset of the rows of A(Z, Yin), and

‖A(Xout, Z)− Ã(Xout, Z)L‖2 < ε0, (3.11)

where Ã(Xout, Z) consists of a subset of the columns of A(Xout, Z), are computed and the matrix S is taken
to be

LA(Z,Z)−1R.

In many instances, the necessary factorizations can be constructed rapidly. Typically, there exists a fac-
torization of A(Xout, Z) of the form

A(Xout, Z) = BC (3.12)

where C has significantly fewer rows than A(Xout, Z). If C can then be factored as

C = C̃R,

where C̃ consists of the columns of C with indices i1, i2, . . . , ik, then we have

A(Xout, Z) ≈ Ã(Xout, Z)R,

where Ã(Xout, Z) is the matrix consisting of the columns of A(Xout, Z) with indices i1, i2, . . . , ik. See [29] for
a number of useful error bounds which apply to procedures of this type. Note that the matrix B need never
be computed since the formation of a scattering matrix requires only that we compute the factor R and the
indices i1, i2, . . . , ik. We call a matrix C which is used in this fashion a proxy for the matrix A(Xout, Z).

Our solver constructs a proxy for A(Xout, Z) by first forming a bounding circle Λ enclosing the points in
the set Z and constructing a decomposition for 2Λ. Then, all nodes in Xout which are in the exterior of 4Λ are
removed from Zout to form a set Xout

′. The discretization nodes on 2Λ are introduced in their place to form a
set Xout

′′. The matrix C is then taken to be the matrix A(Xout
′′, Z) as defined at the end of Section 3.1. Less

precisely but more succinctly, target nodes outside of the contour 4Λ are replaced by a collection of target
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nodes on 2Λ. That a factorization of the form (3.12) exists is a consequence of elementary potential theory.
Of course, an analogous procedure is used to efficiently factor the matrix A(Z, Yin).

3.4. The combination of scattering matrices. Suppose that S1 and S2 are scattering matrices for ordered
subsets Z1 and Z2 of the set Z∂Ω of discretization nodes on ∂Ω. Then it can be shown by elementary
manipulation that the matrix(

I −S1A(Z1, Z2)
−S2A(Z2, Z1) I

)−1(
S1 0
0 S2

)
(3.13)

is a scattering matrix for Z1 × Z2, which we can identify with the union Z1 ∪ Z2. Of course, the scattering
matrix formed in this fashion is suboptimal because we have just combined the incoming skeletons on Z1 and
Z2 to form an incoming skeleton Zin for the their union and similarly with the outgoing skeleton Zout.

We can correct this oversight by first letting Xout denote the union of the discretization nodes on the
contour Γout and the nodes in Z \Zout and letting Yin be the union of the discretization nodes on Γin and the
nodes in Z \ Zin. Then, we form approximate factorizations

‖A(Zin, Xin)−RÃ(Zin, Xin)‖ < ε

and

‖A(Xout, Zout)− Ã(Xout, Zout)L, ‖2 < ε,

where Ã(Zin, Xin) is obtained by subsampling the rows of A(Zin, Xin) and Ã(Xout, Zout) is obtained by sub-
sampling the columns of A(Xout, Zout). The final scattering matrix is given by

L

(
I −S1A(Z1, Z2)

−S2A(Z2, Z1) I

)−1(
S1 0
0 S2

)
R. (3.14)

The factorizations performed while combining two scattering matrices can be accelerated through the use of
proxies, just as in the preceding section.

3.5. A fast direct solver. A procedure for rapidly constructing scattering matrices for the boundary value
problem (1.1) is now clear. First, the discretization nodes Z∂Ω on ∂Ω are divided into N sets Z1, . . . , ZN .
Next, a scattering matrix is formed for each of the sets Z1, . . . , ZN . Those scattering matrices are then
recursively combined until a scattering matrix for the entire boundary curve is obtained. In short, a hierarchical
decomposition of the discretization nodes on ∂Ω is the last ingredient needed to build a fast direct solver for
the boundary value problems of Section 1.

Naive approaches to the construction of such decompositions usually result in poor performance. See, for
instance, Section 4.6 of [22] for a discussion of the difficulties which can arise. For the experiments of this
paper, we used a spatial decomposition of the discretization nodes in order to form the necessary hierarchical
decomposition. More specifically, we first apply a random rotation to the discretization nodes on ∂Ω in order
to form a set of points z1, . . . , zn which are identified with the original discretization nodes. A standard
quadtree data structure for the points z1, . . . , zn is now formed. This is accomplished by recursively dividing
a square which bounds the scatterer ∂Ω. In each iteration, a box is divided into 4 equal sized “child” subboxes
if it contains more than a user-specified number of points. The quadtree boxes formed in this fashion are
then processed in a bottom-up fashion; that is, a box is processed only after each of its child boxes have been
processed. Childless boxes are processed by forming a scattering matrix for the discretization nodes associated
with the points contained inside of it. Boxes which have children are processed by combining the scattering
matrices which are associated with its children. The output of this procedure is a scattering matrix for the
boundary value problem.

4. Numerical experiments

This section describes several numerical experiments performed to assess the approach of this paper. They
were carried out on a PC equipped with a 2.67GHz Intel Core i7 processor and 12GB of RAM. Code for the
experiments was written in Fortran 77 and compiled with the Intel Fortran Compiler version 12.0.3 using
the flag “-O3.” No attempt was made to parallelize the code and no optimized linear algebra libraries were
used — that is, the timings given below are those obtained using straightforward Fortran implementations
of basic linear algebraic operations such as matrix inversion and matrix multiplication. One of the principal
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limitations on obtainable accuracy in the experiments that follow is the precision to which Hankel functions
are evaluated. We used subroutines for the evaluation of Hankel functions which achieve roughly 13 digits of
relative precision. This effectively places a bound on the achievable accuracy of the experiments described
here.

In a number of instances in what follows, we refer to bounding circles for planar regions and bounding
annuli for planar curves. In our experiments, bounding circles were constructed by sampling a large number
of points (x1, y1), (x2, y2) . . . , (xN , yN ) on the boundary of the region, taking the center of the circle to be the
point (x0, y0) defined by

x0 =
1

N

N∑
j=1

xj and y0 =
1

N

N∑
j=1

yj ,

and letting the radius be the maximum of the set{√
(xj − x0)

2
+ (yj − y0)

2
: j = 1, . . . , N

}
.

This is a somewhat crude mechanism which can fail in certain cases (for instance, the center of the bounding
circle need not fall inside of the domain under consideration), but it was sufficient for our purposes. Bounding
annuli were formed in an analogous fashion.

4.1. Conditioning. In this first collection of experiments, we estimated the condition numbers of several
scattering theoretic integral operators given on domains with a small number of corner points. It would be
desirable to conduct experiments involving larger-scale domains, but the computation of the singular values
of integral operators given on such domains is not computationally feasible using standard algorithms.
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Figure 2. The domains Ωclover (left) and Ωtriangle (right).

We considered the compact domain Ωclover whose boundary is given by the polar equation

r(θ) =
1

2
+ |cos(2θ)| , −π < θ < π,

and the polygonal domain Ωtriangle with vertices (−5/4,−3/4), (3/4,−3/4) and (3/4, 5/4). Figure 2 depicts
the domains Ωclover and Ωtriangle. Each experiment consisted of forming a discretization of the integral operator
associated with an exterior Neumann or exterior Dirichlet problem given on one of the these domains using
the algorithm of Section 2, computing the condition number of that discretization and solving an instance of
the boundary value problem. Note that standard Nyström techniques, when applied to integral operators of
this type, generally result in highly ill-conditioned matrices; see, for instance, [6].

In each experiment, the boundary data was taken to be a potential generated by a unit charge distribution
on a circle of radius 0.1 centered at the origin; that is,

g(x) =

∫
|y|=0.1

H0 (ω |x− y|) ds(y).

The accuracy of the obtained solution was measured by computing the relative L2(Γ) error, where Γ is the
circle of radius 5 centered at the origin. Table 2 reports the results of these experiments. There, ω refers to
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Dirichlet Neumann
Domain ω N κ E N κ E

Ωclover 2π 1760 5.01 × 10+1 1.10 × 10−13 5520 7.22 × 10+1 1.33 × 10−13

5π 1760 5.29 × 10+1 2.48 × 10−13 5730 4.22 × 10+2 7.33 × 10−13

10π 2240 6.99 × 10+1 8.16 × 10−13 6330 5.72 × 10+2 2.77 × 10−13

Ωtriangle 2π 2970 2.75 × 10+1 3.15 × 10−13 1120 7.56 × 10+1 2.99 × 10−14

5π 3040 2.51 × 10+1 8.01 × 10−14 1240 3.73 × 10+1 8.92 × 10−15

10π 3320 2.63 × 10+1 2.40 × 10−13 1520 3.01 × 10+2 7.70 × 10−14

Table 2. The L2 condition numbers of the operators associated with the Neumann and
Dirichlet problems on certain Lipschitz domains.
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Figure 3. The domain Ωtank.

the wavenumber for the problem, κ is the L2 condition number of the integral operator, and E is the error
estimate for the solution. Note that the operator

T : L2(∂Ωtriangle)→ L2(∂Ωtriangle)

defined by

Tσ(x) = −1

2
σ(x) +

i

4

∫
Ωtriangle

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

σ(y)ds(y)

has a dimension one nullspace when ω is 5π and when ω is 10π . Nonetheless, as Table 2 shows, the condition
numbers of the integral operators arising from the modified formulation of Section 1.2 are quite small.

4.2. Scattering matrices for Neumann and Dirichlet problems. In this next set of experiments, we
constructed scattering matrices for exterior Dirichlet and exterior Neumann problems given on the 12 corner
“tank” domain Ωtank shown in Figure 3 as well as the 16 corner “field of clovers” domain Ωclovers and the 38
corner “starburst” domain Ωstar, both of which are shown in Figure 4.

In each experiment, a scattering matrix for either an exterior Neumann or exterior Dirichlet problem given
on one of these domains was formed. The contour Γin was taken to be a union of circles

C1 ∪ C2 ∪ . . . CN ,

one for each connected component of the domain. In order to construct the contour Cj , first a bounding
annuli Aj for the jth connected component of the domain was formed. Let rj be the inner radius of Aj and
denote by pj the center point of the annulus Aj . The contour Cj was taken to be the circle of radius rj/2
centered at pj . The contour Γout was formed by finding a bounding circle for the entire domain and doubling
its radius.

After each scattering matrix was constructed, it was used to solve an instance of the associated boundary
value problem and the error in the resulting solution was measured. For Dirichlet problems, the boundary
data was taken to be of the form

g(x) =

∫
Cin

H0 (ω|x− y|) ds(y),
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Dirichlet Neumann
Domain ω N Nout ×Nin T E N Nout ×Nin T E

Ωtank 2π 18750 0114 × 0174 2.79 × 10+1 1.56 × 10−13 21600 0114 × 0178 2.65 × 10+1 8.72 × 10−12

5π 18750 0250 × 0307 3.22 × 10+1 2.33 × 10−13 24420 0288 × 0312 3.88 × 10+1 1.80 × 10−12

10π 20580 0772 × 0847 1.16 × 10+2 5.12 × 10−13 24420 0759 × 0748 1.43 × 10+2 8.53 × 10−12

20π 23460 2015 × 2186 1.24 × 10+3 1.05 × 10−12 26220 1949 × 2317 1.31 × 10+4 2.58 × 10−12

Ωclovers 2π 08640 0106 × 0304 7.64 × 10+1 4.01 × 10−13 23040 0106 × 0356 1.19 × 10+2 8.67 × 10−12

5π 09600 0258 × 0477 9.24 × 10+1 2.66 × 10−13 24000 0238 × 0474 7.03 × 10+2 3.96 × 10−12

10π 10560 0784 × 0757 4.73 × 10+2 5.46 × 10−13 24960 0772 × 0921 3.27 × 10+2 3.19 × 10−12

20π 21120 3237 × 3674 5.46 × 10+3 8.41 × 10−12 29760 3420 × 3989 6.61 × 10+3 4.84 × 10−12

Ωstar 2π 57600 0089 × 0144 1.51 × 10+2 1.61 × 10−13 57600 0085 × 0153 1.15 × 10+2 6.35 × 10−13

5π 57600 0167 × 0232 1.54 × 10+2 1.52 × 10−12 61440 0182 × 0249 1.22 × 10+2 1.61 × 10−12

10π 57600 0347 × 0422 1.73 × 10+2 1.52 × 10−12 61440 0469 × 0519 2.04 × 10+2 4.48 × 10−12

20π 57600 1547 × 1538 6.96 × 10+2 7.51 × 10−12 73320 1505 × 1506 6.58 × 10+2 5.72 × 10−12

Table 3. Results for the numerical experiments of Section 4.2.
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Figure 4. The domains Ωclovers (left) and Ωstar (left).

while for Neumann problems it was of the form

g(x) =

∫
Cin

ω|x− y|H1 (ω|x− y|) (y − x) · ηx
|x− y|2

ds(y).

In each case, the contour Cin consisted of a union of circles

D1 ∪D2 ∪ . . . DN

with Dj a circle of radius rj/5 centered at the point pj + qj , where qj was a random point drawn from the
uniform probability distribution on the square [0, rj/5]× [0, rj/5]. Finally, the L2(Γout) error in the obtained
solution was computed. Table 3 presents the results of these experiments. The notation used there is as
follows:

· ω is the wavenumber for the problem;
· N is the number of discretization nodes on the boundary curve;
· Nout ×Nin gives the dimensions of the scattering matrix;
· T is the time, in seconds, required to compute the scattering matrix;
· E is the relative L2(Γout) error in the obtained solution.
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4.3. Scattering matrices for interface problems. We now describe experiments in which scattering ma-
trices for the boundary value problem (1.11) given on the domains Ωtriangle and Ωtank were constructed. Recall
that Ωtriangle appears in Figure 2 and Ωtank is shown in Figure 3.

Interface
Domain ω1 ω2 N Nout ×Nin T Einner Eouter

Ωtriangle 2π 5π 4560 124 × 095 1.41 × 10+2 6.90 × 10−13 2.67 × 10−13

2π 10π 4980 098 × 166 2.07 × 10+2 2.75 × 10−12 4.19 × 10−13

5π 2π 4560 095 × 124 1.39 × 10+2 2.40 × 10−13 5.75 × 10−13

10π 2π 4980 168 × 098 2.00 × 10+2 5.87 × 10−13 1.39 × 10−12

Ωtank 2π 5π 18750 231 × 159 5.73 × 10+2 1.98 × 10−13 5.27 × 10−12

2π 10π 22500 317 × 199 7.33 × 10+2 1.33 × 10−13 4.33 × 10−13

5π 2π 18750 159 × 231 5.65 × 10+2 2.17 × 10−12 5.61 × 10−13

10π 2π 22500 200 × 317 7.12 × 10+2 4.59 × 10−13 6.23 × 10−13

Table 4. Results for the experiments of Section 4.3.

In each experiment, a scattering matrix for the boundary value problem (1.11) was constructed. For
interface problems, the spaces of incoming and outgoing potentials are slightly more complicated than for
boundary value problems with Neumann and Dirichlet conditions. In order to describe them to the solver,
a bounding annulus A was first formed for the domain under consideration. Denote the inner radius of the
annulus by r and the outer radius by R. Let C1 be a circle of radius 4R centered at the same point as the
annulus A and let C2 be a circle of radius r/4 centered at the same point as the annulus A. The space of
incoming potentials consisted of functions of the form∫

C1

H0 (ω1 |x− y|) f1(y)ds(y) +

∫
C2

H0 (ω2 |x− y|) f2(y)ds(y),

where f1 and f2 are sufficiently smooth functions. As for outgoing potentials, the solver was instructed to
ensure that if σ and τ are charge distributions satisfying (1.12) and the operators Dω and Sω are defined as
in Section 1.3, then

Dω1σ(x) + Sω1τ(x) (4.1)

is accurately evaluated for x on C2 and

Dω2
σ(x) + Sω2

τ(x) (4.2)

is accurately evaluated for x on C1. Once the scattering matrix was constructed, it was used to solve an
instance of the problem. In each case, the function g was taken to be

g(x) =

∫
C1

H0(ω1|x− y|)ds(y) +

∫
C2

H0(ω2|x− y|)ds(y).

The error in the obtained solutions was measured by comparing the computed values of (4.1) with the potential∫
C2

H0(ω1|x− y|)ds(y)

on the circle C1 and the computed values of (4.2) were compared with∫
C1

H0(ω2|x− y|)ds(y)

on the contour C2. Table 4 shows the results for these experiments. There, N once again refers to the number
of discretization nodes on the boundary of the domain; T is the time in seconds required to compute the
scattering matrix; Einner is the relative L2(C2) error in the solution; and Eouter is the relative L2(C1) error in
the solution.
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Figure 5. One of the domains of Section 4.4.

4.4. Large-scale experiments. In these experiments, we constructed scattering matrices for the Neumann
problem (1.6) on domains of the type show in Figure 5. Each of the domains consisted of a square grid of
replicas of the 38 corner point domain Ωstar.

A scattering matrix for each grid was constructed and an instance of the boundary value problem (1.6)
was solved using the scattering matrix. The wavenumber was taken to be ω = 1. For these experiments we
choose to prioritize speed over accuracy and parameters were set so as to obtain approximately 9 digits of
relative accuracy. The contour Γin was taken to be collection of 5 circles of radius 0.1 place randomly in the
interior of the domain. More specifically, five points were chosen by uniformly sampling points in a bounding
box containing the boundary curve and discarding any points p which were not inside the domain or such
that the circle of radius 0.2 centered at p intersected the boundary of the domain. Those five points served
as the centers of the circles comprising Γin. The contour Γout for outgoing potentials was constructed by
finding a bounding circle for the domain and doubling its radius. The incoming potential for each problem
was generated by placing a unit charge distribution on each of the circles comprising Γin. The error in the
obtained solution was measured on the circle Γout.

Note that neither the symmetry of these domains nor their self-similarity was exploited in these experiments.
Table 5 shows the results of these experiments; the notation is as follows:

· Nstars ×Nstars gives the dimensions of the grid;
· Ncorners is the number of corner points on the boundary curve;
· N is the number of discretization nodes on the boundary curve;
· Nout ×Nin gives the dimensions of the scattering matrix;
· T is the time, in seconds, required to compute the scattering matrix;
· E is the relative L2(Γout) error in the obtained solution.
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Nstars ×Nstars Ncorners N Nout ×Nin T E

1 × 1 38 21888 59 × 79 1.43 × 10+1 4.83 × 10−10

2 × 2 152 87552 73 × 94 6.40 × 10+1 3.59 × 10−10

4 × 4 608 350208 88 × 109 2.59 × 10+2 3.28 × 10−10

8 × 8 2432 1400832 118 × 141 1.06 × 10+3 3.67 × 10−10

10 × 10 3800 2188800 140 × 161 1.63 × 10+3 3.38 × 10−10

16 × 16 9728 5603328 201 × 221 4.40 × 10+3 3.46 × 10−10

Table 5. Results for the large-scale numerical experiments of Section 4.4.

4.5. Dependence on Γin and Γout. In a final set of experiments, we examined the influence of Γin and Γout

on the size of scattering matrices and the time required to construct them. A collection of scattering matrices
for the exterior Dirichlet problem (1.1) given on the domain Ωclover shown in Figure 2 were formed. In each
experiment, the wavenumber was taken to be ω = 2π and the contours Γin and Γout were circles centered on
the origin. The radii of these contours was allowed to vary. All other parameters were fixed. The boundary
curve was discretized with 11280 points in all the experiments.

Each scattering matrix was also used to solve instance of the associated boundary value problem. Boundary
data was taken to be

g(x) =

∫
Γin

H0 (ω |x− y|) exp(2iy)ds(y).

Here, when we write exp(2iy), the integration variable y is being treated as a point in the complex plane. The
L2(Γout) error in the obtained solution was measured. Table 4.5 gives the results of these experiments. The
notation there is as follows:

· Rin gives the radius of the circle Γin as a multiple of 0.5, which is the distance from the boundary curve
∂Ωclover to the origin;
· Rout is the radius of the circle Γout as a multiple of 1.5, which is the radius of the smallest circle centered at

the origin which encloses the domain Ωclover;
· N is the number of discretization nodes on the boundary curve;
· T is the time, in seconds, required to compute the scattering matrix;
· E is the relative L2(Γout) error in the obtained solution.

Rin Rout Nout ×Nin T E Rin Rout Nout ×Nin T E

0.50 2.00 087 × 069 6.24 × 10+1 6.57 × 10−13 0.50 1.50 125 × 069 6.18 × 10+1 6.78 × 10−13

0.75 2.00 086 × 115 6.88 × 10+1 6.56 × 10−13 0.75 1.50 125 × 115 6.83 × 10+1 6.78 × 10−13

0.90 2.00 084 × 177 6.55 × 10+1 6.57 × 10−13 0.90 1.50 125 × 177 6.15 × 10+1 6.78 × 10−13

0.99 2.00 087 × 287 6.79 × 10+1 5.69 × 10−12 0.99 1.50 125 × 289 6.58 × 10+1 4.41 × 10−12

0.50 1.10 323 × 069 7.66 × 10+1 7.64 × 10−13 0.50 1.01 636 × 069 1.25 × 10+2 1.00 × 10−12

0.75 1.10 323 × 115 7.14 × 10+1 7.63 × 10−13 0.75 1.01 638 × 116 1.35 × 10+2 1.00 × 10−12

0.90 1.10 323 × 175 7.43 × 10+1 7.64 × 10−13 0.90 1.01 638 × 177 1.25 × 10+2 1.00 × 10−12

0.99 1.10 323 × 289 7.94 × 10+1 6.95 × 10−12 0.99 1.01 636 × 288 1.38 × 10+2 3.22 × 10−12

5. Conclusions

The numerical solution of elliptic boundary value problems on Lipschitz domains has a reputation for
difficulty largely because of the delicate constructs which are often used by numerical analysts to address
them. The representation of unbounded functions by sampling their values is the principal example. By
modifying one of the the standard approaches slightly — we merely replaced sampling of values by sampling
of weighted values — robust and analytically sound representations were obtained. This opened the way to
applying a simple-minded approach, scattering matrices, and allowed us to solve a class of problems regarded
by many as being quite difficult. There is, however, one obvious inefficiency remaining in the approach of
this paper. The quadratures being used to discretize corner regions are inefficient. In typical cases, our
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discretizations require several hundred points per corner. Future work will eliminate this inefficiency by
combining variants of the algorithm of [7] for the numerical construction of efficient quadrature formulae for
corner regions with the fast solver described in this article. This is expected to yield a truly decisive approach
to the numerical solution of the integral equations of scattering theory on planar domains with corners.
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