
ON THE NUMERICAL EVALUATION OF THE SINGULAR INTEGRALS OF

SCATTERING THEORY

JAMES BREMER∗,‡ AND ZYDRUNAS GIMBUTAS†

Abstract. In a previous work, the authors introduced a scheme for the numerical evaluation of the singular
integrals which arise in the discretization of certain weakly singular integral operators of acoustic and electro-

magnetic scattering. That scheme is designed to achieve high-order algebraic convergence and high-accuracy

when applied to operators given on smoothly parameterized surfaces. This paper generalizes the approach to
a wider class of integral operators including many defined via the Cauchy principal value. Operators of this

type frequently occur in the course of solving scattering problems involving boundary conditions on tangential
derivatives. The resulting scheme achieves high-order algebraic convergence and approximately 12 digits of

accuracy.

One of the principal observations of integral operator theory is that certain linear elliptic boundary value
problems can be reformulated as systems of integral equations whose constituent operators act on spaces of
square integrable functions [7, 20]. This observation plays a particularly important role in scattering theory,
where such reformulations are standard [14, 11, 15, 13, 12, 7, 8]. Not surprisingly, it also figures prominently
in the numerical treatment of scattering problems [16, 17, 1, 10]. But while the integral equation approach to
scattering theory is a venerable and well-developed subject, the corresponding numerical analysis — that is,
the study of the integral equations of scattering theory using computers and finite precision arithmetic — is
rather newer and considerably less developed. As a result, many fundamental problems in numerical scattering
theory are as yet unresolved. Examples of this phenomenon can be found in recent contributions like [9] and
[2], which offer new integral formulations of certain boundary value problems for Maxwell’s equations that,
unlike classical formulations, are amenable to numerical treatment.

This article concerns another unresolved problem: the evaluation of the singular integrals of scattering
theory. A key difficulty in the discretization of those integral operators which arise from the reformulation of
linear elliptic boundary value problems is the efficient and accurate evaluation of integrals of the form

lim
ε→0

∫∫
Σ\Bε(x)

K(q, p)f(p)ds(p), (1)

where Σ is a surface, q is a point in Σ, Bε(q) denotes the ball of radius ε centered at the point q, K is singular
kernel and f a smooth function. The technique used to evaluate such integrals depends on the representation
of the surface Σ which is employed. Certain schemes are designed for triangulated surfaces [6], while others
operate on the assumption that a smooth partition of unity given on Σ is available [22]. The setting for this
article is a parameterized piecewise smooth surface whose parameterization domain has been triangulated.
More specifically, it is assumed that the surface Σ is specified via a finite collection of smooth mappings{

ρj : ∆1 → R3
}N
j=1

given on the standard simplex

∆1 =
{

(s, t) ∈ R2 : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1− s
}

such that the sets

ρ1(∆1), ρ2(∆1), ρ3(∆1), . . . , ρN (∆1)
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2 SINGULAR INTEGRALS OF SCATTERING THEORY

form a disjoint union of Σ. The quantities which must be evaluated in this case are of the form

lim
ε→0

∫∫
∆1\Bε(x)

K(ρ(x), ρ(y))f(ρ(y)) |dρ(y)| dy, (2)

where ρ : ∆1 → R3 is a smooth mapping and |dρ(y)| denotes the determinant of the Jacobian of the mapping
ρ at the point y. Here, x and y refer to points in R2. It is our convention to use the symbols p and q to
refer to points in R3 and x and y for points in R2. High accuracy, high-order techniques for the numerical
evaluation of integrals of the form (2) are essentially nonexistent.

Indeed, standard techniques often perform poorly in the setting of parameterized surfaces even under the
simplifying assumption that the kernel K is integrable. Most existing methods proceed by applying a change
of variables to the integral (2) in order to eliminate the singularity and then applying quadratures designed
for smooth integrands. In the weakly singular case introducing polar coordinates centered at the target node
x results in an integral of the form∫ 2π

0

∫ R(θ)

0

q−1(θ) + q0(θ)r + q1(θ)r2 + q2(θ)r3 + · · · drdθ. (3)

Here, the coefficients qj(θ) are periodic and analytic and the function R(θ) is periodic and piecewise analytic
[18]. Applying tensor products of piecewise Gaussian quadratures in the variables r and θ results in a sequence
of approximations of (3) which converge exponentially — that is, with an error which behaves as

O
(

exp
(
−λN1/2

))
(4)

in the number of quadrature nodes N . Unfortunately, while the functions R(θ) and pj(θ) are analytic on
the real line, they can have poles close to the real line. The poles of R(θ) depend on the location of the
point x vis-à-vis the boundary of the triangle ∆1 while those of the coefficients qj(θ) are determined by the
components of the metric tensor of the surface Σ at the point x in the basis of the tangent space induced by
the parameterization ρ. Of course, when the poles of the qj(θ) or of R(θ) are close to the real axis, which is
the typical case in nontrivial scattering simulations, the constant λ in (4) is small and convergence is retarded.

These difficulties with standard methods were the motivation for the article [4]. That work introduced a
scheme for the high accuracy evaluation of the singular integrals arising from the discretization of integral
operators which are linear combinations of the classical layer potential operators

Skf(q) =

∫∫
Σ

Gk(q, p)f(p)ds(p),

Dkf(q) =

∫∫
Σ

ηp · ∇pGk(q, p)f(p)ds(p) and

D∗kf(q) =

∫∫
Σ

ηq · ∇qGk(q, p)f(p)ds(p).

(5)

Here, ηp denotes the outward-pointing unit normal vector to the surface Σ at the point p ∈ Σ, Gk(q, p) denotes
the free space Green’s function for the Helmholtz equation at wavenumber k

Gk(q, p) = − 1

4π

exp (ik |q − p|)
|q − p|

.

That scheme obtains around 12 digits of precision, high-order algebraic convergence and, unlike standard
mechanisms, its performance is largely insensitive to the behavior of the parameterization of the surface Σ.
Indeed, the paper [4] describes several experiments in which the standard technique of applying tensor product
Gaussian rules following a change of variables performed absurdly poorly due to small values of the constant
λ in (4). In one such experiment, Gaussian product rules with more than 100, 000 nodes were required in
order to match the accuracy of the quadrature rules of [4], which were of length less than 700.

This article extends the approach of [4] to operators which include terms of the form

Rkf(q) = lim
ε→0

∫∫
Σ\Bε(x)

∇qGk(q, p)f(p)ds(p) and

R∗kf(q) = lim
ε→0

∫∫
Σ\Bε(x)

∇qGk(q, p)f(p)ds(p).

(6)
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Operators of this type appear frequently in electromagnetic scattering computations, where they arise from
problems involving boundary conditions on tangential derivatives. There are additional difficulties with such
operators. After a change to polar coordinates, they lead to integrals of the form

lim
ε→0

∫ 2π

0

∫ R(θ)

ε

q−2(θ)

r
+ q−1(θ) + q0(θ)r + q1(θ)r2 + q2(θ)r3 + · · · drdθ. (7)

The nonintegrable term makes the evaluation of (7) considerably more difficult that the evaluation of (3). A
simple change of variable no longer suffices and standard techniques like those typically applied to weakly
singular operators are no longer adequate.

Like the scheme of [4], the approach of this paper is limited to approximately 12 digits of precision. The
loss of precision is due to round-off errors which occur in evaluating singular kernels such as the double layer
potential

ηp · ∇G0(p, q) =
(q − p) · ηp
|q − p|3

naively. When p ≈ q, cancellation errors in the numerator are magnified by division by a small quantity in the
denominator. Higher accuracy can be obtained by expanding singular kernels in a Taylor series, but in order
to obtain sufficient accuracy to make such an approach worthwhile, higher order derivatives of the surface
parameterization must be available. We have chosen to evaluate kernels naively in the scheme of this paper
because most integral equation solvers are expected to operate with only first order derivatives as inputs.

This article is structured as follows. In Section 1, we review a key tool of this article, generalized Gaussian
quadrature. Section 2 gives a brief account of a Nyström method which captures the L2 action of integral
operators on surfaces. Section 3 concerns the construction of a set of precomputed quadrature formulae which
enable the rapid evaluation of integrals of the form (2). Section 4 recounts numerical experiments which were
conducted to test the efficacy of the scheme. We close with a few concluding remarks in Section 5.

1. Generalized Gaussian quadrature

This section concerns the numerical construction of quadrature rules of the form∫ 1

0

f(x)dx ≈
M∑
j=1

f(xj)wj (8)

which integrate a specified subspace S of functions in L2 ([0, 1]). The subspace S will be described by a
spanning set f1, . . . , fn of functions which we will assume are pointwise defined in (0, 1). The condition that
the quadrature rule (8) integrates functions in S is equivalent to requiring that the system of equations

N∑
j=1

fi(xj)wj =

∫ 1

0

fi(x)dx, i = 1, . . . , n, (9)

be satisfied. Of course, since we concerned with a numerical procedure, we will have to content ourselves with
quadrature rules for which (9) holds to a high degree of accuracy. We are interested in constructing quadrature
rules of minimum possible length and we now describe a technique for obtaining quadrature formulae with
approximately 1

2 dimS nodes. The discussion here is cursory; the article [5], which introduces the method,
describes it in considerably more detail.

First suppose that {f1, . . . , fn} is an orthonormal set of functions in L2 ([−1, 1]) spanning the subspace S
and

x1, . . . , xm, w1, . . . , wm

are the nodes and weights of a quadrature which integrates products of the fj , but with m >> n. Then
a quadrature rule of length n can be constructed by viewing (9) as a linear system with the weights wj as
unknowns. More specifically, one forms the linear system of equations

f1(x1)
√
w1 f1(x2)

√
w2 · · · f1(xm)

√
wm

f2(x1)
√
w1 f2(x2)

√
w2 · · · f2(xm)

√
wm

...
. . .

...
fn(x1)

√
w1 fn(x2)

√
w2 · · · fn(xm)

√
wm




v1

v2

...
vm

 =


b1
b2
...
bn

 , (10)
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where

bi =

∫ 1

0

fi(x)dx, i = 1, . . . , n. (11)

Because the rank of the matrix given the coefficients of this linear system is n, a rank-revealing QR factorization
can be used to construct a solution 

z1

z2

...
zm


of (10) with no more than n nonzero entries. If we label those entries

zi1 , zi2 , . . . , zin

then ∫ 1

0

f(x)dx ≈
n∑
l=1

f(xil)zil
√
wil

is a quadrature rule of length n which integrates the fj . Note that the matrix appearing in (10) has singular
values which are either 1 or 0 owing to the assumption that the initial quadrature rule integrates products of
the functions in the orthonormal set {f1, . . . , fn}. The stability of this approach is discussed in more detail
in [5].

By viewing (9) as a nonlinear system of equations in the nodes xj and in the weights wj , we can further
reduce the length of the quadrature rule obtained by solving the linear system (10). Let

y1, . . . , yl, v1, . . . , vl

denote a quadrature formula which integrates the fj . In order to reduce the length of the formula by 1, we
first delete one of the points in the quadrature rule and then use the remaining nodes and weights as an initial
guess for the Gauss-Newton method, which is applied to the nonlinear system

Fi(x1, . . . , xl−1, w1, . . . , wl−1) = bi, i = 1, . . . , n,

where F1, . . . , Fn are defined by

Fi(x1, . . . , xl−1, w1, . . . , wl−1) =

l−1∑
r=1

fi(xr)wr

and the bi are as in (11). If suitable accuracy is obtained, then the reduced quadrature rule is accepted. If
not, then another point is chosen and the quadrature rule obtained by deleting it is used as an initial guess
for the Gauss-Newton method. This procedure is repeated until either a point is successfully eliminated or
no point can be eliminated without reducing accuracy.

By repeatedly applying this algorithm for eliminating one quadrature node, a rule with approximately
1
2 dimS nodes can generally be formed.

Now suppose that the f1, . . . , fn specified by the user do not form an orthonormal basis for S, but are instead
a spanning set with n > dimS. First, an oversampled quadrature x1, . . . , xm, w1, . . . , wm which integrates
products of the given functions f1, . . . , fn is constructed via adaptive integration. Then an orthonormal basis
for the span of S is obtained by applying the pivoted Gram-Schmidt procedure to the columns of the matrix

f1(x1)
√
w1 f2(x1)

√
w1 · · · fn(x1)

√
w1

f1(x2)
√
w2 f2(x2)

√
w2 · · · fn(x2)

√
w2

...
. . .

...
f1(xm)

√
wm f2(xm)

√
wm · · · fn(xm)

√
wm

 .

The resulting vectors give the scaled values of an orthonormal basis for the subspace S at the nodes xj .
Note that the values of the orthonormal basis functions at any point in the interval [0, 1] can be computed
via interpolation given their values at the nodes xj . This basis is then used as an input to the procedure
described above for computing a quadrature formula for functions in the subspace S.
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2. An L2 Nyström method

We now give a brief account of a Nyström method for the discretization of integral operators of scattering
theory on smooth surfaces. This approach differs from standard Nyström methods in that it captures the L2

action of an operator rather than its pointwise behavior. A more detailed account of the approach described
here can be found in [4] and a discussion of the advantages of L2 discretization over standard Nyström and
collocation methods can be found in [3].

2.1. Decompositions and discretization quadratures. By a decomposition of a surface Σ ⊂ R3 we mean
a finite sequence

{ρj : ∆1 → Σ}mj=1

of smooth mappings given on the simplex ∆1 with non-vanishing Jacobian determinants such that the sets

ρ1(∆1), ρ2(∆1), . . . , ρm(∆1)

form a disjoint union of Σ.
We call a quadrature rule {x1, . . . , xl, w1, . . . , wl} on ∆1 with positive weights which integrates all elements

of the space P2N of polynomials of degree at most 2N on the simplex ∆1 a discretization quadrature of order
N . Associated with a discretization quadrature is the mapping Λ : PN → Cl given by

Λ(p) =


p(x1)

√
w1

p(x2)
√
w2

...
p(xl)

√
wl

 ,

which embeds PN isomorphically into Cl. In the event that the rule x1, . . . , xl, w1, . . . , wl is Gaussian — that
is, its length l is equal to the dimension (N + 1)(N + 2)/2 of the space PN — the mapping Λ is invertible.
For the most part, Gaussian quadratures on triangles are not available. In the experiments of this paper, we
use generalized Gaussian quadrature rules which integrate polynomials of degree less than or equal to 2N but
which had more than (N + 1)(N + 2)/2 nodes. Table 1 lists the properties of the discretization quadrature
rules used in this paper.

Discretization order (N) Integration order Length Dimension of PN

4 8 17 15
8 16 52 45
12 24 112 91
16 32 192 153

Table 1. The properties of the discretization quadrature rules used in this paper.

2.2. Discretizations of the integral operators. We now associate with a decomposition

D = {ρj : ∆1 → Σ}mj=1

and discretization quadrature {x1, . . . , xl, w1, . . . , wl} a scheme for the discretization of certain integral opera-
tors. We begin by letting S be the subspace of L2(Σ) consisting of all functions f which are pointwise defined
on Σ and such that for each j = 1, . . . ,m the function

f(ρj(x)) |dρj(x)∗dρj(x)|1/2

is a polynomial of order N on ∆1. Denote by P be the projection of L2(Σ) onto the subspace S and let
Φ : S → Cml be a mapping which takes f ∈ S to a vector with entries

f (ρj(xi))
√
wi |dρj(ρj(xi))∗dρj(ρj(xi))|1/2 , j = 1, . . . ,m, i = 1, . . . , l.

The ordering of the entries of Φ(f) is irrelevant. If H : L2(Σ)→ L2(Σ) is of the form

Hf(x) = lim
ε→0

∫∫
Σ\Bε(x)

K(x, y)f(y)ds(y), (12)
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with K a linear combination of the kernels listed in (5) and (6), then we call the ml×ml matrix A such that
the diagram

S ⊂ L2(Σ)
PH−−−−→ S ⊂ L2(Σ)yΦ

yΦ

Cml A−−−−→ Cml

(13)

commutes the discretization of the operator H induced by the specified decomposition and discretization
quadrature. One of the advantages of this L2 Nyström method is that the convergence theory mirrors the
standard Galerkin convergence theory for integral equations. Indeed, the matrix A is related to the Galerkin
discretization ofH on the subspace S via composition with matrices whose condition numbers are the condition
number of the discretization quadrature {x1, . . . , xl, w1, . . . , wl}.

2.3. A convergence result. We now exploit the relationship between this Nyström method and Galerkin
methods to establish a convergence result. Let {Dj}∞j=1 be a sequence of decompositions of a surface Σ and fix

an order N discretization quadrature Q = {x1, . . . , xl, w1, . . . , wl}. Designate by Sj the subspace of functions
associated with Dj and Q and let Pj : L2(Σ) → Sj be the orthogonal projection L2(Σ) → Sj . Moreover, for
each j, we let Aj be the discretization of an integral operator H of the form (12) corresponding to Dj and Q.

We will assume that the sequence {Pj} of projections is consistent and stable; that is, Pjf → f for
all f ∈ C∞(Σ) ⊂ L2(Σ) and supj ‖Pj‖2 < ∞. Under these conditions, if we form a sequence {fj} of
approximations of the solution f of the integral equation

(I +H)f = g (14)

by solving the sequence of linear systems

(I +Aj)fj = Pjg,

then it follows from the standard theory for Galerkin methods (a discussion of which can found, for instance,
in [10]) that

‖f − fj‖2 = O (‖f − Pjf‖2) .

If the right-hand side g is smooth, the solution f of (14) will be as well, and hence can be represented by
piecewise polynomials. In this case, we expect our approximations to achieve Nth order algebraic convergence.

This assumes, however, that the entries of the matrices Aj are computed correctly. Doing so requires a
scheme for the evaluation of integrals of the form

lim
ε→0

∫∫
∆1\Bε(x)

K(x, ρ(y))f(ρ(y)) |dρ(y)| dy. (15)

When the target node x is sufficiently distant from the surface ρ(∆1), the integral (15) can be evaluated using
the discretization quadrature. But, there are two difficult cases in which such an approach does not suffice:
when the target node x lies on the surface ρ(∆1) (the singular case) and when the target node is close to,
but not inside, the surface ρ(∆1) (the nearly singular case). This article addresses the first, singular case. In
the experiments of this paper, the nearly singular case was treated via adaptive quadrature in the manner
described in Section 2.3 of [4].

3. Quadratures for the singular integrals of scattering theory

In this section, we describe an approach to the evaluation of integrals of the form

lim
ε→0

∫∫
∆1\Bε(x)

K(ρ(x), ρ(y))f(ρ(y)) |dρ(y)| dy, (16)

where ρ : ∆1 → R3 is a smooth map given on the standard simplex ∆1, dρ(y) denotes the Jacobian of the
mapping ρ at the point y, |dρ(y)| is the determinant of that Jacobian, f is a smooth function and K is a
linear combination of the kernels listed in (5) and (6).

Our goal is to construct quadrature formulas which are accurate to a given algebraic order N . This ensures
that the scheme does not interfere with the asymptotic rate of convergence of the discretization method
described in Section 2.
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3.1. An adaptive change of variables. Most schemes for the evaluation of integrals arising from elliptic
boundary value problems proceed by first changing to polar coordinates centered at the target point x. In
the case of the integral (16), this results in an expression of the form

lim
ε→0

∫ 2π

0

∫ R(θ)

ε

q−2(θ)

r2
+
q−1(θ)

r
+ q0(θ) + q1(θ)r + q2(θ)r2 + · · · rdrdθ, (17)

where R(θ) is the distance from the origin of the intersection of the ray of angle θ through x and the boundary
of ∆1. Here, the coefficients qj(θ) are periodic and analytic on the real line and the function R(θ) is piecewise
analytic [18]. Unfortunately, by itself this change of variables does not put the integrand of (16) into a
tractable form. The coefficients qj(θ) and the function R(θ) can have poles arbitrarily close to the real line.
The efficiency of standard quadrature techniques like generalized Gaussian quadrature and the trapezoid rule
depends on the domain of analyticity of the integrands and they converge slowly in the presence of poles close
to the real axis.

The proximity to the real line of the poles of the qj(θ) is a measure of the extent of non-conformality of
the mapping ρ at the target node x. Let {ξ1, ξ2} denote the basis of the space tangent to Σ at the point x
induced by the parameterization ρ; that is,

ξ1 =
∂ρ(x1, x2)

∂x1
and ξ2 =

∂ρ(x1, x2)

∂x2
.

Then, as shown in [19], the poles w of the coefficient qj(θ) are given by the equation

cot(w) = −λ−1e±iγ ,

where

cos(γ) =
ξ1 · ξ2
|ξ1| |ξ2|

and λ =
|ξ1|
|ξ2|

.

Note that when λ = 1 and cos(γ) = 0 — that is, when the mapping ρ is conformal at the point x — the qj(θ)
are entire. Similarly, the location of the poles of the function R(θ) depend on the proximity of the target node
x to the boundary of the triangle ∆1.

In order to simplify the integrand of (16), our approach begins by applying an affine change of variables
which is adapted to the parameterization ρ. We introduce a triangle T and an affine mapping A : T → ∆1

such that the composed mapping ρ̃ = ρ ◦A : T → R3 is conformal at the point x0 = A−1(x). The mapping A
and triangle T can be obtained by computing a singular value decomposition

dρ(x) = UΣV ∗

of the Jacobian of ρ at the point x, letting

A = V Σ−1

and setting T = A−1(∆1). As a consequence of the conformality of the mapping ρ̃ at the point x0, when

lim
ε→0

∫∫
T\Bε(x0)

K(ρ̃(x), ρ̃(y))f(ρ̃(y)) |dρ̃(y)| dy, (18)

is rewritten in the form

lim
ε→0

∫ 2π

0

∫ R̃(θ)

ε

q̃−2(θ)

r
+ q̃−1(θ) + q̃0(θ)r + q̃1(θ)r2 + q̃2(θ)r3 + · · · drdθ (19)

by introducing polar coordinates centered at the point x0, the coefficients q̃j(θ) are entire. In fact, more can
be said: not only are the q̃j(θ) entire in this case, they are actually trigonometric polynomials of finite order.
Indeed, q̃−2(θ) is of the form

α cos(θ) + β sin(θ),

while for j > −2, the order of q̃j(θ) is bounded above by 3(j + 1) + 2. This can be shown using a trivial
modification of the arguments of [18].

This adaptive change of variables is helpful, but by itself insufficient. It does nothing to address the fact
that the function R̃(θ) can have poles close to the real axis. Indeed, in many cases, the behavior of the

parameterization R̃(θ) of the triangle T = A−1(∆1) is considerable worse than that of the function R(θ) in
this respect.
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3.2. Decomposition of the integration domain. Our approach now calls for the domain of integration T
to be split into two pieces — a circle Bγ(x0) of radius γ > 0 centered at x0 and its complement T \ Bγ(x0).
That is, the integral (18) is decomposed as

lim
ε→0

∫∫
Bγ(x0)\Bε(x0)

K(ρ̃(x), ρ̃(y))f(ρ̃(y)) |dρ̃(y)| dy+∫∫
T\Bγ(x0)

K(ρ̃(x), ρ̃(y))f(ρ̃(y)) |dρ̃(y)| dy.
(20)

The constant γ must be positive and Bγ(x0) ⊂ T , but it is otherwise arbitrary. For the experiments of this
paper, we let γ be 1/2d, where d is the distance from the point x0 to the boundary of the triangle T . Figure 1
depicts this decomposition.

Figure 1. The domain of the integral (18) is first divided into the two shaded regions shown here.

The first term in (20) can be evaluated to Nth order algebraic accuracy by rewriting the integral as

lim
ε→0

∫ 2π

0

∫ γ

ε

q̃−2(θ)

r
+ q̃−1(θ) + q̃0(θ)r + q̃1(θ)r2 + q̃2(θ)r3 + · · · drdθ

using polar coordinates centered at x0 and applying a product quadrature constructed from a 3(N + 2) + 2
point trapezoid rule in the variable θ and and a dN/2e + 1 Legendre quadrature rule on the interval [0, γ].
The nonintegrable term causes no difficulties since∫ 2π

0

q̃−2(θ)

r2
dθ = 0 =

2π

N

N−1∑
j=0

q̃−2

(
2πj
N

)
r2

(21)

for any fixed r > 0 and integer N > 1.
The second term in (20) is more troublesome. After a chance to polar coordinates it takes on the form∫ 2π

0

∫ R̃(θ)

γ

q̃−2(θ)

r
+ q̃−1(θ) + q̃0(θ)r + q̃1(θ)r2 + q̃2(θ)r3 + · · · drdθ.

Neither the inner integral, which for each fixed θ is of the form∫ r1

r0

C−1

r
+ C0 + C1r + C2r

2 + · · · dr, (22)

nor the outer integral∫ 2π

0

q̃−2(θ)
[
log(R̃(θ))− log(γ)

]
+ q̃−1(θ)

[
R̃(θ)− γ

]
q̃0(θ)

[
R̃(θ)2

2
− γ2

2

]
+ · · · dθ (23)

can be evaluated effectively using standard techniques. In the case of the inner integral this is due to the 1/r
term. Of course, if the exact value of C−1 is known, then the singularity can be removed and the contribution
from that term evaluated analytically. Such an approach is not always feasible and we wish our technique to
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work in the greatest generality possibly, so we assume that the exact values of the Cj are not accessible. The

poles of the function R̃(θ) and the presence of a log term make the evaluation of the outer integral difficult.

Figure 2. The region T \Bγ is further subdivided into three pieces.

The approach of this paper consists of applying tables of precomputed quadrature rules to evaluate integrals
of the form (22) and (23) efficiently. Ostensibly, the quadrature rules for (22) will depend on the two parameters
r0 and r1, but in fact due to the scale invariance of the integrands, only the ratio r0/r1 is relevant. Similarly,

the function R̃(θ) in (23) initially appears to depend on 6 parameters — the coordinates of the vertices of the
triangle T . In fact, the invariance of the integrand under scaling and rotation means that only four parameters
are necessary.

A table of quadrature rules depending on four parameters would be difficult to construct. In order to reduce
the number of parameters, we further decompose the region T \ Bγ(x0). More specifically, we divide it into
three regions by connecting the singular point x0 to each vertex in the fashion indicated in Figure 2. After
applying a rotation and scaling, each of the resulting regions is of the form S \ Bγ̃(0) where S is a triangle
with vertices (0, 0), (1, 0) and r0e

iθ0 for some 0 < r0 < 1 and 0 < θ0 < π; see Figure 3 for a depiction of a
region of this form. Note that the constant γ has been replaced by γ̃ due to scaling. The integral over each
of the resulting regions can be written in the form∫ θ0

0

∫ Mr0,θ0
(θ)

γ̃

q̃−2(θ)

r
+ q̃−1(θ) + q̃0(θ)r + q̃1(θ)r2 + q̃2(θ)r3 + · · · drdθ, (24)

where Mr0,θ0(θ) is the parameterization — in polar coordinates — of the line connecting the point (0, 0) with
r0e

iθ0 ; that is,

Mr0,θ0(θ) =
r0 sin (θ0)

r0 sin (θ0 − θ) + sin (θ)
.

Note that the outer integral in (24) now depends only on two parameters – r0 and θ0.

3.3. Inner integrals. For each fixed θ, the inner integral in (24) is of the form∫ r1

r0

C−1

r
+ C0 + C1r + C2r

2 + C3r
3 + · · · dr. (25)

In order to build quadrature rules for integrals of this type which hold for a range of values of the parameters
r0 and r1, we must first remove the dependence of the integration domain on r0 and r1. To that end, we apply
the substitution r = (r1 − r0)v + r0 in order to obtain

(r1 − r0)

∫ 1

0

C−1

(r1 − r0)v + r0
+ C0 + C1(r1 − r0)v + r0 + C2((r1 − r0)v + r0)2 + · · · dv.

Here, the integrand ostensibly depends on both r1 and r0. In fact, because the form of the integrand is
invariant under scaling, the integrands are only a function of the single parameter δ = r0/r1. This can be
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Figure 3. Each of three regions shown in Figure 2 can be transformed via rotation and
scaling into the canonical form shown here.

easily seen by rewriting the substitution as r = r1 {(1− δ)v + δ}, which yields∫ 1

0

C̃−1

(1− δ)v + δ
+ C̃0 + C̃1 [(1− δ)v + δ] + C̃2 [(1− δ)v + δ]

2
+ · · · dv;

here, the constants Cj have been replaced with new constants C̃j . Next, we truncate the series expansion to
obtain∫ 1

0

C̃−1

(1− δ)v + δ
+ C̃0 + C̃1 [(1− δ)v + δ] + C̃2 [(1− δ)v + δ]

2
+ · · · C̃N+1 [(1− δ)v + δ]

N+1
dv. (26)

Quadrature for the integrals (26) will obtain order N algebraic accuracy when applied to (25). In order to
construct a quadrature rule which can be applied to integrals of the form (26) with δ any real in the interval
[a, b] ⊂ (0, 1], we let δ1, δ2, . . . , δ16 denote the nodes of the 16-point Legendre quadrature on the interval [a, b],
fix an integer N and apply the algorithm of Section 1 to all functions of the form

[(1− δj) v + δj ]
i
, i = −1, . . . , N + 1, j = 1, . . . , 16.

For the experiments of this paper, rules of order N = 4, N = 8, N = 12 and N = 16 were constructed. For
each order, 23 of these quadrature rules — each applying to a different range of values of the parameter δ —
were constructed. Presenting the length of each of the 92 rules in this work would take a prohibitive amount
of space. We settle for showing the length of selected rules in Table 2.

δ range order 4 order 8 order 12 order 16

1.00× 10−14 − 1.00× 10−13 16 17 20 21
1.00× 10−07 − 1.00× 10−06 15 17 19 21
1.00× 10−03 − 1.00× 10−04 15 17 19 21
1.00× 10−01 − 2.00× 10−01 10 11 13 15
0.90× 10−00 − 1.00× 10−00 5 6 7 9

Table 2. The length of selected quadrature rules of Section 3.3.
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3.4. Outer integrals. After applying the substitution u = θ0θ, which removes the dependence of the inte-
gration domain on the parameter θ0, the outer integral in (24) can be written as

θ0

∫ 1

0

q̃−2(θ0u) [log(Mr0,θ0(θ0u))− log(γ̃)] + q̃−1(θ0u) [Mr0,θ0(θ)− γ̃] +

q̃0(θ0u)

[
M2
r0,θ0

(θ0u)

2
− γ̃2

2

]
+ · · · du.

(27)

After truncation and a slight rearrangement, it takes on the form

θ0

∫ 1

0

q̃−2(θ0u) log (Mr0,θ0(θ0u)) + q̃−1(θ0u)Mr0,θ0(θ0u) + · · ·+ q̃N+1(θ0u)
M

(N+1)
r0,θ0

(θ0u)

N + 1
+ p(θ0u) du,

where p(θ) is a trigonometric polynomial of order 3(N + 2) + 2. In order to construct a quadrature rule for
integrals of this form which hold for θ0 in [a, b] ⊂ (0, 2π) and r0 in [c, d] ⊂ (0, 1), we first let

θ1, . . . , θ16, and r1, . . . , r16

denote the nodes of the 16-point Legendre quadrature on the intervals [a, b] and [c, d], respectively. Then we
apply the algorithm of Section 1 to the functions

Mr0,θ0(θ0u)j cos(iθ), Mr0,θ0(θ0u)j sin(iθ) j = 0, . . . , N + 1, i = 0, . . . , 3(j + 1) + 2,

and
cos(iθ0u), sin(iθ0u) i = 0, . . . , 3(N + 2) + 2.

Quadrature rules were constructed for orders N = 4, N = 8, N = 12 and N = 16. The parameter r0 was
partitioned For each of those orders, quadrature rules for each pair of 9 intervals of r0 and 14 of θ0 were It
is clearly not possible to present the lengths of all 504 quadrature rules. Instead, we present the lengths of
selected rules in Table 3.

r0 range θ0 range order 4 order 8 order 12 order 16

1.00× 10−06 − 1.00× 10−05 1.00× 10−06 − 1.00× 10−05 36 44 50 53
1.00× 10−06 − 0.00× 10−05 3.14− 3.14159 70 81 90 100
1.00× 10−04 − 1.00× 10−03 0.10− 0.25 38 44 49 55

0.10− 0.30 0.50− 1.00 26 31 34 37
0.90− 1.00 3.14− 3.14159 71 85 99 100

Table 3. The length of selected quadrature rules of Section 3.4.

4. Numerical experiments

We now describe numerical experiments conducted to measure the performance of the approach of this
article. All code was written in Fortran 77 and compiled with the Intel Fortran Compiler version 12.1. The
experiments were carried out on an workstation equipped with 12 Intel Xeon processor cores running at
3.47 GHz and 192 GB of RAM. Throughout this section we use the notation for various integral operators
established in (5) and (6) of the introduction.

In several experiments of this section integral equation formulations which are susceptible to spurious
resonances were utilized. For instance, the integral operator 1/2I + Dk appearing in Section 4.1 will have
a nontrivial nullspace for certain values of the wavenumber k. All experiments were designed so that the
wavenumbers k chosen lead to uniquely solvable integral equations.

4.1. A comparison with fixed-order quadrature rules. In most integral equation solvers, Gaussian
quadratures are used to evaluate the singular integrals of the form∫ 2π

0

∫ R(θ)

0

q−1(θ) + q0(θ)r + q1(θ)r2 + q2(θ)r3 + · · · drdθ (28)

which arise during the discretization of weakly singular integral operators. The purpose of this set of exper-
iments was to compare the effectiveness of Gaussian quadratures with the precomputed quadrature rules of
this paper in a simple case, although admittedly artificial case.
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The interior Dirichlet problem

∆u+ k2u = 0 in Ω

u = g on ∂Ω
(29)

was considered on the domain Ω bounded by the surface parameterized via

r(s, t) =

 (2 + 0.2 cos(s)) sin(t)
(2 + 0.2 cos(s)) cos(t)

0.2 sin(t)

 , 0 ≤ s, t < 2π.

The wavenumber k was taken to be 1 and the function g was defined by

g(q) =
1

4π

∫∫
S

exp (ik |q − p|)
|q − p|

ds(p)

where S denotes the boundary of the ball of radius 1 centered at the point (10, 0, 10). This boundary value
problem can be reformulated as

1

2
σ(q) +Dkσ(q) = g(q), (q ∈ ∂Ω), (30)

by introducing the representation
u(q) = Dkσ(q) (31)

of the solution u.

12 order precomputed Gaussian (n = 50) Gaussian (n = 100)

Ntris N Navg Esolution Navg Esolution Navg Esolution

20 2240 2918 7.72× 10−05 1050 7.76× 10−05 2100 7.72× 10−05

80 8960 2909 3.98× 10−10 1050 1.97× 10−05 2100 1.05× 10−06

320 35840 2908 9.75× 10−14 1050 5.14× 10−06 2100 2.37× 10−07

Gaussian (n = 200) Gaussian (n = 400) Gaussian (n = 1000)

Ntris N Navg Esolution Navg Esolution Navg Esolution

20 2240 4200 7.72× 10−05 8400 7.72× 10−05 21000 7.72× 10−05

80 8960 4200 1.55× 10−08 8400 3.31× 10−10 21000 3.99× 10−10

320 35840 4200 4.02× 10−09 8400 4.05× 10−11 21000 4.99× 10−14

Table 4. The results of the experiments of Section 4.1.

In each experiment, the integral equation (30) was discretized repeatedly by applying the Nyström approach
of Section 2 with progressively finer decompositions of ∂Ω. An 112 point 12th order discretization quadra-
ture was applied to each surface element. The method used to evaluate singular integrals was varied from
experiment to experiment. In the first experiment, tensor products of 12th order precomputed quadratures
of Section 3.3 and Section 3.4 were applied to the singular integrals of the form (28) which arose. In the later
experiments, a fixed Legendre quadrature of length 7 (which integrates polynomials of order 0 through 13) was
applied to the inner integrals and a second piecewise Gaussian quadrature was applied to the outer integrals.
The piecewise quadrature consisted of 3 length n Legendre rules placed on the three intervals of [0, 2π] on
which R(θ) is smooth, so a total of 21n Gaussian nodes were used. Each discretized integral equation was
inverted via the GMRES iterative scheme — iterations were terminated when residuals fell below 1.0× 10−13

— and the relative error ∣∣∣∣u(q0)− g(q0)

g(q0)

∣∣∣∣ , (32)

where q0 is the point (2, 0, 0), was calculated.
Table 4 shows the results. There, the headings indicate which quadratures were used to evaluate singular

integrals, Ntris refers to the number of triangles into which the parameterization domain was subdivided; N
is the number of discretization nodes on the surface ∂Ω; Navg gives the average size of the quadratures used
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to evaluate singular integrals; and Esolution is the relative error (32). Clearly, this is a case where the use
of Gaussian rules reduces the rate of convergence which would otherwise be obtained by the approximation
of the solution using 12th order piecewise polynomials. That is, until very large tensor product Gaussian
quadratures are applied. On the other hand, 12th order convergence is obtained when the precomputed rules
of this paper are utilized.

4.2. Tangential derivatives on a deformed torus. The purpose of this set of experiments was to test the
accuracy of the quadrature rules described in Section 3. The setting was the compact domain Ω bounded by
the surface parameterized via

r(s, t) =

 (2 + cos(s)) sin(t)
(2 + cos(s)) cos(t)

sin(s) (1 + 0.20 cos(4t))

 , 0 ≤ s, t < 2π. (33)

Note that the surface ∂Ω is not a surface of revolution; this is an important point since simpler discretization
mechanisms are available in that setting (see, for instance, [23]). Three views of the surface ∂Ω are shown in
Figure 4.

Figure 4. Three views of the surface of Section 4.2.

The interior Neumann problem

∆u+ k2u = 0 in Ω

∂u

∂η
= g on ∂Ω,

(34)

where ∂
∂η denotes differentiation with respect to the outward-pointing unit normal vector, can be reformulated

as the integral equation

−1

2
σ(q) +D∗kσ(q) = g(q), (q ∈ ∂Ω), (35)

by introducing the representation
u(q) = Skσ(q). (36)

Once the solution of (34) has been obtained in the form (36), the tangential derivative ∇u(q) · ∂r∂s (q) at a point
q on the boundary ∂Ω is given by the formula

∇u(q) · ∂r
∂s

(q) = lim
ε→0

1

4π

∫∫
∂Ω\Bε(q)

(
(q − p)
|q − p|3

· ∂r
∂s

(q)

)
exp (ik |q − p|) (1− ik |q − p|)σ(p) ds(p). (37)

This integral operator is, of course, only defined in the sense of the Cauchy principal value. For these
experiments, the wavenumber k was taken to be 1 and the right-hand side g was taken to be the normal
derivative of the function

f(q) =

∫∫
∂B1(10,0,10)

exp (ik |q − p|)
|q − p|

ds(p),

where Br(q) once again denotes the boundary of the ball of radius r centered at the point q. The function
f is, of course, the unique solution of the boundary value problem (34); considering a problem with a known
solutions allows us to explicitly compute the error obtained by the solver. Note that the the integral operator
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1/2I +D∗k will have a nontrivial nullspace for certain values of the wavenumber k but the experiments of this
section were designed to avoid this difficulty.

In each of the experiments of this section, the integral equation (35) was discretized using the Nyström
method detailed in Section 2 with singular integrals evaluated via the quadratures of Section 3. Decompositions
of the surface ∂Ω were obtained by triangulating the parameterization domain [0, 2π]× [0, 2π]. The resulting
system of linear equations was solved via the GMRES iterative algorithm, which was terminated after the
residuals fell below 1.0× 10−13. The L2(∂B0.1(2, 0, 0)) relative error

(∫∫
∂B0.1(2,0,0)

|f(q)|2 ds(q)

)−1/2(∫∫
∂B0.1(2,0,0)

|f(q)− Skσ(q)|2 ds(q)

)1/2

(38)

was computed in order to measure the accuracy of the obtained approximation

4th order 8th order

Ntris N Navg Esolution Etangent N Navg Esolution Etangent

4 72 1567 7.48× 10−02 3.45× 10−01 208 2096 2.46× 10−03 8.62× 10−02

16 288 1515 1.99× 10−03 7.56× 10−02 832 2079 2.51× 10−05 4.51× 10−03

64 1152 1523 9.24× 10−05 5.72× 10−03 3328 2072 4.86× 10−09 7.03× 10−05

256 4608 1524 6.79× 10−08 2.49× 10−04 13312 2075 1.01× 10−11 4.26× 10−07

1024 18432 1526 3.96× 10−10 8.64× 10−06 53248 2073 1.77× 10−13 1.28× 10−09

4096 73728 1526 8.66× 10−12 2.74× 10−07 212992 2073 2.80× 10−13 6.24× 10−12

16384 294912 1526 3.10× 10−12 8.60× 10−09

12th order 16th order

Ntris N Navg Esolution Etangent N Navg Esolution Etangent

4 448 2744 7.98× 10−04 2.02× 10−02 768 3529 2.80× 10−05 5.25× 10−03

16 1792 2713 7.03× 10−08 2.02× 10−04 3072 3492 1.19× 10−08 2.57× 10−05

64 7168 2710 1.23× 10−10 1.70× 10−06 12288 3487 2.49× 10−12 5.34× 10−08

256 28672 2713 3.84× 10−13 1.35× 10−09 49152 3491 2.61× 10−13 8.21× 10−12

1024 114688 2713 3.41× 10−13 8.39× 10−12 196608 3492 1.45× 10−14 1.23× 10−12

Table 5. Results of the experiments described in Section 4.2.

The approach of Section 2 was then applied to discretize the principal value integral operator appearing in
(37). The quadratures of Section 3 were used to evaluate singular integrals. The discrete operator was then
applied to the computed charge distribution in order to approximate the tangential derivative ∇u(q) · ∂r∂s (q)

on the boundary ∂Ω. The relative L2(∂Ω) accuracy of the obtained tangential derivative was calculated by
comparison with the tangential derivative of the function f(q) on ∂Ω, which is known and can be computed
directly. Table 5 displays the results. There, Ntris denotes the number of triangles into which the parame-
terization domain [0, 2π]× [0, 2π] was subdivided; N denotes the number of discretization nodes; Navg is the
average size of the quadratures used to evaluate singular integrals; Esolution denotes the relative error (38);
and Etangent denotes the relative L2(∂Ω) error in the computed tangential derivative of the solution u.

In the case of 8th, 12th and 16th order quadratures, approximately 12−13 digits of precision were obtained
for the solution of the integral equations and tangential derivatives were computed to around 11 − 12 digits
of precision. Were we unable to obtain the same level of accuracy using 4th order quadrature formula only
because these experiments were carried out without the aid of an accelerated solver (e.g.., a multipole code
or fast direct solver) and this made experiments involving large discretizations prohibitively expensive to
conduct.
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4.3. Tangential derivatives on a heart-shaped domain. In these experiments, the exterior Neumann
problem

∆u+ k2u = 0 in Ωc

∂u

∂η
= g on ∂Ω

∂u

∂r
− iku = O

(
1

r

) (39)

was considered on the heart-shaped domain Ω shown in Figure 5. The boundary ∂Ω is described by the
parameterization

r(s, t) =

 cos(s) cos(t) + cos2(s) sin2(t)
cos(s) sin(t)

sin(s)

 , 0 ≤ s, t < 2π,

although for the purposes of producing decompositions of the surface ∂Ω a parameterization obtained via
projection onto a cube was used rather than this function r(s, t). The problem (39) can be reformulated as

Figure 5. Three views of the surface of Section 4.3.

the integral equation
1

2
σ(q) +D∗kσ(q) = g(q), (q ∈ ∂Ω),

by introducing the representation
u(q) = Skσ(q).

The experiments of the preceding section were repeated in this setting with minor changes: the wavenumber
k was taken to be π; the right-hand side g was taken to be the normal derivative of the function

f(q) =

∫∫
∂B0.1(0,0,0)

exp (ik |q − p|)
|q − p|

ds(p);

and the relative error in the solution was measured by computing(∫∫
∂B1(10,0,10)

|f(q)|2 ds(q)

)−1/2(∫∫
∂B1(10,0,10)

|f(q)− Skσ(q)|2 ds(q)

)1/2

.

Table 6 shows the results. Once again, we see that high-accuracy and high-order convergence can be obtained
using the precomputed quadrature rules of this paper.

4.4. Electromagnetic scattering from an ellipsoid. The boundary value problem

∇× E = ikH in Ωc

∇×H = −ikE in Ωc

∇ · E = 0 in Ωc

∇ ·H = 0 in Ωc

η × E = 0 on ∂Ω

(40)
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12th order 16th order

Ntris N Navg Esolution Etangent N Navg Esolution Etangent

48 5376 2757 1.69× 10−09 8.33× 10−06 9216 3539 2.82× 10−11 1.86× 10−07

192 21504 2750 3.84× 10−13 9.07× 10−09 36864 3534 1.75× 10−13 6.33× 10−11

768 86016 2750 6.53× 10−13 5.67× 10−11

Table 6. Results of the experiments of Section 4.3.

arises from the scattering of time-harmonic waves from a perfect conductor Ω. Here, η is the outward-pointing
unit normal vector to ∂Ω and E and H represent the total electric and magnetic fields. That is,

E = Ein + Escat

H = Hin +Hscat,

where Ein and Hin are incident fields and Escat and Hscat denote scattered fields of interest. The augmented
electric field integral equation (see [21] for details) is obtained by inserting the representation

Escat = ikA−∇φ, (41)

where

A(q) =
1

4π

∫∫
∂Ω

eik|q−p|

|q − p|
J(p)ds(p),

and

φ(q) =
1

4π

∫∫
eik|q−p|

|q − p|
ρ(p)ds(p),

into (40). Specifically, a solution to (42) of the form (41) can be obtained by solving the system of integral
equations

0 = η × E = η × Ein + η × Escat

ρ = η · E = η · Ein + η · Escat.
(42)

The unknowns in (42) are the surface current J and charge distribution ρ, both of which are given on ∂Ω.
The operators in this system are defined only in the sense of Cauchy principal values.

In the experiments described in this section, the domain Ω was taken to be the exterior of the ellipsoid
defined by the equation

x2 + y2 +
z2

4
= 1.

Three views of the surface ∂Ω are shown in Figure 6. This surface was parameterized by projecting it onto

Figure 6. Three views of the domain of Section 4.4.

the boundary of the cube [−1, 1]3; for instance, the portion of ∂Ω shown in Figure 7 was parameterized over
the top face of the cube via the mapping s

t
1

→ 1√
s2 + t2 + 1

 s/10
t
1

 .
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The wavenumber k was taken to be 1 and the incoming electric field was the function

Ein(q) = Ge(q, p0) v, (43)

where Ge(q, p) is the dyadic electric Green’s function

Ge(q, p) =
ik

4π

[
I +
∇∇
k2

]
eik|q−p|

|q − p|
,

p0 =
1

10

 2
−3
1

 and v =

 1
1
1

 .

In each experiment, the parameterization domain of the ellipsoid was triangulated and the integral equation
(42) discretized using the approach of this paper. The resulting linear system was solved using the GMRES
algorithm; iterations were terminated when the residual fell below 1.0× 10−13 in magnitude. The true values
of the electromagnetic field E, the magnetic field H and the quantities η · H are known by the extinction
theorem. We compared them with the obtained values on the sphere S of radius 50 centered at 0. The quantity
η ·H was computed on the surface ∂Ω. The computation of η ·H involves the evaluation of a principal value
integral operator.

Table 7 displays the results. There, Ntris is the numbers of triangles into which the parameterization domain
was subdivided; E is the relative L2(∂Ω) error in the electric field E on the sphere S; H is the relative L2(S)
error on the sphere S; and η ·H is the relative L2(S) error in the quantity η ·H.

4th order 8th order

Ntris E H η ·H E H η ·H

12 8.71× 10−02 6.83× 10−02 2.17× 10−00 1.02× 10−02 7.08× 10−03 1.94× 10−00

48 2.82× 10−03 2.22× 10−03 4.05× 10−01 4.42× 10−05 3.72× 10−05 8.33× 10−02

192 1.33× 10−04 1.09× 10−04 6.19× 10−02 8.11× 10−06 6.75× 10−07 1.89× 10−03

432 1.90× 10−05 1.47× 10−05 1.12× 10−02 4.51× 10−08 3.46× 10−08 8.43× 10−05

768 2.10× 10−06 1.65× 10−06 3.21× 10−03

1200 1.42× 10−07 1.07× 10−07 1.21× 10−03

12th order 16th order

Ntris E H η ·H E H η ·H

12 1.33× 10−03 1.11× 10−03 1.70× 10−00 1.45× 10−04 1.16× 10−04 8.18× 10−01

48 3.03× 10−06 2.34× 10−06 1.14× 10−02 1.83× 10−07 1.44× 10−07 1.76× 10−03

192 1.47× 10−08 1.19× 10−08 4.60× 10−05 2.09× 10−10 1.83× 10−10 3.36× 10−06

Table 7. The results of the experiments of Section 4.4.

Figure 7. The portion of the ellipsoid of Section 4.4 which is parameterized over the top
face of the cube [−1, 1]3.

Using 16th order quadratures, approximately 9 digits of precision was obtained for the electric field E and
magnetic field H and 5 for the quantity η ·H. The code in these experiments was unaccelerated and as a result
running these experiments with larger discretizations is prohibitively expensive. Coupling the discretization
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approach of this paper with an appropriate fast solver should enable larger-scale experiments and higher
accuracy. Doing so, however, is beyond the scope of this work.

5. Conclusions

The fast and accurate evaluation of singular integrals is one of the principal challenges in integral equation
methods. Both the evaluation of singular integrals given over curved surfaces and the evaluation of expres-
sions involving nonintegrable kernels present severe difficulties for currently available methods. This paper
introduces what the authors believe to be one of most accurate methods for simultaneously addressing both
situations. Moreover, it requires considerably less analytic information in order to achieve high-order conver-
gence than other comparable schemes of which the authors are aware. For instance, the solver described in
[22] achieves high-order convergence for weakly singular integral operators, but at the price of requiring that
a smooth partition of unity for the surface be given.

Although the scheme of this paper is reasonably efficient, there are several obvious mechanisms for reducing
the size of the resulting quadrature formulae. Perhaps the most straightforward is to generalize the approach
of Section 1 to two-dimensions in order to replace formulae composed of products of one-dimensional quad-
rature rules with true two-dimensional quadratures. Another possibility is to avoid the decomposition of the
integration domain. Each of these refinements would reduce the size of the quadrature rules; the combination
of both might have a significant impact. The computation of efficient two-dimensional quadrature rules is a
significant computational challenge, however, and it is a subject of ongoing research by the authors.
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