
A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED
GAUSSIAN QUADRATURES

JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

Abstract. We present a new nonlinear optimization procedure for the computation of general-
ized Gaussian quadratures for a broad class of functions. While some of the components of this
algorithm have been previously published, we present a simple and robust scheme for the determi-
nation of a sparse solution to an underdetermined nonlinear optimization problem which replaces
the continuation scheme of the previously published works. The performance of the resulting
procedure is illustrated with several numerical examples.

1. Introduction

Classical Gaussian quadrature rules are optimal formulas for the evaluation of integrals of the
form

(1.1)
∫ b

a

P (x)ω(x)dx

where P (x) is a polynomial and ω : [a, b] → R+ is an essentially arbitrary nonnegative weight
function; they are optimal in sense that an n-point Gaussian quadrature rule integrates polynomials
of degree n− 1 exactly with respect to the weight function ω. They are extremely efficient as long
as functions to be integrated are smooth or of the form f(x) = g(x)w(x) where g(x) is smooth and
w(x) is fixed and known a priori. However, they perform poorly in a number of instances of great
importance in computational mathematics. Of particular interest is the integration of functions f
which admit representations of the form

(1.2) f(x) =
n∑

i=1

αiφi(x),

where the φi are oscillatory, singular, or both and known a priori but the coefficients αi are not.
Then each of the functions φi(x) can exhibit a different type of singularity or a different frequency
of oscillation, and classical Gaussian quadrature rules perform very poorly. Many such integrals
arise in computational physics (see, for instance, [4] and [18]).

It has long been known that Gaussian quadratures admit generalization to a fairly broad class of
systems of functions (see [11, 12, 15, 16, 13]). We adopt the terminology of [14, 20, 3], and say that
a generalized Gaussian quadrature for a collection {φ1, . . . , φ2n} of 2n functions and a nonnegative
weight function ω is an n-point quadrature rule

(1.3)
n∑

j=1

φ(xj)wj ∼
∫ b

a

φ(x)ω(x)dx

exactly integrating each of the φi with respect to the weight function ω.
The constructions found in [11, 12, 15, 16, 13] do not lead readily to numerical algorithms for the

design of generalized Gaussian quadrature rules. In [14], a numerical algorithm is introduced for
the construction of generalized Gaussian quadrature rules for a fairly broad class of functions. The
approach is based on the observation that the nodes xj and weights wj of a generalized Gaussian
quadrature satisfy a nonlinear system of equations. The procedure of [14] is a variant of Newton’s
algorithm coupled with a continuation scheme for the generation of a suitable initial point for the
modified Newton iterations. In [20] and [3], the continuation scheme of [14] is refined, improving

Date: June 30, 2008.

1

2 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

the stability of the algorithm, and a new preprocessing step is added in [20], greatly expanding its
range of applicability.

The present paper introduces a new numerical procedure for obtaining generalized Gaussian
quadrature rules. While we also use Newton-type iterations to solve nonlinear systems of equations,
our scheme differs from the algorithm of [14, 20, 3] in that the continuation method is abandoned
in favor of a simpler, more robust approach.

The paper is structured as follows. Section 2 contains mathematical and numerical preliminaries.
In section 3, we describe certain standard numerical tools used by the algorithm. Section 4 describes
the algorithm in detail. Section 5 contains several examples of quadratures we have obtained.
Finally, in Section 6, we present conclusions and discuss several possible extensions of this work.

2. Mathematical and numerical preliminaries

2.1. Generalized Gaussian and Chebyshev quadratures. The quadrature formulas considered
in this paper are of the form

(2.1)
n∑

j=1

φ(xj)wj .

where the xj and ωj are real numbers. We will refer to the xj as the nodes and the wj as the weights
of the quadrature formula (2.1). They will be used to approximate integrals of the form

(2.2)
∫ b

a

φ(x)ω(x)dx

where ω(x) is a nonnegative weight function.
Quadratures are typically chosen so as to make (2.1) exact for some set of functions, commonly

polynomials of a fixed order. Classical Gaussian quadrature rules consist of n nodes and n weights
which integrate polynomials of order 2n − 1 exactly. In [14], the notion of a Gaussian quadrature
was generalized as follows:

DEFINITION 2.1. A quadrature formula will be referred to as Gaussian with respect to a set
of 2n functions φ1, . . . , φ2n : [a, b] → R and a weight function ω : [a, b] → R+ if it consists of n
nodes and n weights and integrates exactly the functions φi with respect to the weight function ω for
all i = 1, . . . , 2n. The weights and nodes of a Gaussian quadrature will be referred to as Gaussian
weights and nodes, respectively.

Although Chebyshev quadratures are classical Gaussian quadratures on the interval [−1, 1] with
respect to the weight function ω(x) = (1 − x2)−1/2, in practice, Chebyshev nodes and weights are
often used to integrate functions on [−1, 1] with respect to the weight function ω(x) = 1. This
practice leads to a 2n-point quadrature which integrates exactly polynomials of order 2n − 1, and
motivates the following definition:

DEFINITION 2.2. A quadrature formula will be referred to as a Generalized Chebyshev quadra-
ture for a set of 2n functions φ1, . . . , φ2n : [a, b] → R and a weight function ω : [a, b] → R+ if it
consists of 2n nodes and 2n weights and integrates exactly the functions φi with respect to the weight
function ω for all i = 1, . . . , 2n. The weights and nodes of a Chebyshev quadrature will be referred
to as Chebyshev weights and nodes, respectively.

2.2. Quadrature rules and optimization. Let m,n be integers with m ≤ 2n and let x1, . . . , xn,
w1, . . . , wn be a quadrature rule

(2.3)
∫ b

a

f(x)ω(x)dx ∼
n∑

j=1

f(xj)wj

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 3

which is exact for the functions φ1, . . . , φm. Obviously, the weights wj and nodes xj of such a
quadrature satisfy the (generally underdetermined) nonlinear system of equations

F1(x1, . . . , xn,w1, . . . , wn) = b1

F2(x1, . . . , xn,w1, . . . , wn) = b2(2.4)
...

Fm(x1, . . . , xn,w1, . . . , wn) = bm,

where

(2.5) Fi(x1, . . . , xn, w1, . . . , wn) =
n∑

j=1

φi(xj)wj ,

and

(2.6) bi =
∫ b

a

φi(x)ω(x)dx.

When m = 2n, the nodes xj and weights wj in (2.4) form a generalized Gaussian quadrature
for the functions φ1, . . . , φ2n. In [11] and [13], the existence of a unique solution of (2.4) is proven
under certain conditions on the system of functions φ1, . . . , φ2n. It is observed in [14, 20, 3] that
solutions, or at least approximate solutions, of (2.4) exist for many systems of 2n functions not
satisfying those conditions.

In this paper, we will encounter systems of the form (2.4) where m < 2n. Under these conditions,
the system does not admit a unique solution. Non-uniqueness is not, however, an obstruction to
the determination of a quadrature rule for the functions φ1, . . . , φm since such a rule is given by any
solution of the system (2.4). Indeed, even in the case when there is no exact solution of (2.4), it is
often possible to construct an approximate quadrature for the functions φ1, . . . , φm.

We close this section with the following definition:
DEFINITION 2.3. Suppose φ1, . . . , φm : [a, b] → R are square integrable with respect to the

nonnegative integrable weight function ω. We say that a quadrature rule x1, . . . , xn, w1, . . . , wn

integrates φ1, . . . , φm with precision ε > 0 if

(2.7)
m∑

i=1

|Fi(x1, . . . , xn, w1, . . . , wn)− bi|2 ≤ ε2,

where

(2.8) Fi(x1, . . . , xn, w1, . . . , wn) =
n∑

j=1

φi(xj)wj

and

(2.9) bi =
∫ b

a

φj(x)ω(x)dx

for all i = 1, . . . ,m.

2.3. Quadrature and interpolation. It is well known that when Chebyschev nodes are used
for polynomial interpolation on the interval [−1, 1], the procedure is numerically stable and the
convergence properties are close to optimal (see [19] and [6]). In this subsection, we prove that
the nodes of any Gaussian quadrature and many generalized Gaussian quadratures lead to stable
interpolation formulas.

The principal analytic tool of this subsection is the following obvious theorem (see, for example,
[20]).

THEOREM 2.1. Suppose that the weight function ω : [a, b] → R is nonnegative and the functions
φ1, . . . , φn : [a, b] → R are orthonormal with respect to ω. Suppose further that the n-point quadrature

4 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

rule x1, . . . , xn, w1, . . . , wn is exact for all products of the form φi(x)φj(x) and wi > 0 for all
1 ≤ i ≤ n. Then the n× n matrix A with entries

(2.10) Aij =
√
wjφi(xj)

is orthogonal.
Now let f be a function of the form

(2.11) f(x) =
n∑

j=1

αiφi(x).

We would like to construct an interpolation formula on the interval [a,b] for functions of this form;
that is, given the values f1, . . . , fn of a function of the form (2.11) at a collection of points x1, . . . , xn,
we would like a formula for determining the coefficients α1, . . . , αn. Let α be the vector α =
(α1, . . . , αn), let F be the vector F = (f1, f2, . . . , fn), and finally, let B be the n × n matrix with
entries

(2.12) Bij = φi(xj).

Then

(2.13) F = Bα,

and assuming that B is invertible, it follows that

(2.14) α = B−1F.

If the condition number ofB is not too high, then (2.14) is a numerically stable formula for computing
the coefficients α1, . . . , αn. The following observation is the principal observation of this subsection.

Observation 2.1. Under the conditions of Theorem 2.1, the matrix B in the interpolation formula
(2.14) is of the form

(2.15) B = DQ,

where D is a diagonal matrix with entries

(2.16) Dii =
1

√
wi

and Q is orthogonal. Thus

(2.17) α = Q∗D−1F.

In other words, the coefficients α can be obtained by applying a diagonal matrix followed by an
orthogonal matrix.

2.4. The damped Gauss-Newton method. The damped Gauss-Newton method is a well-known
iterative technique for the solution of nonlinear least-squares problems. It converges under very
general conditions, and does not require that the Jacobian of the system be nonsingular. Here we
give only elementary details; a more thorough treatment can be found in [7].

Suppose that R : Rn → Rm is a continuously differentiable function of the form

(2.18) R(x) =


r1(x)
r2(x)

...
rm(x)


and let J(x) be the Jacobian

(2.19) J(x) =


∂r1
∂x1

(x) . . . ∂r1
∂xn

(x)
...

...
∂rm

∂x1
(x) . . . ∂rm

∂xn
(x)



A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 5

of R at the point x. The damped Gauss-Newton method is a numerical method for minimizing the
function

(2.20) f(x) =
1
2

m∑
j=1

|rj(x)|2.

It belongs to a broad class of numerical optimization methods which proceed from an initial guess
x0 by forming a sequence x1, x2, . . . of iterates via the formula

(2.21) xk+1 = xk + αkdk

where dk is referred to as the search direction at iteration k and αk is a carefully chosen step size.
The primary purpose of this section is Theorem 2.2 below, which gives conditions under which

an iteration of the form (2.21) converges. We start with the following definition:
DEFINITION 2.4. Let f : Rn → R be a continuously differentiable function and consider any

iteration of the form (2.21). We say that the step length αk and step direction dk satisfy the Wolfe
conditions at the point xk if

f(xk + αkdk) ≤ f(xk) + λαk∇f(xk) · dk,(2.22)

and

∇f(xk + αkdk) · dk ≥ β∇f(xk) · dk(2.23)

for some constants λ ∈ (0, 1) and β ∈ (λ, 1).
The following theorem can be found in [7]:
THEOREM 2.2. Suppose that f : Rn → R is a continuously differentiable function bounded from

below, and assume that there exists γ ≥ 0 such that

(2.24) ‖∇f(x)−∇f(y)‖2 ≤ γ‖x− y‖2

for every x and y in Rn. Consider any iteration of the form (2.21) such that for each k = 0, 1, . . .
the pair (dk, αk) satisfies the Wolfe conditions. If, in addition, one of the conditions

∇f(xk) · dk < 0(2.25)

or

∇f(xk) = 0 and dk = 0(2.26)

holds for each k = 0, 1, . . ., then either

(2.27) ∇f(xk) = 0 for some k ≥ 0,

or

(2.28) lim
k→∞

∇f(xk) · dk

‖dk‖2
= 0.

Remark 2.1. Theorem 2.2 states that either the sequence xk converges to a critical point for the
function f or the direction dk become orthogonal to the gradient of f . In practice, it is easy to avoid
the later condition, thus ensuring the convergence of ∇f(xk) to 0.

Remark 2.2. Under mild conditions on the function f , given a sequence of {dk} satisfying con-
dition (2.25), there exists a sequence of αk satisfying the Wolfe conditions (see, for example, [7]
Theorem 6.3.2).

In the case of the damped Gauss-Newton method, the search direction dk is chosen as a solution
to the least-squares problem

(2.29) min
dk

||J(xk)dk +R(xk)||2,

which is an affine approximation to the nonlinear least-squares problem

min
x

||R(x)||2.

Since

(2.30) ∇f(xk) = J∗(xk)R(xk),

6 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

we have

(2.31) 〈∇f(xk), dk〉 = 〈R(xk), J(xk)dk〉 .

The search direction dk is chosen so that J(xk)dk is the projection of −R(xk) onto the column space
of J(xk). It follows that

(2.32) 〈∇f(xk), dk〉 = 〈R(xk), J(xk)dk〉 ≤ 0.

If we choose dk to be 0 in the event that 〈∇f(xk), dk〉 = 0, then we obtain the following theorem:
THEOREM 2.3. Suppose that R : Rn → Rm is a continuously differentiable function of the form

(2.18), f : Rn → R is given by (2.20), and the Jacobian, J(x), of R is given by (2.19). Further
suppose that ‖J(x)‖2 is bounded on Rn and there exists a constant γ > 0 such that

‖J(x)− J(y)‖2 ≤ γ‖x− y‖2

for all x and y in Rn. If xk is defined by the iteration

xk+1 = xk + αkdk

where, for each k = 1, 2, . . ., dk is a solution of the least-squares problem

||J(xk)dk +R(xk)||2 = min
v

||J(xk)v +R(xk)||2,

and the sequence {αk} is chosen so that the pairs (dk, αk) satisfy the Wolfe conditions for k =
0, 1, . . ., then either

∇f(xk) = 0 for some k ≥ 0

or

lim
k→∞

∇f(xk) · dk

‖dk‖2
= 0.

2.5. Singular value decomposition. The SVD is a ubiquitous tool in numerical analysis (see, for
instance, [8]). Here we discuss it in the case of real matrices.

LEMMA 2.1. (SVD). For any n × m real matrix A, there exist, for some integer k, an n × k
real matrix U with orthonormal columns, an m× k real matrix V with orthonormal columns, and a
k × k real diagonal matrix Σ with positive diagonal entries σ1 ≥ σ2 ≥ . . . ≥ σk > 0, such that

(2.33) A = U · Σ · V ∗.

The diagonal entries of Σ are called singular values, the columns of the matrix U are called the
left singular vectors, and the columns of the matrix V are called right singular vectors.

One of the most common applications of the SVD is the approximation of matrices; if we let Σp

denote the diagonal matrix with entries

Dii =

{
σi if i ≤ p

0 otherwise
,

then

(2.34) ‖A− UΣpV
∗‖2 = σp+1.

The matrix UΣpV
∗ is, in fact, the optimal rank p approximation of the matrix A (see, for instance,

[8]); that is,

(2.35) min
Ak

‖A−Ak‖2 = σp+1

where Ak ranges over the set of all n×m matrices of rank k.

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 7

2.6. QR decompositions. The singular value decomposition provides the means to construct an
optimal rank k approximation to a given matrix; however, the SVD can be expensive to form, and
other less computationally expensive matrix factorizations can be used to compress matrices in lieu
of the SVD.

By a slight abuse of terminology, we will refer to the factorization in the following obvious lemma
as a “QR decomposition.”

LEMMA 2.2. For any n×m real matrix A, there exist an integer k, an n× k real matrix Q with
orthonormal columns, an m ×m permutation matrix Π, and a k ×m real matrix R with the block
form

R =
(
T M

)
,

where T is a k×k upper triangular matrix with positive diagonal entries and M is a general k×(m−k)
matrix, such that

(2.36) AΠ = QR.

Moreover, there is a one-to-one correspondence between m×m permutation matrices Π and decom-
positions of the form (2.36).

The following theorem can be found (in a stronger form) in [10].
THEOREM 2.4. Suppose that A is a real m × n matrix with singular values σ1 ≥ σ2 ≥ . . . ≥

σr > 0. For any integer p, 0 < p ≤ r, there exists an m ×m permutation matrix Π such that the
QR decomposition uniquely determined by Π is of the form

(2.37) AΠ = Q

(
R11 R12

0 R22

)
,

where R11 is a p× p upper triangular matrix with positive diagonal entries, and

(2.38) ‖R22‖2 ≤
√

1 + (n− k)σp+1.

Remark 2.3. Theorem 2.4 implies that given any real m× n matrix A with singular values σ1 ≥
σ2 ≥ . . . ≥ σr > 0 and any integer 0 < k < r, there is a permutation matrix Π such that the
well-known Gram-Schmidt orthogonalization procedure (see, for example, [8]) applied to the matrix
AΠ results in the approximate matrix factorization

(2.39) ‖A−QS‖2 ≤ cσk+1,

where Q is an m × k matrix with orthonormal columns and S is a k × n matrix S. Note that the
error bound (2.39) is close to the optimal error for rank k approximations to A.

Remark 2.4. When properly implemented, the modified Gram-Schmidt algorithm with reorthog-
onalization is a reliable method for obtaining a QR decomposition (see, for instance, [2]). While
there are no guaranteed bounds of the form (2.39) for this algorithm, it does well in practice. In
[10], robust, provably stable algorithms are introduced for producing QR decompositions that satisfy
bounds of the form (2.39).

2.7. Analogs of matrix factorizations for finite sequences of functions. Here we introduce
analogs of the matrix factorizations of the preceding two subsections for finite sequences of functions.
We begin with the following obvious generalization of Lemma 2.2.

LEMMA 2.3. For any finite sequence φ1, . . . , φm : [a, b] → R of square integrable functions, there
exists an integer k ≤ m, a permutation Π ∈ Sm, a collection of orthonormal functions q1, . . . , qk :
[a, b] → R, and an k ×m real matrix R = (rij) with the block form(

T M
)

where T is a k×k upper triangular matrix with positive diagonal entries and M is a general k×(m−k)
matrix, such that

(2.40) φΠ(j)(x) =
max(j,k)∑

i=1

rijqi(x)

8 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

for all j = 1, . . . ,m. Moreover, there is a one-to-one correspondence between decompositions of this
form and permutations Π ∈ Sm.

By analogy with the finite dimensional case, we will refer to decompositions of this type as QR
decompositions. The functions qi(x) will be referred to as QR functions and we will call the diagonal
entries rii of R the normalizing factors of the decomposition.

As in the case of matrices, a common application of expansions of the form (2.40) is the “compres-
sion” of the functions φj ; that is, often permutations Π ∈ Sm can be found for which the truncated
series

(2.41)
p∑

j=1

aijqi(x),

with p < k, provide good approximations to the functions φΠ(j).
Now, we restate a result found in [3], generalizing the SVD to the case of a finite sequence of

functions.
THEOREM 2.5. Suppose that the functions φ1, . . . , φm : [a, b] → R are square integrable. Then

there exist an integer k, a finite orthonormal sequence of functions u1, . . . , uk : [a, b] → R, an m× k
matrix V = (vij) with orthonormal columns, and a sequence s1 ≥ s2 ≥ · · · ≥ sk > 0 ∈ R such that

(2.42) φj(x) =
k∑

i=1

ui(x)sivji

for all x ∈ [a, b] and all j = 1, . . . ,m. The sequence s1, . . . , sk is uniquely determined by k.
By analogy with the finite-dimensional case, we will refer to this decomposition as the SVD of

a finite sequence of functions. We call the functions ui the singular functions, the columns of V
the singular vectors, and the values si the singular values. The SVD is clearly a useful tool for the
compression of the sequence φ1, . . . , φm: if we let φ̃j(x) denote the p-term truncation

(2.43) φ̃j(x) =
p∑

i=1

ui(x)sivji

of the sum (2.42), then

(2.44) ‖φ̃j(x)− φj(x)‖ ≤ sp+1

for j = 1, . . . ,m.
However it is obtained, using an approximate representation

(2.45) φj(x) ∼
p∑

i=1

αiqi(x),

integrals of the form

(2.46)
∫ b

a

φj(x)ω(x)dx

can be approximated as ∫ b

a

φj(x)ω(x)dx ≈
∫ b

a

(
p∑

i=1

αiqi(x)

)
ω(x)dx

=
p∑

i=1

αi

∫ b

a

qi(x)ω(x)dx;(2.47)

thus, a quadrature which is exact for the integrals

(2.48)
∫ b

a

qi(x)ω(x)dx

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 9

for i = 1, . . . , p, can be used as an approximate quadrature for the integrals

(2.49)
∫ b

a

φj(x)ω(x)dx

for j = 1, . . . ,m.

2.8. Underdetermined systems. The purpose of this short subsection is the statement of two
lemmas on the existence and behavior of sparse solutions of underdetermined systems.

We begin with the following result on the existence of well-behaved solutions to underdetermined
least-squares problems, whose proof is an elementary exercise in linear algebra.

LEMMA 2.4. Suppose that A is an n ×m matrix, n < m, with left singular vectors u1, . . . , uk

and singular values σ1 ≥ . . . ≥ σk > 0. For 0 < p ≤ k, let Up be the subspace of Rn spanned by
u1, . . . , up, and let Projp : Rn → Up denote the projection operator Rn → Up. Then, given any
vector b ∈ Rn and any integer 0 < p ≤ k, there exists a vector x ∈ Rm with no more than p nonzero
entries such that

(2.50) ‖Ax− b‖2 = ‖Projpb− b‖2

and

(2.51) ‖x‖2 ≤
σ1

σp
‖b‖2.

Let A be an n×m matrix with n < m and consider the least-squares problem

(2.52) min
x
‖Ax− b‖2,

where b is a given vector in Rn. The problem is underdetermined and therefore the condition number
of A is infinite. However, Lemma 2.4 implies that if b is in the span of a small number of singular
vectors of A, then a well-behaved approximate solution x to the least-squares problem (2.52) can
still be found.

The second lemma is a stronger, but more specialized result, whose proof is an easy corollary of
the following theorem, which appears as Theorem 2 in [17].

THEOREM 2.6. Suppose that S is an arbitrary set, n is a positive integer, f1, . . . , fn are bounded
complex-valued functions on S, and ε is a positive real number such that

(2.53) ε ≤ 1.

Then, there exist n points x1, . . . , xn in S and n functions g1, . . . , gn on S such that

(2.54) |gk(x)| ≤ 1 + ε

for all x in S and k = 1, 2, . . . , n, and

(2.55) f(x) =
n∑

k=1

f(xk)gk(x)

for all x in S and any function f defined on S via the formula

(2.56) f(x) =
n∑

k=1

ckfk(x).

Moreover, if the set S is finite, then g1, . . . , gn can be chosen so that (2.54) holds with ε = 0.
LEMMA 2.5. If

(2.57) Ax = b,

where A is an m × n matrix of rank m, then there exists a vector x̃ ∈ Rn with no more then m
nonzero entries such that

Ax̃ = b,

and
‖x̃‖1 ≤ m‖x‖1.

10 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

Proof: By Theorem 2.6, there exists an m×n matrix G whose entries are bounded by 1 and an
m×m matrix of Ã consisting of m columns Ai1 , . . . , Aim of A such that

(2.58) A = ÃG.

Since Ax = b, it follows that

(2.59) ÃGx = b.

If we let y = Gx ∈ Rm and define x̃ by the formula

(2.60) x̃j =

{
yk if j = ik,

0 otherwise
,

then x̃ has at most m nonzero entries, Ax̃ = b, and

‖x̃‖1 =
m∑

i=1

|x̃i|(2.61)

=
m∑

i=1

∣∣∣∣∣∣
n∑

j=1

gijxj

∣∣∣∣∣∣(2.62)

≤
m∑

i=1

n∑
j=1

|xj |(2.63)

≤ m‖x‖1,(2.64)

as desired.
Remark 2.5. For sets S which are finite, the proof of Theorem 2.6 given in [17] is constructive,

but the procedure is computationally infeasible. To wit, in the special case of Lemma 2.5, the scheme
of [17] amounts to the choice of a submatrix Ã consisting of a set of columns Ai1 , . . . , Aim

of A which
maximize the determinant

(2.65) det
(
Ai1 Ai2 . . . Aim

)
over the collection of all sets of m columns of the matrix A. The existence of the matrix G follows
since

det(Ã) 6= 0

by construction, and the bound on the entries of G follows from Cramer’s rule.
Remark 2.6. In practice, the modified Gram-Schmidt procedure with reorthogonalization can be

used to find a set of m columns Ai1 , . . . , Aim of the m× n rank m matrix A such that

(2.66) det
(
Ai1 Ai2 . . . Aim

)
is comparable to the supremum

(2.67) sup
j1,...,jm

det
(
Aj1 Aj2 . . . Ajm

)
over all collections of m columns of A. Indeed, the modified Gram-Schmidt procedure is nothing
more than a “greedy” algorithm for finding an approximate solution to the optimization problem

(2.68) argmax
j1,...,jm

det
(
Aj1 Aj2 . . . Ajm

)
.

An obvious modification of the argument in [17] (which is sketched above in Remark 2.5) shows
that once such a set of columns i1, . . . , im has been found, the matrix A can factored as

A = ÃG,

where Ã is an m×m submatrix of A and G is an m×n matrix whose entries are bounded in absolute
value, but not necessarily by 1.

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 11

Remark 2.7. Strong rank revealing QR factorizations (see [10] and [2], for instance) identify a
spanning set Ai1 , . . . , Aim of columns of an m× n matrix A of rank m for which the ratio of

det
(
Ai1 Ai2 . . . Aim

)
to

sup
j1,...,jm

det
(
Aj1 Aj2 . . . Ajm

)
is guaranteed to satisfy a lower bound, thus ensuring that a stable factorization of the form

A = ÃG,

where Ã is an m×m submatrix of A, can be found.

2.9. The Sherman-Morrison-Woodbury formula. The Sherman-Morrison-Woodbury formula
gives an expression for the rank-k update

(A+ UV t)−1

of the inverse of a matrix A. The following Lemma can be found, for instance, in [8]:
LEMMA 2.6. Suppose that A is an invertible n × n matrix, U is an n × k matrix, and V is an

k × n matrix. If the rank-k update

(2.69) (A+ UV t)

of the matrix A is invertible, then its inverse is

(A+ UV t)−1 = A−1 −A−1U(I + V tA−1U)−1V tA−1.

In this paper, given an m × n real matrix A, we will utilize the Sherman-Morrison-Woodbury
formula to perform a specific type of update to the inverse of the m×m matrix AAt. In particular,
we wish to update the inverse of AAt in order to form the inverse of the matrix BBt, where B is
obtained from A by deleting its jth column. That is,

B = A− uvt,

where u is the m× 1 vector which is the jth column of the matrix A and v is the n× 1 vector with
entries

(2.70) vi =

{
1 if i = j

0 otherwise.

A simple calculation shows that(
A− uvt

) (
A− uvt

)t = AAt − uvtAt −Autv + uvtvut(2.71)

= AAt − uut.(2.72)

In other words, if we form the matrix B by deleting the jth column of the matrix A, then BBt can
be formed from AAt by a rank-1 update. The Sherman-Morrison-Woodbury formula then implies
that the inverse of BBt can be computed from (AAt)−1 via a rank-1 update.

3. Numerical apparatus

3.1. Nested Legendre discretizations of sequences of functions. In this paper, we are con-
fronted with sequences φ1, . . . , φm of functions defined on the interval [a, b] for which we wish to
construct a generalized Gaussian quadrature rule. The collection of functions φj has the following
properties:

• Each function φj is integrable on [a, b] and analytic except at a small number of points,
• The total number functions is quite large (e.g., m = 10, 000),
• The rank of the set φ1, . . . , φm is low (e.g., 40) to high precision.

12 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

In order to construct an efficient quadrature rule, we will take advantage of rank deficiency to
“compress” the sequence φ1, . . . , φm. This means, more specifically, that we first form a set u1, . . . , uk

of orthonormal functions on [a, b] such that each φi can be approximated by a sum of the form

(3.1) φi(x) ∼
k∑

j=1

αijuj(x),

and each uj is defined by a sum

(3.2) uj(x) =
m∑

i=1

βijφi(x).

We then build a generalized Gaussian quadrature rule for the functions u1, . . . , uk. In the course of
constructing that quadrature, it will be necessary to evaluate the functions uj at arbitrary points
on the interval [a, b]. If the sums (3.2) involve a large number of terms, or if the evaluation of the
φi is expensive, then it is impractical to use formula (3.2) to evaluate the uj . It will therefore be
necessary to represent the function uj in a manner which allows for their rapid evaluation.

An obvious alternative to evaluating sums of the form (3.2) directly is to represent the functions
uj via polynomial interpolation. Let x1, . . . , xn be a mesh of interpolation points on the interval [a, b]
and suppose that the Lagrange polynomials interpolating u1, . . . , uk at these mesh points represent
the functions uj to a given precision. Then, clearly, the Lagrange polynomial interpolating the
function

(3.3) ψi =
n∑

j=1

αijuj(x)

at x1, . . . , xn approximates φi with controllable precision. As was discussed in Subsection 2.3, if
Gaussian nodes are used as interpolating points, then the resulting procedure is numerically stable.
However, when the functions φj are not smooth, polynomial interpolation becomes inefficient and
can fail completely for sufficiently singular functions.

In such cases, where the functions to be interpolated are singular, it is customary to use an
adaptive interpolation scheme instead. That is, the interval [a, b] is subdivided into a collection of
subintervals such that each function φj is accurately interpolated by a low order polynomial on each
subinterval.

In this subsection, we describe a numerical procedure for the approximation of a sequence of
functions via nested Gauss-Legendre polynomial interpolation. The procedure is introduced in [20],
but we reproduce it here since it is an integral part of the algorithm. The input to this procedure is a
collection φ1, . . . , φm of functions integrable on [a, b], a precision ε > 0, and a reasonably large integer
k which controls the number of interpolation nodes used on each subinterval (for the computations
in this paper, we used k = 30). The algorithm proceeds in three stages.

Stage 1. In the first stage, the following procedure is used to discretize each of the φi separately.
That is, the following sequence of steps is repeated for i = 1, . . . ,m:
1. Construct the 2k Legendre nodes x1, . . . , x2k on the interval [a, b].
2. Let P (x) denote the Lagrange polynomial of order 2k − 1 interpolating φi at the mesh points
x1, . . . , x2k. Construct the coefficients α1, . . . , α2k of P (x) in the expansion

P (x) =
2k−1∑
j=0

αjLj(x)

where Lj(x) is the jth order Legendre polynomial.
3. If the inequality

(3.4)
2k∑

j=k+1

|αj |2 < ε

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 13

is satisfied, then we conclude that the order k Legendre expansion for φi on the interval [a, b] is
sufficient. Otherwise, we split the interval [a, b] into two subintervals, [a, (a+b)/2] and [(a+b)/2, b)],
and repeat the procedure recursively for each of the subintervals.

Stage 2. Store the endpoints of each subinterval constructed in Stage 1 in an array. Sort the array
and eliminate multiple elements. The resulting array of points on the interval [a, b] is the array of
endpoints of the subintervals of the final subdivision.

Stage 3. Construct the k point Legendre discretization on each the subintervals obtained in Stage
2 for each of the functions φi(x).

Remark 3.1. The scheme of this subsection is a reasonably reliable mechanism for the discretiza-
tion of sets of functions with singularities. The stopping condition (3.4) is analogous to that usually
used to terminate an adaptive quadrature procedure. Just as any such quadrature procedure can fail
for carefully designed counterexamples, so too can the procedure of this section fail under certain
circumstances. The problem, however, is not encountered in the examples of this paper and whenever
the authors have encountered it in practice, it has been easy to rectify.

3.2. Compression of a finite sequence of functions. This subsection describes a numerical
procedure for compressing a finite sequence of functions by approximating either the singular value
decomposition or a QR decomposition of the sequence.

We begin with two definitions, the second of which is adapted from [20] and [3]. In what follows,
PC([a, b]) refers to the vector space of piecewise continuous functions on the interval [a, b].

DEFINITION 3.1. A k-point linear interpolation scheme on the interval [a, b] is a collection of
linearly independent functions φ1, . . . φk in PC([a, b]) and a set of distinct nodes x1, . . . , xk in [a, b]
together with a linear mapping T : PC([a, b]) → span{φ1, . . . , φk} such that

(3.5) Tf(xj) = f(xj)

for all j = 1, . . . , k.
We call the x1, . . . , xk interpolation nodes, the mapping T the interpolation mapping, and the φj

interpolating functions. We also say that the coefficients α1, . . . , αk of Tf(x) with respect to the
basis {φ1, . . . , φk} are the interpolation coefficients for the function f .

Associated with every k-point linear interpolation scheme is an invertible linear transformation
Rk → Rk which takes the values f(x1), . . . , f(xk) of a function f at the interpolation nodes to the
k interpolation coefficients for the function. The image Tf of f under the interpolation mapping is,
of course, determined by these interpolation coefficients. We will often refer to Tf as the function
defined by the interpolation scheme and the values f(x1), . . . , f(xk).

Remark 3.2. It is generally possible to extend the definition of interpolation scheme to encompass
interpolating functions φ not in PC([a, b]), as well as interpolation mappings T defined on larger
spaces. We must keep in mind, however, that equation (3.5) requires that both Tf(x) and f(x) be
defined pointwise.

DEFINITION 3.2. We say that the the combination of a k-point linear interpolation scheme on
[a, b] with nodes y1, . . . , yk ∈ [a, b] and interpolating functions φ1, . . . , φk, and a k-point quadrature
rule with nodes x1, . . . , xk ∈ [a, b] and weights w1, . . . , wk preserves inner products if

• The nodes x1, . . . , xk of the quadrature rule coincide with the nodes y1, . . . , yk of the inter-
polation scheme, and

• The quadrature rule is exact for all products φi(x)φj(x) of the interpolating functions.

Remark 3.3. The second condition in definition 3.2 together with the assumption of the linearity
of the interpolation scheme ensures that for any two piecewise continuous functions f(x) and g(x)
the quadrature rule is exact for the integral

(3.6)
∫ b

a

Tf(x)Tg(x)dx.

The following are examples of quadrature and interpolation schemes which preserve inner prod-
ucts:

14 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

Example 3.1. The combination of a classical Gaussian quadrature and Lagrange interpolation
at the same Gaussian nodes preserves inner products, since polynomials interpolation on n nodes
produces an interpolating polynomial of order n− 1 and the product of any two such polynomials is
exactly integrated by an n point Gaussian quadrature.

Example 3.2. Nested Gaussian interpolation — like that of the preceding section — coupled with
corresponding nested Gaussian quadrature formulas also preserve inner products, since on each
subinterval Gaussian interpolation is coupled with a Gaussian quadrature formula.

Note that the interpolating functions in this example are not continuous, but rather piecewise
continuous.

The following theorem, which is a reformulation of Theorem 4.5 in [20], will be used in approxi-
mating the singular value decomposition (or a QR decomposition) of a sequence of functions.

THEOREM 3.1. Suppose that the combination of a quadrature rule with nodes x1, . . . , xn and
weights w1, . . . , wn, and a linear interpolation scheme with interpolating functions ψ1, . . . , ψn and
interpolation mapping T preserves inner products on [a, b]. Suppose further that φ1, . . . , φm is a
collection of piecewise continuous functions on [a, b], U = (uij) is an n×k matrix with orthonormal
columns, and R = (rij) is a k ×m matrix such that

(3.7) φj(xi)
√
wi =

k∑
l=1

uilrlj

for all j = 1, . . . ,m and i = 1, . . . , n. If the functions uj(x) are defined for all j = 1, . . . , k via the
interpolation scheme and the values

(3.8) uj(xi) =
uij√
wi
,

then:
1. The functions uj(x) are orthonormal; that is,∫ b

a

ui(x)uj(x)dx = δij

for all i, j = 1, . . . , k.
2. The sequence of functions φ̃1, . . . , φ̃m defined by the formula

φ̃j(x) =
k∑

i=1

ui(x)rij

is identical to the sequence of functions produced by sampling the functions φ1, . . . , φm at the
points {xi} and then interpolating with the interpolation scheme on [a, b].

The algorithm described below uses as input a sequence of functions φ1, . . . , φm : [a, b] → R and
a quadrature and interpolation scheme which preserves inner products. The nodes and weights of
the quadrature will be denoted by x1, . . . , xn and w1, . . . , wn, respectively.

The output of the algorithm depends on whether the SVD or a QR decomposition is used for com-
pression. In either case, the output is a sequence u1, . . . , uk of orthonormal vectors and a sequence
σ1, . . . , σk of positive real numbers. When the SVD is used, the orthonormal vectors u1, . . . , uk ap-
proximate the singular vectors for the sequence φ1, . . . , φm and the σ1, . . . , σk approximate the cor-
responding singular values. In the case of the QR decomposition, the orthonormal vectors u1, . . . , uk

approximate a collection of QR vectors for φ1, . . . , φm and the σj are the corresponding normalizing
factors.

Description of the algorithm.
1. Construct the n×m matrix A with entries

Aij = φj(xi)
√
wi.

2. Compute either the SVD of the matrix A or a QR decomposition for the matrix A. In the first
case, produce the factorization

A = UΣV ∗,

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 15

where U = (uij) is an n× k matrix with orthonormal columns, V = (vij) is a n m× k matrix with
orthonormal columns, and Σ is a diagonal matrix whose jth diagonal entry is σj . In the second
case, produce the factorization

AΠ = UR,

where U = (uij) is an n×k matrix with orthonormal columns and R is an k×m trapezoidal matrix
with diagonal entries σ1, . . . , σk.
3. Construct the n× k values uj(xi) defined by the formula

(3.9) uj(xi) =
uij√
wi
.

4. For any desired point x ∈ [a, b], evaluate the functions ui : [a, b] → R using the interpolation
scheme on [a, b].

Remark 3.4. Theorem 3.1 ensures that the accuracy of the approximation produced by the algo-
rithm of this section depends primarily on the accuracy of the underlying interpolation scheme.

3.3. Construction of Chebyshev quadratures. In this subsection, we describe a numerical
algorithm for the construction of a Chebyshev quadrature for a finite sequence of functions. Given a
pre-existing n-point quadrature formula x1, x2, . . . , xn, w1, w1, . . . , wn, where n > k, which exactly
integrates the u1, . . . , uk, it is straightforward to construct a Chebyshev quadrature for u1, . . . , uk.
Because the pre-existing quadrature rule exactly integrates the input functions u1, . . . , uk, the matrix
equation

(3.10)


u1(x1) u1(x2) · · · u1(xn)
u2(x1) u2(x2) · · · u2(xn)

... · · ·
...

uk(x1) uk(x2) · · · uk(xn)




w1

w2

...
wn

 =


r1
r2
...
rk

 ,

where ri is defined by

ri =
∫ b

a

uj(x)dx

for all i = 1, . . . , k, is satisfied. By Lemma 2.5, there exist i1, . . . , in and w̃1, . . . w̃k such that

(3.11)


u1(xi1) u1(xi2) · · · u1(xin)
u2(xi1) u2(xi2) · · · u2(xin)

... · · ·
...

uk(xi1) uk(xi2) · · · uk(xin)





w̃1

w̃2

...
w̃k

0
...
0


=


r1
r2
...
rk



and

(3.12)
k∑

j=1

|w̃j | ≤ k

n∑
j=1

|wj |.

In other words, there is by Lemma 2.5 a k-point quadrature formula xi1 , . . . , xik
, w̃1, . . . , w̃k for the

k functions u1, . . . , uk. Moreover, the inequality (3.12) ensures that the k-point quadrature formula
is numerically stable assuming the weights of the original quadrature are reasonably small.

The following algorithm is a computational procedure for constructing such a quadrature via
the modified Gram-Schmidt algorithm with double orthogonalization, or one of its variants. This
procedure does not realize the theoretical bound (2.5) guaranteed by Lemma 2.5. In practice,
however, it still leads to the construction of stable Chebyshev quadrature formulas for the input
functions; see Subsection 2.8 for a more discussion of the numerical stability of the modified Gram-
Schmidt algorithm and its variants.

16 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

The algorithm uses as input a sequence u1, . . . , uk of functions and a pre-existing quadrature
x1, . . . , xn, w1, . . . , wn, with n > k, which exactly integrates the functions u1, . . . , uk, and produces
as output a k-point quadrature formula consisting of k nodes x̃1, . . . , x̃k ∈ {x1, . . . , xn} and k weights
w̃1, . . . , w̃k.

Description of the algorithm.

1. For the vector r ∈ Rk whose ith entry is the sum

ri =
n∑

j=1

ui(xj)wj ,

which is the value of the integral ∫ b

a

ui(x)dx.

2. Form the k × n matrix B with entries

Bij = ui(xj)
√
wj .

3. Use the pivoted Gram-Schmidt algorithm with double reorthogonalization to select a setBi1 , . . . , Bik

of spanning columns for the matrix B and form the factorization

B = Q

(
R11 R12

0 R22

)
,

where R11 is a k × k upper triangular matrix, Q is a k × k orthogonal matrix,(
Bi1 Bi2 · · · Bik

)
= QR11,

and ‖R22‖2 is small.
4. Use back substitution to construct a solution z ∈ Rk to the k × k system of equations

R11z = Q∗r,

which is, of course, a least squares solution of the system(
Bi1 Bi2 · · · Bik

)
z = r.

5. Form the new k-point quadrature x̃1, . . . , x̃k, w̃1, . . . , w̃k by letting

x̃j = xij and w̃j = zj
√
wj

for all j = 1, . . . , k.
Remark 3.5. The columns of the matrix B are scaled by the square roots of the quadrature weights

so that the l2 norms of columns of B computed in Step 3 by the Gram-Schmidt orthonormalization
procedure are proportional to the quadrature weight for the corresponding column.

4. Numerical algorithm

This section describes a numerical algorithm for the construction of the nodes and weights of an
approximate quadrature rule for a sequence of functions. The algorithm’s input is a sequence of
functions

(4.1) φ1, . . . , φm : [a, b] → R
and two accuracies, εdisc and εquad. The first, εdisc, controls the accuracy of the scheme used to
discretize and compress the input functions φ1, . . . , φm, and the second, εquad, is the desired accuracy
for the quadrature rule. The algorithm’s output is a quadrature rule consisting of a set of nodes
x1, . . . , xl and a set of weights w1, . . . , wl such that

(4.2)
∫ b

a

φi(x)dx ∼
l∑

j=1

φi(xj)wj

for all i = 1, . . . ,m. The integer l depends on the numerical rank of the input set φ1, . . . , φm and
both εdisc and εquad.

The algorithm proceeds in three stages. In the first stage, the numerical techniques of the
preceding section are used to discretize and compress the functions φ1, . . . , φm. In the second,

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 17

a suboptimal quadrature rule is obtained for the compressed collection of functions. Finally, in
the third phase, an optimization procedure is used to reduce the number of points needed by the
quadrature.

Stage 1: Discretization and compression.
In this stage the following sequence of steps is performed to discretize and compress the input

functions.

1. Use the technique of Section 3.1 to discretize the functions φ1, . . . , φm, so that they are all
represented to the precision εdisc. Let φ̃1(x), . . . , φ̃m(x) denote the resulting discretizations.
Also, let x1, . . . , xn denote the discretization nodes and w1, . . . , wn the weights of the associated
quadrature.

2. Apply the procedure of Subsection 3.2 to compress the sequence φ̃1, . . . , φ̃n via either a QR
decomposition or the singular value decomposition. Denote the resulting orthonormal functions
by u1, . . . , up and the associated singular values or normalization factors by λ1 ≥ λ2 ≥ . . . ≥
λp > 0.

3. Discard any of the functions u1, . . . , up corresponding to a singular value (or normalization factor)
λj ≤ εquad.

4. Denote the functions obtained in this manner by u1, . . . , uk and the associated singular values
(normalization factors) by λ1 ≥ λ2 ≥ . . . ≥ λk > 0.
Remark 4.1. It is important that εquad be somewhat larger than εdisc (for the examples of this

paper, εquad/εdisc ≥ 100). Because the functions φ1, . . . , φm are discretized to precision εdisc, sin-
gular vectors uj corresponding to singular values λj comparable to εdisc contain little information
about the functions φ1, . . . , φm. This means that constructing a quadrature formula which faithfully
integrates such singular functions is pointless, and moreover, since the uj corresponding to singular
values λj comparable to εsvd are not necessarily smooth, even when the the functions φ1, . . . , φm are
very smooth, it can cause difficulties with the the algorithm described in Step 3 below.

Stage 2: Construction of a k-point quadrature rule.
We now apply the procedure of Subsection 3.3 to construct a k-point quadrature formula for

φ1, . . . , φm. We use as inputs to that procedure the functions u1, . . . , uk and the nested Gaussian
quadrature x1, . . . , xn, w1, . . . , wn constructed in Stage 1. Note that since the u1, . . . , uk are defined
via the nested Gaussian interpolation scheme, the quadrature x1, . . . , xn, w1, . . . , wn is exact for the
functions u1, . . . , uk.

Denote the resulting k quadrature nodes by x̃1, . . . , x̃k and the k quadrature weights by w̃1, . . . , w̃k.
The weights of the nested Gaussian quadrature scheme satisfy the bound

(4.3)
n∑

j=1

|wj | ≤ (b− a),

since wj > 0 for all j = 1, . . . , n and the quadrature rule is exact for the function f(x) = 1. It follows
from the discussion in Subsection 3.3 that the new k-point quadrature formula is numerically stable

Because the discretizations φ̃1, . . . , φ̃m are well approximated by functions in the span of the
u1, . . . , uk, a quadrature rule exact for the functions u1, . . . , uk will approximately integrate the
functions φ̃1, . . . , φ̃m (and, of course, it follows that such a quadrature rule will also serve for the
functions φj(x), assuming the discretizations constructed in Step 1 are sufficiently accurate). So
the new k-point quadrature rule x̃1, . . . , x̃k, w̃1, . . . , w̃k is an approximate quadrature for the input
functions φ1, . . . , φm.

Stage 3: Point-by-point reduction of the quadrature rule.
In this stage, beginning with an n-point quadrature rule x1, . . . , xn,w1, . . . , wn, we repeatedly

apply the following sequence of steps, which attempt to reduce an n-point quadrature rule for
u1, . . . , uk to an (n− 1)-point quadrature rule for u1, . . . , uk.

To perform these calculations, we use the observation of Subsection 2.2; namely, that the nodes
and weights of a quadrature rule exact for a sequence of functions satisfy a system of nonlinear
equations. Given one of the n quadrature nodes xj , we can use this fact to compute an (n − 1)
point quadrature for the functions u1, . . . , uk via the damped Gauss-Newton algorithm described in

18 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

Subsection 2.4: we simply form the system of k nonlinear equations in n− 1 unknowns described in
Subsection 2.2 and use as an initial guess for the Gauss-Newton iterations the current quadrature
nodes and weights, excluding the chosen point xj and its corresponding weight wj .

The only problem with this approach is the selection of the quadrature node xj to eliminate.
There are n possible nonlinear systems, each corresponding to one of the n points which can be
omitted. It is computationally expensive to search for a sufficiently accurate (n−1)-point quadrature
rule by solving each of the n resulting nonlinear systems of equations via the damped Gauss-Newton
method. That difficulty is surmounted via the procedure described in Step 1, wherein the direction
of the step for the first iteration of the damped Gauss-Newton method is computed for each of the n
possible nonlinear systems. The procedure is expedited by using the Sherman-Morrison-Woodbury
update formula, which leads to a computationally feasible scheme, and the results are used to
determine the order in which to remove quadrature nodes.

Step 1: Rank the remaining nodes.
1. For each i = 1, . . . , k, compute the integrals∫ b

a

ui(x)dx

using the original nested Legendre quadrature rule formed in Step 1. Form the vector

r =


r1
r2
...
rk

 .

2. Form the Jacobian matrix

J =



u′1(x1)w1 u′1(x2)w2 . . . u′1(xn)wn u1(x1) u1(x2) . . . u1(xn)

u′2(x1)w1 u′2(x2)w2 . . . u′2(xn)wn u2(x1) u2(x2) . . . u2(xn)

...
...

...

u′k(x1)w1 u′k(x2)w2 . . . u′k(xn)wn uk(x1) uk(x2) . . . un(xn)


for the nonlinear system (2.4) in Subsection (2.2), and compute the inverse

A = (JJ t)−1.

of the product JJ t.
3. For each node xk, first use the Sherman-Morrison-Woodbury formula (see Subsection 2.9) to

form the matrix
Ak = (JkJk

t)−1

via two rank-1 updates to A, where the matrix Jk is obtained from J by deleting its kth and
(k + n)th columns. That is, Jk is obtained from J by deleting the contributions from the node
xk and its corresponding weight wk.

Next, compute the damped Gauss-Newton step direction ∆xk for the nonlinear system ob-
tained by omitting the point xk; i.e., find a solution ∆xk to the least squares problem

argmin
x

‖Jkx− r‖2,

where r is the vector of definite integrals computed above. The solution to the minimization
problem is found by solving the normal equations

∆xk = (JkJ
t
k)−1J t

kr = AkJ
t
kr.

4. For each k = 1, . . . , n, let ηk denote the l2 norm of the solution vector ∆xk. We will refer to the
value ηk as the significance of the node xk.

5. Renumber the nodes and weights of the quadrature so that {x1, . . . , xn} are arranged in order of
increasing ηj .

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 19

xi wi
0.2768757118897219E-21 0.4385873207003101E-20
0.6728999118496260E-16 0.6670167705957102E-15
0.2913313729367070E-12 0.2065563299999408E-11
0.1363525818876240E-09 0.7260286603891295E-09
0.1466530079834641E-07 0.6011573165242795E-07
0.5526176228089556E-06 0.1770124736858168E-05
0.9556438762298892E-05 0.2415867272187855E-04
0.9137352164364451E-04 0.1836327943155820E-03
0.5528197186769772E-03 0.8884287232428108E-03
0.2340613778507800E-02 0.3023731195124369E-02
0.7487402952102819E-02 0.7813101428951048E-02
0.1919273618673196E-01 0.1624899441619337E-01
0.4125089438263980E-01 0.2844094097856474E-01
0.7699431299223189E-01 0.4336382757029246E-01
0.1282821075952860E+00 0.5919402249047975E-01
0.1950313100451387E+00 0.7398735448703726E-01
0.2754007895160087E+00 0.8623391772361065E-01
0.3663421175354336E+00 0.9502522703162401E-01
0.4641496390531796E+00 0.9991966301938738E-01
0.5648167175087882E+00 0.1007221934294668E+00
0.6641918632800308E+00 0.9731824512000341E-01
0.7580165934350541E+00 0.8960557633305366E-01
0.8419459185715879E+00 0.7752702387328704E-01
0.9116491627096593E+00 0.6119598511874399E-01
0.9630711719694888E+00 0.4108284432044861E-01
0.9928824356753315E+00 0.1819930030488772E-01

xi wi
0.1056470082726196E-21 0.1711096457804046E-20
0.3448276636263963E-16 0.3503308273337532E-15
0.1844497556672273E-12 0.1340813788691161E-11
0.1004613396825143E-09 0.5475770404764035E-09
0.1199010226476309E-07 0.5015698242641016E-07
0.4834665505524823E-06 0.1574374049854322E-05
0.8721446282278398E-05 0.2233377157238088E-04
0.8558255329196107E-04 0.1737239626794526E-03
0.5262332881183370E-03 0.8524600446470783E-03
0.2251655341009627E-02 0.2928241357781042E-02
0.7255657724649352E-02 0.7616225404410970E-02
0.1869906517557028E-01 0.1591836338093090E-01
0.4035483211529235E-01 0.2796728481689857E-01
0.7555760069233022E-01 0.4275972822079389E-01
0.1261876307279175E+00 0.5848899820837419E-01
0.1922011617225488E+00 0.7323146146527266E-01
0.2718197580245527E+00 0.8550269331832136E-01
0.3620819036055107E+00 0.9441537793180152E-01
0.4593842035808489E+00 0.9953654606755140E-01
0.5598231960985849E+00 0.1006639600889222E+00
0.6593340785103139E+00 0.9765633871558868E-01
0.7537053806233217E+00 0.9035707472894443E-01
0.8385666970462145E+00 0.7861734429197797E-01
0.9094519100536209E+00 0.6242511779052747E-01
0.9620432996182802E+00 0.4213323000112514E-01
0.9926707956133087E+00 0.1873187135192821E-01

Table 1. Quadrature formulas for the functions of the form (5.2) with α ∈
[−.6, 1.0] and b = 20. The 26-point rule on the left was generated with the QR
variant of the algorithm, and the 26-point rule on the right with the SVD variant.
Both achieve full double precision accuracy.

Step 2: First pass through the nodes.
For each j = 1, . . . , n, perform the following sequence of steps:

1. Form an initial guess x1, . . . , x̂j , . . . , xn and w1, . . . , ŵj , . . . , wn for the damped Gauss-Newton
method, which excludes the node xj and its corresponding weight wj .

2. Perform a small number (e.g., 4) of damped Gauss-Newton iterations to form a (n − 1)-point
quadrature rule x̃1, . . . , ˜xn−1, w̃1, . . . , ˜wn−1 for the functions u1, . . . , uk.

3. Measure the approximation error

εj =
k∑

i=1

∣∣∣∣∣∣
n−1∑
j=1

ui(x̃j)w̃j − ri

∣∣∣∣∣∣
2

for this new quadrature rule.
4. If the error εj for the quadrature rule is sufficiently small (i.e., εj ≤ εquad), then we accept this

(n− 1)-point quadrature rule and go to Step 4.

If this sequence of steps completes without finding a quadrature rule with acceptable accuracy, then
we renumber the points x1, . . . , xn and weights w1, . . . , wn so that

ε1 ≤ ε2 ≤ . . . ≤ εn,

and move onto Step 3.

Step 3: Second pass through the nodes.
We arrive at this stage only if we were unable to find a satisfactory (n− 1)-point quadrature rule

by taking a small number of damped Gauss-Newton steps. For each j = 1, . . . , n we perform the
following sequence of steps:

1. Form an initial guess x1, . . . , x̂j , . . . , xn and w1, . . . , ŵj , . . . , wn for the damped Gauss-Newton
method, which excludes the node xj and its corresponding weight wj .

2. Use the damped Gauss-Newton algorithm to form an (n−1)-point quadrature rule x̃1, . . . , ˜xn−1,
w̃1, . . . , ˜wn−1 for the functions u1, . . . , uk. In this step, the limit m on the number of iterations
should be large (for the examples of this paper, m = 30).

20 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

xi wi
0.7142868061585990E-22 0.1160152107855531E-20
0.2456099244659448E-16 0.2509065273801540E-15
0.1388771056068208E-12 0.1016875670063657E-11
0.7923942786393112E-10 0.4349600879799666E-09
0.9728977588843004E-08 0.4086717652474466E-07
0.3945858602101462E-06 0.1282739831111961E-05
0.7004999008550828E-05 0.1775840695185165E-04
0.6647847640796673E-04 0.1322763958769828E-03
0.3909094695073146E-03 0.6144256207665815E-03
0.1591555788166976E-02 0.1989634887947442E-02
0.4880565012011741E-02 0.4888053092794360E-02
0.1201508322521625E-01 0.9711002899742405E-02
0.2491818304126502E-01 0.1636280699646038E-01
0.4515299730588538E-01 0.2424264956181601E-01
0.7352628756922541E-01 0.3249392541983736E-01
0.1099997234334442E+00 0.4033170405949942E-01
0.1538773279072512E+00 0.4724229693878507E-01
0.2040969860767333E+00 0.5299744130306683E-01
0.2594754054419947E+00 0.5756526955130879E-01
0.3188532789291890E+00 0.6101116645139500E-01
0.3811550534088713E+00 0.6342859582873963E-01
0.4453957796025275E+00 0.6490097796110366E-01
0.5106608382341754E+00 0.6548363166007094E-01
0.5760733409165308E+00 0.6519584582093280E-01
0.6407559864297044E+00 0.6401701018681496E-01
0.7037897986529295E+00 0.6188400467055524E-01
0.7641706741669453E+00 0.5868958877875049E-01
0.8207656867459757E+00 0.5428419177206927E-01
0.8722752374352830E+00 0.4848722081318521E-01
0.9172156595977674E+00 0.4111890543212653E-01
0.9539498396044303E+00 0.3206665104837302E-01
0.9808044766847136E+00 0.2139086878064731E-01
0.9963048714773390E+00 0.9450771617397615E-02

xi wi
0.9545672035004698E-22 0.1529382502435904E-20
0.2782141914841101E-16 0.2808039205209724E-15
0.1433442445848540E-12 0.1039911929764398E-11
0.7793572117442273E-10 0.4253421034031052E-09
0.9385234534215939E-08 0.3933760334981154E-07
0.3797811590248750E-06 0.1235803705030886E-05
0.6783814687534227E-05 0.1725353179365193E-04
0.6495463184473910E-04 0.1298334366282352E-03
0.3852594648391139E-03 0.6086396169406588E-03
0.1580066444838872E-02 0.1985699293680274E-02
0.4874206864113175E-02 0.4907602643213011E-02
0.1205644750230908E-01 0.9794765851446592E-02
0.2509445953623319E-01 0.1655504783796611E-01
0.4558557083460269E-01 0.2456292098104041E-01
0.7433570351228120E-01 0.3292041369959096E-01
0.1112672046075921E+00 0.4081110237571449E-01
0.1556251204014568E+00 0.4771399178998336E-01
0.2062913928215772E+00 0.5341223120206637E-01
0.2620423475006598E+00 0.5789177660270919E-01
0.3216956048993508E+00 0.6123393859233695E-01
0.3841661902355933E+00 0.6354343717872484E-01
0.4484687328581966E+00 0.6491062297564529E-01
0.5136935077033405E+00 0.6539475441359519E-01
0.5789715342131883E+00 0.6501741217619580E-01
0.6434353506653515E+00 0.6375971643567762E-01
0.7061776301391591E+00 0.6156055973389270E-01
0.7662083501992056E+00 0.5831564380342947E-01
0.8224122548819472E+00 0.5387967213251687E-01
0.8735123565945287E+00 0.4807758967228032E-01
0.9180534258335345E+00 0.4073548782515963E-01
0.9544319708711901E+00 0.3174482830959985E-01
0.9810102430752318E+00 0.2116533404178935E-01
0.9963450010115773E+00 0.9348448278692109E-02

Table 2. Quadrature formulas for the functions of the form (5.2) with α ∈
[−.6, 1.0] and b = 50. The 33-point rule on the left was generated with the QR
variant of the algorithm, and the 33-point rule on the right with the SVD variant.
Both achieve full double precision accuracy.

3. Measure the approximation error

εj =
k∑

i=1

∣∣∣∣∣∣
n−1∑
j=1

ui(x̃j)w̃j −
∫ b

a

ui(x)dx

∣∣∣∣∣∣
2

for this new quadrature rule.
4. If the error εj for the quadrature rule is sufficiently small (i.e., εj ≤ εquad), then we accept

this (n− 1)-point quadrature rule and go to Step 4.

Step 4: Form the (n− 1)-point quadrature.
If an (n− 1) point quadrature rule with sufficient precision has been found, then we accept this

rule and repeat the procedure of this stage for the newly formed (n−1) point quadrature, beginning
with Step 1. Otherwise, we accept the n-point quadrature rule which was the input to this stage
and the algorithm terminates.

Remark 4.2. The process terminates when an n-point quadrature rule cannot be reduced to an
(n− 1)-point quadrature rule without an unacceptable loss of precision.

Remark 4.3. We would like to reiterate that the quadrature rules obtained by this algorithm are
not exact for the functions φ1, . . . , φm, but rather depend on the precision of the approximation used
and the pointwise properties of the φj.

5. Numerical Examples

We have implemented the algorithm of this paper for the computation of efficient quadrature
rules and tested it on a number of examples. Below we present several of these examples in order
to demonstrate the performance of the algorithm. It was implemented in Fortran 77, compiled
with the Lahey-Fujitsu FORTRAN 95, and all timings were measured on a 2.0 GHz Intel Core 2
Duo processor with 2GB of RAM (no parallelization was utilized). Where possible, computations
were performed in double precision (FORTRAN REAL*8) arithmetic; however, in order to achieve
double precision accuracy for quadrature rules, it is necessary to perform the computations in

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 21

extended precision (FORTRAN REAL*16). Because the Intel Core 2 Duo processor does not
support extended precision arithmetic in hardware, the running times for these computations are
quite long.

Throughout this section, we will denote by Jn(z) the nth order Bessel function of the first kind,
by Yn(z) the nth order Bessel function of the second kind, and by Hn(z) the nth order Hankel
function of the first kind,

(5.1) Hn(z) = Jn(z) + iYn(z).

5.1. Functions which are both oscillatory and singular. Classical quadrature techniques, like
Gaussian quadratures, perform poorly when the functions to be integrated exhibit more than one
kind of oscillatory or singular behavior. In this example, we present quadrature rules for functions
[0, 1] → R of the form

(5.2)
n∑

i=1

 m∑
j=1

ai,j cos(βjx) + bi,j sin(βjx)

xαi ,

where the αi are arbitrary real numbers on the interval [−.6, 1.0], and the βj are arbitrary real
numbers on an interval [0, b].

To construct such quadratures, we first chose fairly large integers m and n, and then construct
n Legendre nodes αi on the interval [−.6, 1.0] and m Legendre nodes βj on the interval [0, b]. We
then take all functions of the form

(5.3) xαi cos(βjx) and xαi sin(βjx)

xi wi
0.1229785612931944E-21 0.1975656354324724E-20
0.3552652759524009E-16 0.3567391763467614E-15
0.1686329315315300E-12 0.1205245279219683E-11
0.8100212080727273E-10 0.4310646162233048E-09
0.8480396519577635E-08 0.3435473776420015E-07
0.2999419813536928E-06 0.9380681263322151E-06
0.4775750160241328E-05 0.1165688301296981E-04
0.4182340572497058E-04 0.8041357440032319E-04
0.2326791577716382E-03 0.3553400421394265E-03
0.9141444687391752E-03 0.1117568231732080E-02
0.2744584412742149E-02 0.2706368315522836E-02
0.6682130398844386E-02 0.5351823901681276E-02
0.1379497029777539E-01 0.9027505156251501E-02
0.2498028781481084E-01 0.1342713453729264E-01
0.4073593719986401E-01 0.1808816226118706E-01
0.6109753716986285E-01 0.2257750666507361E-01
0.8573787689934898E-01 0.2661334339415909E-01
0.1141325013227837E+00 0.3007780005914209E-01
0.1457010079575668E+00 0.3296666645566729E-01
0.1798914175653836E+00 0.3533282633911356E-01
0.2162162828182287E+00 0.3724775994063266E-01
0.2542599995624801E+00 0.3878153866772767E-01
0.2936726106825575E+00 0.3999467106048757E-01
0.3341588668019299E+00 0.4093600316907737E-01
0.3754666793859390E+00 0.4164319265743018E-01
0.4173765534810784E+00 0.4214400183613144E-01
0.4596923705410667E+00 0.4245762431761676E-01
0.5022333728490615E+00 0.4259573188716399E-01
0.5448270050049624E+00 0.4256313223505469E-01
0.5873022022823650E+00 0.4235800106227075E-01
0.6294826883836380E+00 0.4197166388463288E-01
0.6711798141862015E+00 0.4138788759007980E-01
0.7121844171914087E+00 0.4058161770611706E-01
0.7522571077315104E+00 0.3951708131079590E-01
0.7911163140906269E+00 0.3814519845080301E-01
0.8284234137301751E+00 0.3640037679024763E-01
0.8637645183766196E+00 0.3419715966891961E-01
0.8966293685769854E+00 0.3142816445555609E-01
0.9263901328780540E+00 0.2796677541655260E-01
0.9522879806764252E+00 0.2368149162837343E-01
0.9734441058145912E+00 0.1847233461780559E-01
0.9889218194127054E+00 0.1233680051765303E-01
0.9978661596654697E+00 0.5456702457360249E-02

xi wi
0.7962322346848315E-22 0.1255518558516502E-20
0.1830884530860187E-16 0.1807251002083772E-15
0.7683378387780577E-13 0.5430995592381254E-12
0.3548822655627213E-10 0.1887682739748173E-09
0.3820064929774288E-08 0.1568277392295615E-07
0.1453085581405940E-06 0.4671196468523313E-06
0.2542069046177732E-05 0.6453818186891716E-05
0.2452467963854058E-04 0.4945575220250773E-04
0.1490989514657686E-03 0.2400742808398220E-03
0.6325800496319742E-03 0.8181326443575235E-03
0.2027015096036673E-02 0.2119810413961939E-02
0.5213355986400703E-02 0.4437537936998829E-02
0.1127123616180105E-01 0.7852211174980829E-02
0.2121486403535344E-01 0.1215005865408980E-01
0.3571945099051861E-01 0.1689083767930460E-01
0.5498138040746230E-01 0.2159081784351869E-01
0.7876554840715572E-01 0.2589061574717723E-01
0.1065681257681138E+00 0.2961183182803991E-01
0.1377839750139660E+00 0.3271991578613246E-01
0.1718183483671372E+00 0.3526008081919886E-01
0.2081399215101480E+00 0.3730762085807319E-01
0.2462954187930989E+00 0.3894030217190292E-01
0.2859051752770733E+00 0.4022648983646625E-01
0.3266515434452085E+00 0.4122168685192172E-01
0.3682659628410250E+00 0.4196875223655011E-01
0.4105169996086324E+00 0.4249935402437477E-01
0.4531999641092431E+00 0.4283556050595227E-01
0.4961279927664242E+00 0.4299113717974382E-01
0.5391242133546008E+00 0.4297240498182741E-01
0.5820145309561993E+00 0.4277862015965356E-01
0.6246205472012950E+00 0.4240185727864892E-01
0.6667521011409383E+00 0.4182636166562592E-01
0.7081988727858907E+00 0.4102730967187124E-01
0.7487204161980902E+00 0.3996889290357553E-01
0.7880339071872188E+00 0.3860165671827315E-01
0.8257988675123893E+00 0.3685914346939630E-01
0.8615983375780399E+00 0.3465427456539984E-01
0.8949168202476468E+00 0.3187687491511273E-01
0.9251176490208435E+00 0.2839583726541435E-01
0.9514276420773934E+00 0.2407310551022889E-01
0.9729462427273851E+00 0.1880072022809006E-01
0.9887074670174289E+00 0.1256986040620092E-01
0.9978240533043199E+00 0.5563859224973946E-02

Table 3. Quadrature formulas for the functions of the form (5.2) with α ∈
[−.6, 1.0] and b = 100. The 43-point rule on the left was generated with the QR
variant of the algorithm, while the 43-point rule on the right was generated with
the SVD variant. Both achieve full double precision accuracy.

22 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

as the input functions φi to the algorithm of Section 5. It is clear the for sufficiently large n and m,
the obtained quadrature will work for all functions of the form (5.2).

In Tables 1, 2, and 3, we list the quadrature nodes and weights for b = 20, 50, and 100. In each
case, two quadrature rules were computed, one using the QR decomposition variant of the algorithm
and one using the SVD variant. The parameters m and n were chosen to be m = 900 and n = 100.
In Table 4, we report the time spent computing each of these quadratures as well as the number of
quadrature nodes required. These computations were performed in extended precision arithmetic
in order to ensure double precision accuracy for the resulting quadrature rule.

We also computed single precision (10−8) quadrature rules for b = 20, 50, and 100. These com-
putations were performed in double precision arithmetic and the results are reported in Table 5.

b = 20 b = 50 b = 100

QR SVD QR SVD QR SVD
tcheb 208.11 213.21 447.01 457.93 894.71 933.67
tnewt 196.23 195.03 509.25 634.77 1277.34 1315.04
ttot 404.94 408.00 956.14 1091.22 2171.12 2248.01

nodes 26 26 33 33 43 43

Table 4. Execution times (in seconds) for the computation of the double precision
accuracy quadratures of Example 5.1, as well as the number of quadrature nodes.
Results for both the SVD and QR variants of the algorithm are provided. The CPU
time taken by the first two stages of the algorithm is reported as tcheb while the
CPU time for Stage 3 is reported as tnewt.

b = 20 b = 50 b = 100

QR SVD QR SVD QR SVD
tcheb 1.15 1.18 1.88 1.94 3.28 3.26
tnewt 6.78 6.43 9.33 9.86 15.0 22.3
ttot 7.93 7.61 11.2 11.8 18.2 25.5

nodes 15 15 21 21 30 30

Table 5. Execution times (in seconds) for the computation of the single precision
accuracy quadratures of Example 5.1, as well as the number of quadrature nodes.
Results for both the SVD and QR variants of the algorithm are provided. The CPU
time taken by the first two stages of the algorithm is reported as tcheb while the
CPU time for Stage 3 is reported as tnewt.

5.2. Plane wave expansions. The Green’s function for the Helmholtz equation in R3 satisfies the
following identity, valid for z > 0:

(5.4)
eiωr

r
=
∫ ∞

0

e−z
√

ξ2−ω2
J0(ξ

√
x2 + y2)

ξ√
ξ2 − ω2

dξ,

where r =
√
x2 + y2 + z2. This formula can be derived by applying the Fourier Inversion Theorem

followed by contour integration. In [9], a scheme for accelerating fast multipole methods for the
Helmholtz equations at low frequency was introduced. It operates via discretizations of formula
(5.4) which hold for x, y, and z satisfying

L ≤ z ≤ 4L

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 23

−4L ≤ x, y ≤ 4L.(5.5)

The appropriate quadrature rule ostensively depends on the two parameters ω and L. In fact, by
making the substitutions

λ =
ξ

L
and ω = Lω0

in (5.4), we obtain the equivalent representation

(5.6)
eiωr

r
= L

∫ ∞

0

e−(zL)
√

λ2−ω2
0J0(λ

√
(xL)2 + (yL)2)

λ√
λ2 − ω2

0

dλ,

which shows that up to rescaling factors, the quadrature rule depends only on the product ωL,
which is the size of the box (5.5) in wavelengths. Moreover, since J0(z) satisfies the well-known
identity

(5.7) J0(z) =
1
π

∫ π

0

cos(z sin(θ))dθ,

which can be found as formula (9.1.18) in [1], in order to generate a discretization of (5.4) which
holds for

a ≤ ωL ≤ b,

it suffices to take as input to the algorithm of Section 5 functions of the form

(5.8) e−x
√

λ2−ω2 λ cos(yλ)√
λ2 − ω2

,

where x, y, and ω are allowed to vary as

1 ≤ x ≤ 4

0 ≤ y ≤ 4b
√

2,(5.9)
a ≤ ω ≤ b.

ωL Expansion order

ε = 10−3 ε = 10−6 ε = 10−9 ε = 10−15

QR SVD QR SVD QR SVD QR SVD
.5 13 13 30 29 44 44 72 72
5 18 19 33 33 46 46 80 79
10 22 24 36 35 48 49 84 84
25 44 44 53 52 65 63 94 94

Table 6. Orders of the plane wave expansions of Example 5.2 as a function of box
size and accuracy.

The algorithm of this paper was applied to functions of the form (5.8) in order to generate
discretizations of formula (5.4) of the form

(5.10)
eiωr

r
'
∑

j

e−z
√

ξ2
j−ω2

J0(ξj
√
x2 + y2)

ξj√
ξ2j − ω2

wj

for boxes of varying sizes. The Stage 1 and Stage 2 discretization steps were performed twice for each
choice of ωL and variant (QR or SVD) of the algorithm, once using extended precision arithmetic
and once using double precision arithmetic. The Stage 3 algorithm was then used repeatedly to
generate quadratures of varying accuracies for each of the boxes. The number of terms in the plane
wave expansion is given in Table 6 as a function of the size of the box in wavelengths, the required
accuracy, and which variant (QR or SVD) of the algorithm is used. Here accuracy is measured as
the largest absolute error occurring in formula (5.10).

24 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

Table 7 reports the total time taken by the Stage 1 and Stage 2 computations. Finally, Table 8
gives the time taken by the Stage 3 procedure. Note that all Stage 3 computations were performed in
double precision arithmetic, except for the quadrature rules with accuracy 10−15; those computations
were performed in extended precision.

ωL = .5 ωL = 5 ωL = 10 ωL = 25

QR SVD QR SVD QR SVD QR SVD
tdouble 8.84 9.03 8.23 8.60 7.17 8.10 9.14 9.84
tquad 1858.96 1954.31 2046.89 2192.72 2079.71 2227.13 2486.69 2644.03

Table 7. Time (in seconds) taken by the Stage 1 and Stage 2 procedures for
quadrature rules of Example 5.2; tdouble gives the CPU time for the double precision
computations and tquad gives the total CPU time for the extended precision com-
putations.

ωL CPU Time (seconds)

ε = 10−3 ε = 10−6 ε = 10−9 ε = 10−15

QR SVD QR SVD QR SVD QR SVD
.5 0.58 0.61 3.19 2.81 15.01 10.33 12055.45 12398.62
5 0.80 0.86 3.95 3.58 12.01 11.32 18468.92 17513.46
10 1.25 1.31 5.03 4.59 14.31 14.21 22018.44 22662.14
25 7.61 8.01 17.22 1.57 38.32 35.21 34646.45 36221.12

Table 8. CPU time (in seconds) required to perform the Stage 3 computations for
the quadratures of Example 5.2.

5.3. Integral representations for H-expansions. Let (p, θ) denote the polar coordinate system
defined by

x = p cos(θ) and y = p sin(θ).

As is well known (see, for instance, [18]), if a function φ : R2 → C satisfies the Helmholtz equation

∇2φ+ ωφ = 0

outside of a disc D of radius R centered at 0 and the radiation condition

lim
t→∞

φ(tx)e−ikt|x|√t = c

at ∞, then φ(x) can be uniquely represented outside the disc D via the H-expansion

(5.11) φ(x) =
∞∑

n=−∞
βnHn(ωp)einθ.

Moreover, once N > |ω|R, the error in the approximation

(5.12) φ(x) ∼
N∑

n=−N

βnHn(ωp)einθ.

for |x| = R1 > R decays as (R1/R)N (see, for instance, [18]).

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 25

The formula

(5.13) Hn(ωρ)einθ =
(−1)n

π

∫ ∞

−∞

eiy
√

ω2−ξ2√
ω2 − ξ2

(
iξ −

√
ω2 − ξ2

ω

)n

eiξxdξ,

valid for y > 0, can be obtained via manipulation of the well-known representation

(5.14) Hn(z) =
(−1)n

π

∫
C

eiz cos(w)+inw dw,

where C is a properly chosen contour in the complex plane (see [5] for a simple derivation of (5.14)).
In this example, we construct quadratures for formula (5.13) which hold for x and y satisfying

2L ≤ y ≤ 4L
−L ≤ x ≤ L,(5.15)

and for n = 0, 1, . . . ,M . Since
H−n(z) = (−1)nHn(z),

which is formula (9.1.6) in [1], an L-point quadrature rule for functions of this form allows us to
approximate an H-expansion

(5.16) ψ =
M∑

n=−M

anHn(ωp)einθ

via a sum

(5.17) ψ '
L∑

j=1

bj(ω)eiλjx+
√

ω2−λ2
jy.

ωL M=2 M=4 M=8

ε = 10−7 ε = 10−15 ε = 10−7 ε = 10−15 ε = 10−7 ε = 10−15

1 23 57 27 63 32 66
5 29 60 29 64 33 68
10 33 66 35 67 36 72
15 39 70 39 73 41 79

Table 9. Orders of the expansions (5.17).

If we make the substitutions

(5.18) λ = ξ/L and ω = Lω0

into formula (5.14), then we obtain the equivalent representation

(5.19) Hn(ωρ)einθ =
(−1)n

π

∫ ∞

−∞

eiλ(xL)+i(yL)
√

ω2
0−λ2√

ω2
0 − λ2

(
iλ−

√
ω2

0 − λ2

ω0

)n

dλ,

which shows that as with the last example, the appropriate discretization for (5.13) depends only
on ωL.

The QR variant of the algorithm was used to compute quadrature rules for function of the form
(5.16) for various values of ωL and M . Table 9 gives the number of terms in the expansion (5.17)
necessary to obtain precisions 10−7 and 10−15 for boxes of different sizes and for different values of
M . Table 10 gives the time required to perform the Stage 1 and Stage 2 computations for these
quadrature rules, while Table 11 gives the time taken by the Stage 3 computations. Note that, as
usual, the computations for quadrature rules with accuracy 10−7 were performed in double preci-
sion arithmetic while those for quadrature rules with 10−15 were performed in extended precision
arithmetic.

26 JAMES BREMER, ZYDRUNAS GIMBUTAS, AND VLADIMIR ROKHLIN

ωL M=2 M=4 M=8

ε = 10−7 ε = 10−15 ε = 10−7 ε = 10−15 ε = 10−7 ε = 10−15

1 18.50 1999.02 24.16 2796.14 45.12 4274.44
2 24.65 2872.72 32.96 3811.83 55.87 5863.14
5 29.47 3724.73 41.62 4693.70 66.33 7762.44
15 37.92 5234.68 50.98 6359.60 78.56 8702.26

Table 10. Time (in seconds) required by the Stage 1 and Stage 2 computations
for the quadrature rules of Example 5.3.

ωL M=2 M=4 M=8

ε = 10−7 ε = 10−15 ε = 10−7 ε = 10−15 ε = 10−7 ε = 10−15

1 1.01 4238.30 1.55 6302.25 2.85 8411.11
5 2.08 5694.78 2.17 6011.20 3.26 8302.36
10 3.38 7604.56 3.76 6540.80 4.36 9221.55
15 6.39 9881.15 6.86 10861.93 6.94 12322.11

Table 11. Time (in seconds) taken by the Stage 3 computations for the quadrature
rules of Example 5.3.

6. Generalizations and Conclusions

We have presented a simple and robust scheme for the computation of efficient quadrature rules
for a wide class of functions. We demonstrated this algorithm by generating efficient quadrature
rules for several different classes of functions, including systems of functions exhibiting different
kinds of singular and oscillatory behavior.

We close with a number of conclusions and possible generalizations of this work:

1. The results of this paper are purely experimental. While there is a framework for proving (under
certain conditions) the existence of generalized Gaussian quadratures (see [11, 12, 15, 16, 13]), it
does not apply to many of the examples of this paper. Indeed, the numerical experiments of this
paper and those of [14, 3, 20] seem to indicate that such quadratures exist under very general
conditions.

2. Stage 3 of the algorithm of Section 4, wherein quadrature nodes are eliminated one-by-one, is
applicable to a wide range of problems. The method applies wherever a sparse solution for an
underdetermined nonlinear system of equations is being sought.

3. The quadrature weights generated by the algorithm of this paper are generally, but not necessarily,
positive. In many applications, positive quadrature weights are desirable. A modification of the
algorithm to ensure that the weights of the resulting quadrature formulae are positive might
prove useful.

The Chebyshev quadrature procedure of Stage 2 of the algorithm could be modified to produce
positive weights by replacing the least squares minimization problem with a linear program. That
program can be solved via the simplex method, which would result in a Chebyshev quadrature.
The Stage 3 Newton iterations could be modified in a number of ways (e.g. barrier methods) to
ensure, or at least encourage, positive quadrature weights.

4. Although there are several difficulties that must be overcome, there is no fundamental barrier
to generalizing the procedure of this paper to higher dimensions. A procedure for generating
efficient quadrature rules for collections of functions defined on domains in R2 would have many
applications in numerical analysis. This topic is being vigorously investigated by the authors.

A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES 27

5. The scheme of this paper has obvious application to the interpolation of functions. In particular,
the observations of Subsection 2.3 and the algorithm of this paper allow for the construction of
stable, efficient interpolation formulas for highly singular and oscillatory functions.

6. There are a number of applications of this work to the discretization of integral equations. The
ability to produce efficient quadratures for broad classes of collections of functions is by itself
useful in the discretization of integral equations, and the general framework of this paper for
“downsampling” a quadrature formula should allow for the reduction of the complexity of dis-
cretizations of integral equations.

References

[1] M. Abramowitz and I. Stegun(editors), Handbook of Mathematical Functions, National Bureau of Standard,
1964.

[2] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadephia, 1996.
[3] H. Cheng, V. Rokhlin, and N. Yarvin, Nonlinear optimization, quadrature, and interpolation, SIAM J. Optim,

9 (1999), pp. 901–923.
[4] W. Chew, E. Michielssen, J. Song, and J. Jin, Fast and Efficient Algorithms in Computational Electrody-

namics, Artech House, Norwood, MA, 2001.
[5] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, John Wiley & Sons, New York, 1991.
[6] G. Dahlquist and A. Björck, Numerical Methods, Dover Publications, Mineola, New York, 2003.
[7] J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,

Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
[8] G. Golub and C. V. Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1983.
[9] L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, Accelerating fast multipole methods for the helmholtz

equation at low frequencies, IEEE Comput. Sci. Eng, 5 (1998), pp. 32–38.
[10] M. Gu and S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM

J. Sci. Comput., 17 (1996), pp. 848–869.
[11] S. Karlin, The existence of eigenvalues for integral operators, Trans. Amer. Math Soc., 113 (1964), pp. 1–17.
[12] S. Karlin and W. Studden, Tchebycheff systems with applications in Analysis and Statistics, Wiley-

Interscience, New York, 1966.
[13] M. Krein, The Ideas of P.L. Chebyshev and A.A. Markov in the Theory of Limiting Values of Integrals, Amer.

Math. Soc. Transl. Ser. 2, 12, AMS, Providence, R.I., 1959.
[14] J. Ma, V. Rokhlin, and S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary func-

tions, SIAM J. Numer. Anal., 33 (1996), pp. 971–996.
[15] A. Markov, On the limiting value of integrals in connection with interpolation, Zap. Imp. Akad. Nauk. Fix-Mat.

Otd., 6 (1898). (in Russian).
[16] , Selected Papers on Continued Fractions and the Theory of Functions Deviating Least from Zero, OGIZ,

Moscow, Leningrad, 1948. (in Russian).
[17] P.-G. Martinsson, V. Rokhlin, and M. Tygert, On interpolation and integration in finite-dimensional spaces

of bounded functions, Communications in Applied Mathematics and Computational Science, 1 (2006), pp. 133–
142.

[18] P. Morse and H. Feshbach, Methods of Mathematical Physics, Feshbach Publishing, Minneapolis, 1981.
[19] Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkhäuser, Boston, 1997.
[20] N. Yarvin and V. Rokhlin, Generalized Gaussian quadratures and singular value decompositions of integral

operators, SIAM J. Sci. Comput., 20 (1998), pp. 699–718.

