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Abstract

We describe a method for the numerical evaluation of the angular prolate spheroidal wave functions
of the first kind of order zero. It is based on the observation that underlies the WKB method,
namely that many second order differential equations admit solutions whose logarithms can be
represented much more efficiently than the solutions themselves. However, rather than exploiting
this fact to construct asymptotic expansions of the prolate spheroidal wave functions, our algorithm
operates by numerically solving the Riccati equation satisfied by their logarithms. Its running time
grows much more slowly with bandlimit and characteristic exponent than standard algorithms. We
illustrate this and other properties of our algorithm with numerical experiments.

Keywords: fast algorithms, special functions, spheroidal wave functions, ordinary differential
equations

1. Introduction

Many families of special functions are defined by second order linear ordinary differential equations
whose coefficients depend on one or more parameters. The cost to represent solutions of such
equations using standard methods, such as polynomial and trigonometric expansions, typically
grows quite quickly with magnitudes of the parameters. It is well known, though, that in many cases
there exist solutions whose logarithms can be represented at a cost which is bounded independent
of the parameters, or at least grows extremely slowly with them.

This observation is the basis of many approaches to the asymptotic approximation of the solutions
of second order linear ordinary differential equations. The WKB method, for instance, can be used
to construct asymptotic expansions of the solutions of equations of the form

y2ptq ` λ2qptqyptq “ 0 (1)

with q a strictly positive smooth function. In this case, there exist a solution y of (1) and a sequence
of functions r0, r1, . . . which depend on q and its derivatives, but not λ, such that

yptq “ exp

˜

i
N
ÿ

n“0

λ1´n rnptq

¸

`

1`O
`

λ´N
˘˘

as λÑ8 (2)

(see, for instance, Section 7.2 of [17]). The solution y is oscillatory and the cost of representing it
with standard methods grows linearly with λ. By contrast, the functions rn can be represented at
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a cost which depends only on the complexity of q, and not on λ. This means that for sufficiently
large values of λ, it is much more efficient to represent y via (2) than to construct a polynomial
expansion of y itself.

Asymptotic methods allow for the evaluation of many special functions in time independent of the
parameters they depend on, but are only accurate for sufficiently large values of those parameters.
They are often coupled with methods which are accurate at all values of the parameters, but whose
running times grow with the parameters, to obtain efficient algorithms for the numerical evaluation
of a family of special functions. This is the approach used in [3], for instance, to evaluate the
Legendre polynomials in time independent of their degree. Further examples can be found in
[4, 18, 9] and their references. Unfortunately, in many cases existing asymptotic expansions are
either not amenable to numerical evaluation or only achieve high-accuracy at extremely large values
of the parameters, making such an approach infeasible.

The prolate spheroidal wave functions of order zero and bandlimit γ ą 0 are an example of a family
of special functions for which such an approach is not viable. They are the solutions of the second
order linear ordinary differential equation

p1´ z2qy2pzq ´ 2zy1pzq ` pχ´ γ2z2qypzq “ 0, (3)

which we call the reduced spheroidal wave equation (reduced because it is obtained from the more
familiar spheroidal wave equation by deleting one parameter). The solutions of most interest are
those which satisfy the boundary conditions

lim
zÑ˘1

y1pzq
a

1´ z2 “ 0. (4)

Together (3) and (4) constitute a singular self-adjoint Sturm-Liouville problem. Consequently,
there exists a sequence

χ0pγq ă χ1pγq ă χ2pγq ă ¨ ¨ ¨ (5)

of values of the parameter χ for which solutions of (3) satisfying (4) exist. For each χnpγq, there
is a corresponding one-dimensional space of solutions of (3), and we use Psnpz; γq to denote the
particular element of that subspace which agrees with the Legendre function Pnpzq at the point
z “ 0. The parameter n usually called the characteristic exponent — this term comes from the
standard mechanism used to define Ps νpz; γq for noninteger ν — and Psnpz; γq is known as the
angular prolate spheroidal wave function of the first kind of bandlimit γ, order 0 and characteristic
exponent n.

Although uniform asymptotic expansions of the Psnpz; γq are available [5], they only achieve high
accuracy for extremely large values of γ and involve a complicated change of variables, thus making
them difficult to exploit in numerical computations. This leaves algorithms whose running times
increase fairly rapidly with γ and n as the only viable mechanisms for the numerical evaluation
of Psnpz; γq. The standard approach is the Osipov-Xiao-Rokhlin algorithm [19, 20]. It proceeds
by solving an eigenproblem for a symmetric tridiagonal matrix in order to construct a Legendre
expansion representing the desired prolate function. The dependence of the running time of this
algorithm on the parameters γ and n is not fully understood, but the numerical experiments of [22]
suggest that it behaves as O

`

n`
?
γn

˘

for large values of the parameters.

We describe an algorithm for evaluating Psnpz; γq whose running time grows much more slowly
with γ and n. It operates by solving the Riccati equation satisfied by the logarithms of the
solutions of the reduced spheroidal wave equation numerically. Most solutions of that equation are
no easier to represent than the prolate spheroidal wave function themselves. However, standard
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results (such as those appearing in Section 7.2 of [17]) imply that there is a “WKB solution” of
the reduced spheroidal wave equation whose logarithm can be asymptotically approximated by a
series of relatively simple functions. It is straightforward to identify this solution from well-known
formulas, and it is the logarithm of this solution we construct by solving the Riccati equation. Based
on the numerical experiments discussed in this article, we believe that the cost of representing it
via polynomial expansions grows sublogarithmically with γ and is bounded independent of n for
fixed γ. The running time of our algorithm displays the same dependence on γ and n.

We also state several conjectures about the monotonicity properties of the modulus of this WKB
solution. These conjectures are relevant because the logarithm of any solution of a second order
differential equation is related to the modulus of the solution through a simple formula. Our
conjectures assert that the monotonicity properties of the reduced spheroidal wave equation are
similar to those of Legendre’s differential equation, which it generalizes.

There are two significant limitations of the algorithm described in this paper. First, it requires
knowledge of Sturm-Liouville eigenvalue χnpγq in order to calculate Psnpz; γq. Second, while the
running time of our algorithm grows much more slower with γ and n than does the Osipov-Rokhlin-
Xiao algorithm, the later is more efficient until fairly large values of γ and n. The author remedies
these problems in a separate article, which describes a method for computing the value of χnpγq in
time independent the parameters as well as an approach to accelerating the algorithm of this paper
which makes it faster than the Osipov-Xiao-Rokhlin algorithm except at extremely small values of
the parameters. A comparison of the running times of the unaccelerated and accelerated versions
of the algorithm of this paper and the Xiao-Osipov-Rokhlin method can be found in Section 6 of
this paper.

The remainder of this article is structured as follows. Section 2 briefly discuss the Riccati equation
satisfied by the logarithms of solutions of second order linear ordinary differential equations. In
Section 3, we discuss the prolate spheroidal wave functions of order zero. In Section 4, the mono-
tonicity properties of Legendre’s differential equation are described and we make several conjectures
regarding the monotonicity properties of the reduced spheroidal wave equation. Section 5 details
our numerical algorithm for the evaluation of the prolate spheroidal wave functions of order zero. In
Section 6, we describe the results of numerical experiments which were conducted to demonstrate
the properties of our algorithm. We close with a few brief remarks in Section 7.

2. Riccati’s equation and its variants

A straightforward calculation shows that if ypxq “ expprpxqq solves the second order differential
equation

y2pxq ` qpxqypxq “ 0, (6)

then r satisfies the Riccati equation

r2pxq ` pr1pxqq2 ` qpxq “ 0. (7)

We note that under extremely mild regularity conditions on its coefficients, any second order linear
ordinary differential equation can be put into the form (6) through a simple transformation (see,
for instance, Section 5.6 of [12]).

By inserting the expression rpxq “ ˘iψpxq ` βpxq into (7), it can be shown that if ψ and β satisfy
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the system of equations
#

β2pxq ` pβ1pxqq2 ´ pψ1pxqq2 ` qpxq “ 0

ψ2pxq ` 2ψ1pxqβ1pxq “ 0,
(8)

then r solves (7). The second equation in (8) admits the formal solution

βpxq “ ´
1

2
logpψ1pxqq, (9)

which when inserted into the first equation in (8) results in

qpxq ´ pψ1pxqq2 `
3

4

ˆ

ψ2pxq

ψ1pxq

˙2

´
1

2

ψ3pxq

ψ1pxq
“ 0. (10)

Equation (10) is known as Kummer’s equation after E. E. Kummer who studied it in [14]. Clearly,
if ψ does not vanish in an open interval and it satisfies Kummer’s equation there, then

r1pxq “ iψpxq ´
1

2
logpψ1pxqq and r2pxq “ ´iψpxq ´

1

2
logpψ1pxqq (11)

are solutions of Riccati’s equation on that interval. It follows that

upxq “
sinpψpxqq
a

ψ1pxq
and vpxq “

cospψpxqq
a

ψ1pxq
(12)

constitute a basis in the space of solutions of (6). In this event, we refer to ψ as a phase function
for (6). We note that the realization of the square root used in (12) is immaterial. For obvious
reasons,

mpxq “ pupxqq2 ` pvpxqq2 “
1

ψ1pxq
(13)

is known as the modulus function associated with ψ. It can be readily verified that m satisfies the
differential equation

m3pxq ` 4qpxqm1pxq ` 2q1pxqmpxq “ 0, (14)

which we refer to as Appell’s equation after P. E. Appell, who discussed it in [1].

Given any pair u, v of solutions of (6) whose Wronskian is w ‰ 0 and such that such that the
modulus function (13) is nonzero in an open interval I, it can be shown by a straightforward
calculation that

ψ1pxq “
w

pupxqq2 ` pvpxqq2
(15)

satisfies (10) on that interval. It follows that any antiderivative of ψ1 is a phase function for (6) on
I. Requiring that (12) holds determines ψ up to an integral multiple of 2π, but further restrictions
are required to determine it uniquely. We note that on any set where u and v are real-valued, the
modulus function (13) is nonzero since independent solutions of a second order differential equation
cannot simultaneously vanish.

Because of the close relationship between the functions ψ, m and r, we regard them all as repre-
sentations of the logarithm of a solution of (6). Moreover, we view Equations (7), (10) and (14) as
essentially interchangeable mechanisms for computing the logarithm of a solution of (6).

3. The prolate spheroidal wave functions of order zero

In this section, we briefly discuss certain facts regarding the prolate spheroidal wave functions of
order zero which will be used in the algorithm of this paper.
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3.1. The angular prolate spheroidal wave functions of the first kind

In addition to being the solutions of a singular self-adjoint Sturm-Liouville, the angular prolate
spheroidal wave functions of bandlimit γ ą 0, order zero and integer characteristic exponents

Ps 0pz; γq, Ps 1pz; γq, Ps 2pz; γq, . . . (16)

are the eigenfunctions of the restricted Fourier operator

Fγ rf s pzq “

ż 1

´1
exp piγztq fptq dt. (17)

As such, they provide an efficient mechanism for representing elements of the image of Fγ , which is
the set of functions with bandlimit γ. The dual nature of the functions (16) was widely publicized in
an article [23] published in the 1960s, but it was known much earlier (see, for instance, Section 3.8
of [16] and the references cited there).

It is shown in [15] that the magnitudes of the first 2{πγ or so eigenvalues of Fγ are close to
a

2π{γ,
the magnitudes of the next O plogpγqq eigenvalues decay extremely rapidly, and the remaining
eigenvalues are all close to zero. It follows that only the first 2{πγ ` O plogpγqq of the functions
(16) are needed to represent elements of the image of Fγ , which is the space of functions with
bandlimit γ, with extremely high relative accuracy. In other words, for the purposes of numerical
computation, the dimension of the space of functions with bandlimit γ is 2{πγ `O plogpγqq.

The reduced spheroidal wave equation (3) has a regular singular point at z “ 1 and zero is a double
root of the corresponding indicial equation. Consequently, there is a one-dimensional subspace of
solutions which are regular at z “ 1 and all other solutions have logarithmic singularities there
(see, for instance, Chapter 5 of [12]). Because it is an eigenfunction of the restricted Fourier
operator, Psnpz; γq is entire and so the subspace of solutions which are regular at z “ 1 comprises
its multiples. Every other solution has a logarithmic singularity at 1.

Since Psnpz; γq is an eigenfunction of (17), there exists a constant Anpγq such that

Psnpz; γq “ Anpγq
sin pγzq

γz

ˆ

1`O
ˆ

1

z

˙˙

as z Ñ8. (18)

It is a consequence of this and the fact that Psnpz; γq is regular at 1 that Psnpz; γq is an element
of L2p1,8q.

3.2. The radial prolate spheroidal wave function of the third kind of order zero

Another solution of the reduced spheroidal wave equation, which is known as the radial prolate
spheroidal wave function of the third kind of order zero, is defined via the formula

Sp3qn pz; γq “
1

Psnp1, γq

ż 8

1
exppiγztqPsnpt; γq dt. (19)

Since Psnpz; γq is in L2p1,8q, the integral is absolutely convergent for all Impzq ą 0 and S
p3q
n pz; γq

is usually taken to be function obtained by analytically continuing it to the cut plane Czt´8, 1u.
However, for our purposes, it is more convenient to take its domain to be tz : Impzq ě 0uzt´1, 1u.
The asymptotic behaviour of Sp3qpz; γq is obvious from Formula (19):

Sp3qn pz; γq “
exp piγzq

γz

ˆ

1`O
ˆ

1

z

˙˙

as z Ñ8. (20)
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3.3. Two variants of the reduced spheroidal wave equation

We shall make use of two variants of the reduced spheroidal wave equation of the form (6). The
first of these is

y21pxq `

˜

exppxq ´ 1
4

p1´ 2 exppxqq2
` χ

2 exppxq ´ 1

p1´ 2 exppxqq2
´ γ2 expp´2xq

¸

y1pxq “ 0, 0 ă x ă 8, (21)

which is satisfied by any function of the form y1ptq “ y p1´ expp´xqq
a

2´ expp´xq with y a
solution of (3). We refer to (21) as the exponential form of the reduced spheroidal wave equation.
Our motivation for introducing this exponential change of variables will be explained in Section 5.

Similarly, if y is a solution of (3) on the upper half of the imaginary axis, then y2ptq “ ypitq
?

1` t2

satisfies

y22ptq ´

ˆ

1

p1` t2q2
`
χ` γ2t2

1` t2

˙

y2ptq “ 0, 0 ă t ă 8. (22)

3.4. The phase and modulus functions associated with S
p3q
n pz; γq

Since the coefficient in (21) is real-valued, the real and imaginary parts of

Sp3qn p1´ expp´xq; γq
a

2´ expp´xq (23)

are separately solutions. Accordingly,

Mnp1´ expp´xq; γqp2´ expp´xqq, (24)

where

Mnpz; γq “
ˇ

ˇ

ˇ
Sp3qn pz; γq

ˇ

ˇ

ˇ

2
, (25)

is a modulus function for (21). Since the Wronskian of any pair of solutions of (21) is necessarily
constant, it follows from (20) that the Wronskian of the pair of solutions consisting of the real and

imaginary parts of S
p3q
n pz; γq is γ and we define ΨS npx; γq on the interval r0,8q via

ΨS npx; γq “

ż x

8

γ

Mnp1´ expp´uq; γqp2´ expp´uqq
du. (26)

It follows from the discussion in Section 2 that ΨS npx; γq is a phase function for the exponential
form of the reduced spheroidal wave equation. In particular,

sin pΨS npx; γqq
b

dΨS n
dx px; γq

and
cos pΨS npx; γqq
b

dΨS n
dx px; γq

(27)

form a basis in the space of solutions of Equation (21). Moreover, (26) ensures that

lim
xÑ8

ΨS npx; γq “ 0. (28)

Since Psnp1 ´ expp´xq; γq
a

2´ expp´xq, is a solution of the exponential form of the reduced
spheroidal wave equation, there exist constants Cnpγq and Dnpγq such that

Psnp1´ expp´xq; γq
a

2´ expp´xq “ Cnpγq
sin pΨS npx; γqq
b

dΨS n
dx px; γq

`Dnpγq
cos pΨS npx; γqq
b

dΨS n
dx px; γq

. (29)

In fact, we claim that condition (28) ensures Dnpγq “ 0 in (29); that is, our choice of the constant
of integration for ΨS npx; γq guarantees that Psnp1´ expp´xq; γq

a

2´ expp´xq is a multiple of

sin pΨS npx; γqq
b

dΨS n
dx px; γq

.
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To see this, we first observe that (29) holds if and only if if

Psnp1´ expp´xq; γq “
Cnpγq
?
γ

a

Mnp1´ expp´xq; γq sin pΨS npx; γqq

`
Dnpγq
?
γ

a

Mnp1´ expp´xq; γq cos pΨS npx; γqq .

(30)

Next, we note that since every solution of the reduced spheroidal wave equation which is not a
multiple of Psnpz; γq has a logarithmic singularity at 1,

lim
xÑ8

Mnp1´ expp´xq; γq “ lim
zÑ1´

Mnpz; γq “ 8. (31)

Equations (28) and (31) imply that

lim
xÑ8

a

Mnp1´ expp´xq; γq cos pΨS npx; γqq “ 8, (32)

whereas Psnpx; γq is nonsingular at x “ 1. It follows that the constant Dnpγq in (30) must be 0.

4. Montonicity properties of the reduced spheroidal wave equation

Many second order differential equations admit solutions whose logarithms are easier to represent,
either numerically or symbollically, then the solutions themselves. Because of the close relationship
between the logarithms of solutions of second order linear ordinary differential equations and their
modulus functions, this is often demonstrated by establishing the existence of modulus functions
satisfying certain monotonicity properties.

From (20), it is clear that S
p3q
n pz; γq is a “WKB solution” of the reduced spheroidal wave equation

in that, at least for large values of z, its logarithm can be approximated by a polynomial expansion
at cost which is independent of γ and n. In fact, plotting its modulus function for various values

of n and γ suggests that the modulus function associated with S
p3q
n pz; γq satisfies rather strong

monotonicity properties (see Figure 1 for representative plots).

In this section, we first discuss the monotonicity properties of a certain modulus function for
Legendre’s differential equation. Then, we conjecture that the modulus function corresponding to
Sνpz; γq behaves in a similar fashion.
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Figure 1: On the left is a plot of
ˇ

ˇ

ˇ
S
p3q
n px; γq

ˇ

ˇ

ˇ

2

over the interval p0, 1q when γ “ 20 and n “ 10. On the right, is a plot

of the same function over the interval p1, 2q.

4.1. Completely, absolutely and multiply monotone functions

A function f defined on an open interval I is k-times monotone there provided p´1qjf pjqpzq ě 0
for all nonnegative integers j ď k and all z P I. It is completely monotone if p´1qkf pkqpzq ě 0 for
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all nonnegative integers k and all z P I. Finally, f is absolutely monotone if f pkqpzq ě 0 for all
nonnegative k and all z P I. It is well known that f is completely monotone on p0,8q if and only
if it is the Laplace transform of a nonnegative Borel measure (see, for instance, Chapter 4 of [25]
for a proof of this).

4.2. Legendre’s differential equation

Legendre’s differential equation, which is the special case of (3) when γ “ 0, is a classical example of
a differential equation admitting a modulus function which satisfies various monotonicity properties.
The Legendre function of the second kind of degree ν is given by

Qνpzq “ exp
´

´i
π

2
pν ` 1q

¯

ż 8

0
exppiztqjνptq dt, (33)

where jν denotes the spherical Bessel function of order ν. The integral is absolutely convergent for
Impzq ą 0 and Qνpzq is typically defined to be the function obtained by analytically continuing
the integral (33) to the cut plane Cz p´8, 1s. However, we prefer to takes its domain to be the set
tz : Impzq ě 0uzt´1, 1u.

It can be easily verified that Qνpxq
?

1´ x2 satisfies the differential equation

y2pxq `

ˆ

1

p1´ x2q2
`

χ

1´ x2

˙

ypxq “ 0, ´1 ă x ă 1, (34)

where χ “ νpν` 1q. Since the coefficient in (34) is real-valued, the real and imaginary parts of this
function are separately solutions, and |Qνpxq|

2
p1´ x2q is a modulus function for (34). Because

jνptq „
sin

`

t´ π
2 ν

˘

t
as tÑ8, (35)

the contour in (33) can be shifted from the real axis to the imaginary axis whenever Repzq ą 1.
This results in the formula

Qνpzq “ exp
´

´i
π

2
pν ` 1q

¯

ż 8

0
expp´ztqiνptq dt (36)

with iν the modified spherical Bessel function of the first kind of order ν. Since iν is positive on
p0,8q, (36) implies that Qνpxq is completely monotone on the interval p1,8q. From this and the
formula

|Qνpxq|
2
“

ż 8

1
Qν

`

x2 ` p1´ x2qt
˘ dt
?
t2 ´ 1

, (37)

which holds for ν ě 0 and can be found in [7], it follows that |Qνpxq|
2 is absolutely monotone on

the interval p´1, 1q when ν ě 0. Since the square of a completely monotone function is completely
monotone, we have the following theorem summarizing the monotonicity properties of |Qνpxq|

2:

Theorem 1. For fixed ν ě 0, |Qνpxq|
2 is absolutely monotone on p0, 1q and completely monotone

on p1,8q.

4.3. The reduced spheroidal wave equation

Many other second order linear ordinary differential equations admit modulus functions which
satisfy various monotonicity properties. Relevant formulas for the Jacobi functions, Gegenbauer
functions and Hermite functions can be found in [7], and the articles [10] and [11] give conditions
under which a second order linear ordinary differential equation admits a completely monotone
modulus function.

However, to the author’s knowledge, no results concerning the monotonicity properties of the
reduced spheroidal wave equation appear in the literature. Since the reduced spheroidal wave
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equation (3) generalizes Legendre’s differential equation, it is reasonable to suspect that the solution

S
p3q
n pz; γq behaves similarly to Qnpzq. This is further suggested by the many similaries between

Formulas (19) and (33). Accordingly, we make the following conjecture regarding the radial prolate
spheroidal wave function of the third kind:

Conjecture 1. For fixed γ ą 0 and n ě 0, Mnpz; γq is absolutely monotone on p0, 1q and completely
monotone on p1,8q.

Since the coefficient in (22) is negative for u P p0,8q, the function S
p3q
n piu; γq is nonoscillatory

for 0 ă u ă 8. Based on experiments performed using computer algebra systems, we make the

following conjecture regarding the behavior of S
p3q
n pz; γq on the imaginary axis:

Conjecture 2. For fixed γ ą 0 and n ě 0, S
p3q
n piu; γq is p2` nq-times monontone on the interval

p0,8q.

Remark 1. In [21], we discuss the standard mechanism for defining S
p3q
ν pz; γq for noninteger values

of ν and generalize Conjectures 1 and 2 to that case.

5. Numerical algorithm

We now describe our algorithm for the numerical evaluation of Psnpz; γq. In addition to the values
of γ and n, it takes as input the Sturm-Liouville eigenvalue χnpγq and a positive integer k. The
algorithm operates by constructing a kth order piecewise Chebyshev expansion representing the
phase function ΨS npx; γq on an interval of the form r0, βq. More explicitly, the piecewise Chebyshev
expansion comprises a partition

0 “ x0 ă x1 ă x2 ă . . . ă xn “ β (38)

of r0, βq together with the coefficients taij : 1 ď i ď n, 1 ď j ď ku in the expansion

ΨS npx; γq «
n
ÿ

i“1

Irxi´1,xiqpxq
k
ÿ

j“0

aij Tj

ˆ

2

xi ´ xi´1
x`

xi´1 ` xi
xi´1 ´ xi

˙

, (39)

where Tj denotes the Chebyshev polynomial of degree and Irxi´1,xiqpxq is the characteristic function

Irxi´1,xiqpxq “

#

1 if xi´1 ď x ă xi

0 otherwise.
(40)

In all of the experiments described in this paper, we took k “ 29 and β “ 10120. We will shortly
explain why such a large value of β is needed.

The phase function is related to Psnpz; γq via the formula

Psnpz; γq “ Cnpγq
sin pΨS npx; γqq

b

p1` zqdΨS n
dx px; γq

, (41)

where x “ ´ logp1 ´ zq and Cnpγq is a constant which must be calculated. Since we normalize
Psnpz; γq by requiring that it equal the Legendre function Pnpzq at the point z “ 0, the constant
Cnpγq can be determined by evaluating (41) and the Legendre polynomial of degree n at 0. We
note that well-known formulas (such as those found on page 145 of [8]) make it easy to evaluate
Pnp0q in time independent of n. Once Cnpγq has been determined, the value of Psnpz; γq can be
calculated at any z in the interval r0, 1´expp´βqq by first using the piecewise Chebyshev expansion
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(39) to evaluate

ΨS npx; γq and
dΨS n

dx
px; γq (42)

and then plugging the resulting values into (41). When z is in p´1´ expp´βq, 0q, we use the well-
known symmetry properties of Psnpz; γq (it is an even function when n is even and an odd function
when n is odd) together with the procedure just described to evaluate it.

In the remainder of this section, we describe the method we use to solve ordinary differential
equations, the technique used to construct the expansion (39) and an accelerated version of the
algorithm obtained using the results of [21].

5.1. Adaptive solution of ordinary differential equations

The algorithm of this paper entails solving several ordinary differential equations. We use a fairly
standard adaptive Chebyshev spectral solver to do so. We now briefly describe its operation in the
case of the initial value problem

#

y1ptq “ F pt,yptqq, a ă t ă b,

ypaq “ v
(43)

where F : Rn`1 Ñ Rn is smooth and v P Rn. The solver can be easily modified to apply to a
terminal value problem.

The solver takes as input a positive integer k, an interval pa, bq, a subroutine for evaluating the
function F and the vector v. It outputs n piecewise kth order Chebyshev expansions, one for each
of the components yiptq of the solution y of (43).

The solver maintains two lists of subintervals of pa, bq: one consisting of accepted intervals and the
other of intervals which have yet to processed. Initially, the list of accepted intervals is empty and
the list of intervals to process contains the single interval pa, bq It then operates as follows until the
list of intervals to process is empty:

1. Find, in the list of interval to process, the interval pc, dq such that c is as small as possible
and remove this interval from the list.

2. Solve the initial value problem
#

u1ptq “ F pt,uptqq, c ă t ă d,

upcq “ w
(44)

If pc, dq “ pa, bq, then we take w “ v. Otherwise, the value of the solution at the point c has
already been approximated, and we use that estimate for w in (44).

If the problem is linear, a straightforward Chebyshev spectral method (see, for instance, [24])
is used to solve (44). Otherwise, the trapezoidal method (see, for instance, [2]) is first used
to produce an initial approximation y0 of the solution and then Newton’s method is applied
to refine it. The linearized problems are solved using a straightforward Chebyshev spectral
method.

In any event, the result is a set of kth order Chebyshev expansions

uipxq «
k
ÿ

j“0

λij Tj

ˆ

2

d´ c
x`

c` d

c´ d

˙

, i “ 1, . . . , n, (45)

approximating the components u1, . . . , un of the solution of (44).
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3. Compute the quantities
b

řk
j“k{2 λ

2
ij

b

řk
j“0 λ

2
ij

, i “ 1, . . . , n, (46)

where the λij are the coefficients in the expansions (45). If any of the resulting values is larger
than 100ˆ ε0, where ε0 denotes machine zero for the IEEE double precision number scheme,
then we split the interval into two halves

`

c, c`d2
˘

and
`

c`d
2 , d

˘

and place them on the list of
intervals to process. Otherwise, we place the interval pc, dq on the list of accepted intervals.

At the conclusion of this procedure, we have kth order Chebyshev expansions for each component
of the solution, with the list of accepted intervals determining the partition for each expansion.

5.2. Construction of ΨS npx; γq

To construct ΨS npx; γq, we first calculate the values of the function Mνpx; γq and its first two
derivatives with respect to x at 0. We do this by evaluating the logarithmic derivative

sptq “
f 1ptq

fptq
(47)

of the function

fptq “ Sp3qn pit; γq
a

1` t2 (48)

and its derivative at the point 0. Since f is a solution of (22), s satisfies

s1ptq ` psptqq2 ` q1ptq “ 0, (49)

where q1 is the coefficient in (22) with χ taken to be equal to the Sturm-Liouville eigenvalue χnpγq.
Moreover, from (20), it is apparent that

sptq “ ´γ `O
ˆ

1

t

˙

. (50)

Accordingly, we construct s by adaptively solving the terminal value problem
#

s1ptq ` psptqq2 ` q1ptq “ 0, 0 ă t ă c

spcq “ ´γ,
(51)

where c is a suitable large constant (we take c “ 1030 in the experiments presented here). Because
of Conjecture 2, we expect the function s to be well-behaved on the interval p0,8q and for the cost
of solving (51) to be slowly growing with γ and n.

Using the relations found in Section 2 and the definitions of Section 3, the values of wpxq “
Mνp1´ expp´xq; γqp2´ expp´xqq and its first two derivatives at x “ 0 can be expressed in terms
of sp0q and s1p0q. Indeed, w is the solution of the initial value problem

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

w3pxq ` 4q2pxqw
1pxq ` 2q12pxqwpxq “ 0, 0 ď x ă b,

wp0q “ ´
1

sp0q

w1p0q “ ´
1

sp0q

w2p0q “ ´
1

sp0q
` 2

s1p0q

sp0q
,

(52)

where q2 is the coefficient in (21) with χ taken to be equal to χnpγq. The next step of our
algorithm consists of solving (52) to construct a piecewise kth order Chebyshev expansion for

11



Mnp1 ´ expp´xq; γqp2 ´ expp´xqq. We let 0 “ x0 ă x1 ă x2 ă . . . ă xn “ b be the partition on
which this piecewise expansion is given.

Since

ΨS npx; γq “

ż x

8

γ

Mnp1´ expp´uq; γqp2´ expp´uqq
du

«

ż x

β

γ

Mnp1´ expp´uq; γqp2´ expp´uqq
du,

(53)

spectral integration can be used to construct a kth order piecewise Chebyshev expansion for
ΨS npx; γq. More explicitly, the final step of our algorithm consists of traversing the intervals
pxi´1, xiq in decreasing order (i.e., i “ n, n ´ 1, n . . . , 1) and, on each interval pxi´1, xiq, con-
structing a kth order Chebyshev expansion representing ΨS npx; γq by applying a k ˆ k spec-
tral integration matrix to the vector consisting of the coefficients in the Chebyshev expansion of
Mnp1´expp´xq; γqp2´expp´xqq over the interval pxi´1, xiq. The result is the piecewise Chebyshev
expansion (39) for ΨS npx; γq.

The derivative of the phase function decays extremely slowly to 0 when the parameters γ and n
are of small magnitude, and, in this event, it is necessary to choose β to be extremely close to 1 to
achieve high accuracy in (53). This is what motivates the exponential change of variables used to
obtain the form (21) of the reduced spheroidal wave equation and the decision to make β so large.
We note that for most values of the parameters, β can be taken to be much smaller without losing
accuracy.

We prefer to solve Appell’s equation (14) over Kummer’s equation (10) because of difficulties
which are encountered when solving the latter numerically. The solution of Kummer’s equation
is the derivative of the phase function ΨS npx; γq. In cases in which (21) has a turning point,
the derivative of ΨS npx; γq decays rapidly to 0 once the turning point is reached. This creates
numerical complications when solving Kummer’s equation owing to the presence of the derivative
of the phase function in the denominators of the some of the terms in (10). On the other hand,
the modulus function which satisfies Appell’s equation increasing on p0, βq (indeed, it is absolutely
monotone if our conjectures are correct).

5.3. Accelerated version of the algorithm

In [21], a numerical method for evaluating χnpγq in time which is bounded independent of n
and γ is described. It also allows for the Op1q calculation of the values of ΨS npz; γq and its
first few derivatives at the point z “ 0. Using these quantities, the values of modulus function
Mnp1´ expp´xq; γqp2´ expp´xqq and its first two derivatives at x “ 0 can be easily obtained. The
algorithm of this paper can be significantly accelerated by exploiting this capability. First, when
the values of the modulus function Mnp1 ´ expp´xq; γqp2 ´ expp´xqq and its first two derivatives
at x “ 0 are known, there is no need to solve the terminal value problem (51). Second, when the
value of ΨS np0; γq is known, Formula (53) can be replaced with

ΨS npx; γq “ ΨS np0; γq `

ż x

0

γ

Mnp1´ expp´uq; γqp2´ expp´uqq
du. (54)

Since we are no longer using (28) to determine the constant of integration, it is no longer necessary to
calculate ΨS npx; γq on a large interval. We instead construct a piecewise kth Chebyshev expansion
for it on the interval r0, 30q. This allows for the evaluation of Psnpz; γq for z in r0, 1´ expp´30qq,
which more than suffices for most purposes.
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6. Numerical Experiments

In this section, we present the results of numerical experiments which were conducted to illustrate
the effectiveness of the algorithm of this article and to measure the dependence of the cost of
representing ΨS npx; γq on the parameters. As discussed in Section 3, for the purposes of numerical
computation, the effective dimension of the space of functions with bandlimit γ is

2

π
γ `O plogpγqq ; (55)

in particular, the number of prolate functions of interest depends on the bandlimit γ. Moreover, the
qualitative behaviour of Psnpz; γq is best understood in terms of the ratio of n to γ. Accordingly,
we introduce a new parameter σ which is related to n via

n “ round pγσq , (56)

and the results presented here are discussed in terms of the parameters γ and σ rather than γ and
n.

The code for our experiments was written in Fortran and compiled with version 11.1.0 of the GNU
Fortran compiler. They were performed on a desktop computer equipped with an AMD Ryzen
3900x processor and 32GB of RAM. An implementation of our algorithm and code for conducting
all of the experiments discussed here is available on GitHub at the following address:

https://github.com/JamesCBremerJr/Prolates

In some of these experiments, we compared the performance of our algorithm with that of the
Osipov-Xiao-Rokhlin method [20]. Its running time is highly dependent on the dimension of
the tridiagonal matrix formed in order to calculate the coefficients in the Legendre expansion of
Psnpz; γq. Most implementations use a highly conservative value for this dimension. The authors of
[20], for instance, take it to be 1000`n` t1.1γu in their implementation. In many cases, Psnpz; γq
can be represented much more efficiently than this. The experiments of [22], though, suggest that
the necessary dimension grows as O

`

n`
?
nγ

˘

. It is difficult, however, to find a simple formula
which suffices in all cases of interest. Accordingly, our implementation of the Osipov-Rokhlin-Xiao
algorithm initially takes the dimension to be

50`

Z

2

π
n

^

` t
?
γnu , (57)

which we found to be sufficient for a large range of parameters, and then increases it adaptively
as needed to ensure high accuracy. Our implementation can be found in the GitHub repository
mentioned above.

6.1. The cost of representing ΨS npx; γq

In the experiments discussed here, we measured the cost to represent ΨS npx; γq on the interval
r0, 30q using a piecewise kth order Chebyshev expansion with k “ 29. Table 1 and Figure 2 show
the results.

Table 1 reports the number of coefficients required to represent the phase function on the interval
r0, 1´expp´30qq for various ranges of values of γ and σ. For each row of the table, we first sampled
100 equispaced values of γ and 100 equispaced values of σ in the indicated ranges. Then, we
constructed a piecewise Chebyshev expansion of ΨS npx; γq for each of the 10, 000 pairs of sampled
values and determined the number of coefficients in the largest expansion encountered.

Each plot on the left side of Figure 2 gives the number of Chebyshev coefficients in the expansion
representing ΨS npx; γq as function of γ for various values of σ, while each plot on the right side
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Range of γ Range of σ Max Coefs Range of γ Range of σ Max Coefs

100 to 500 0.00´ 0.25 420 10,000 to 50,000 0.00´ 0.25 540

0.25´ 0.50 420 0.25´ 0.50 570

0.50´ 0.75 360 0.50´ 0.75 570

0.75´ 1.00 120 0.75´ 1.00 180

500 to 1,000 0.00´ 0.25 420 50,000 to 100,000 0.00´ 0.25 570

0.25´ 0.50 450 0.25´ 0.50 570

0.50´ 0.75 364 0.50´ 0.75 570

0.75´ 1.00 130 0.75´ 1.00 180

1,000 to 5,000 0.00´ 0.25 450 100,000 to 500,000 0.00´ 0.25 630

0.25´ 0.50 480 0.25´ 0.50 630

0.50´ 0.75 450 0.50´ 0.75 630

0.75´ 1.00 145 0.75´ 1.00 240

5,000 to 10,000 0.00´ 0.25 510 500,000 to 1,000,000 0.00´ 0.25 630

0.25´ 0.50 510 0.25´ 0.50 660

0.50´ 0.75 480 0.50´ 0.75 630

0.75´ 1.00 150 0.75´ 1.00 300

Table 1: The cost of representing ΨS npx; γq for various ranges of values of γ and σ. To generate the data presented in
each row of this table, 100 equispaced values of γ and σ in the ranges indicated were sampled and a representation of
ΨS npx; γq over the interval r0, 1´expp´30qq was constructed for each of the 10, 000 resulting pairs of the parameters.

shows the number of Chebyshev coefficients in the expansion as a function of σ for various values
of γ. A logarithmic scale is used for the x-axis in each plot on the left.

We immediately draw several conclusions from these experiments. First, we note that no more
than 800 Chebyshev coefficients were required to represent any of the expansions formed during
the course of these experiments. Second, we observe that while the cost to represent ΨS npx; γq
grows with γ, it does so at a modest rate. Indeed, the plots on the left side of Figure 2 indicate
that for values of σ somewhat larger than 2{π, the number of coefficients is essentially constant as
a function of γ, while it increases sublogarithmically with γ for σ which are less than 2{π. Finally,
we observe from the plots on the right side of Figure 2 that a rapid drop in the cost of representing
the phase function occurs when σ is close to 2{π. For small values of σ, the reduced spheroidal
wave equation has turning points on p0, 1q and its solutions are oscillatory only on part of that
interval. However, starting when σ is a bit larger than 2{π, the solutions of the reduced spheroidal
wave equation are oscillatory on all of p0, 1q. Evidently, the cost of representing ΨS npx; γq in the
oscillatory regime is bounded independent of γ, while the cost of representing it in the nonoscillatory
regime grows sublogarithmically with γ.

6.2. The accuracy with which Psnpz; γq is evaluated

We now describe experiments conducted to measure the accuracy with which the algorithm of this
paper evaluates the angular spheroidal wave functions of the first kind of order zero by comparison
with the Osipov-Xiao-Rokhlin method. Table 2 and Figure 3 give the results.

Table 2 gives the accuracy of our algorithm for certain ranges of the parameters γ and σ. To
generate the data presented in each row of this table, we first sampled 100 equispaced values of γ
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Range of γ Range of σ Max Error Range of γ Range of σ Max Error

100 to 500 0.00´ 0.25 6.74ˆ 10´14 10,000 to 50,000 0.00´ 0.25 5.90ˆ 10´13

0.25´ 0.50 1.02ˆ 10´13 0.25´ 0.50 9.07ˆ 10´13

0.50´ 0.75 3.91ˆ 10´13 0.50´ 0.75 4.88ˆ 10´12

0.75´ 1.00 1.45ˆ 10´13 0.75´ 1.00 2.10ˆ 10´12

500 to 1,000 0.00´ 0.25 1.02ˆ 10´13 50,000 to 100,000 0.00´ 0.25 8.62ˆ 10´13

0.25´ 0.50 1.49ˆ 10´13 0.25´ 0.50 1.42ˆ 10´12

0.50´ 0.75 7.02ˆ 10´13 0.50´ 0.75 2.12ˆ 10´11

0.75´ 1.00 2.09ˆ 10´13 0.75´ 1.00 2.03ˆ 10´11

1,000 to 5,000 0.00´ 0.25 2.09ˆ 10´13 100,000 to 500,000 0.00´ 0.25 1.94ˆ 10´12

0.25´ 0.50 3.25ˆ 10´13 0.25´ 0.50 3.39ˆ 10´12

0.50´ 0.75 2.14ˆ 10´12 0.50´ 0.75 5.32ˆ 10´11

0.75´ 1.00 5.54ˆ 10´13 0.75´ 1.00 5.44ˆ 10´11

5,000 to 10,000 0.00´ 0.25 2.76ˆ 10´13 500,000 to 1,000,000 0.00´ 0.25 2.87ˆ 10´12

0.25´ 0.50 4.31ˆ 10´13 0.25´ 0.50 4.51ˆ 10´12

0.50´ 0.75 3.13ˆ 10´12 0.50´ 0.75 1.09ˆ 10´10

0.75´ 1.00 1.10ˆ 10´12 0.75´ 1.00 7.52ˆ 10´11

Table 2: The accuracy with which Psnpz; γq is evaluated for various ranges of values of γ and σ.

and σ in the ranges indicated. Then, for each of the 10, 000 pairs of sampled values, we evaluated
Psnpz; γq at 100 equispaced points txku in the interval p0, 1q using the algorithm of this paper and
the Osipov-Xiao-Rokhlin method. The largest absolute error observed is reported in Table 2.

Figure 3 contains plots showing the dependence of the accuracy of our algorithm on γ and σ. For
each pair of parameters considered, Psnpz; γq was evaluated at 100 equispaced points txku on the
interval p0, 1q and the largest absolute error was determined. Each plot on the left side of that
figure gives the accuracy with which Psnpz; γq is evaluated as function of γ for various values of σ,
while each plot on the right side plots the accuracy as a function of σ for various values of γ. A
logarithmic scale is used for the x-axis in each plot on the left.

As expected, accuracy is lost as both γ and σ increase. This occurs because the magnitude of
ΨS npx; γq increases with both of these variables and the accuracy with which the sine function is
evaluated decreases with the magnitude of its argument. We note that the condition number of the
reduced spheroidal wave equation and the condition number of evaluation of its solutions increases
with the parameters γ and σ as well, so some loss of precision is expected. We also observe that
the largest error observed during the course of these experiments was approximately 10´10, and
this was only for values of γ near 1, 000, 000.

6.3. The time required to construct ΨS npx; γq

In these experiments, we measured the time required to calculate the phase function ΨS npx; γq
using both the accelerated and unaccelerated algorithm described in this paper. In some of these
experiments, we compared it with the time taken by the Osipov-Xiao-Rokhlin method to construct
the Legendre expansion representing Psnpz; γq. Table 3 and Figures 4 and 5 give the results.
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Range of γ Range of σ Average Time Average time Average time Ratio
Unaccelerated Accelerated Rokhlin, et. al.

100 to 500 0.00´ 0.25 5.35ˆ 10´03 3.05ˆ 10´04 9.76ˆ 10´05 0.32

0.25´ 0.50 3.32ˆ 10´03 2.62ˆ 10´04 1.31ˆ 10´04 0.50

0.50´ 0.75 1.90ˆ 10´03 1.16ˆ 10´04 1.71ˆ 10´04 1.47

0.75´ 1.00 1.85ˆ 10´03 6.95ˆ 10´05 2.11ˆ 10´04 3.04

500 to 1,000 0.00´ 0.25 6.78ˆ 10´03 3.54ˆ 10´04 1.85ˆ 10´04 0.52

0.25´ 0.50 5.42ˆ 10´03 3.43ˆ 10´04 2.87ˆ 10´04 0.84

0.50´ 0.75 2.24ˆ 10´03 1.53ˆ 10´04 3.96ˆ 10´04 2.58

0.75´ 1.00 1.97ˆ 10´03 9.26ˆ 10´05 4.90ˆ 10´04 5.29

1,000 to 5,000 0.00´ 0.25 7.20ˆ 10´03 4.04ˆ 10´04 5.73ˆ 10´04 1.42

0.25´ 0.50 6.94ˆ 10´03 4.18ˆ 10´04 1.09ˆ 10´03 2.61

0.50´ 0.75 3.26ˆ 10´03 2.11ˆ 10´04 1.48ˆ 10´03 7.01

0.75´ 1.00 2.16ˆ 10´03 9.84ˆ 10´05 1.87ˆ 10´03 19.08

5,000 to 10,000 0.00´ 0.25 7.40ˆ 10´03 4.36ˆ 10´04 1.34ˆ 10´03 3.08

0.25´ 0.50 7.27ˆ 10´03 4.54ˆ 10´04 2.67ˆ 10´03 5.88

0.50´ 0.75 4.09ˆ 10´03 2.47ˆ 10´04 3.65ˆ 10´03 14.80

0.75´ 1.00 2.47ˆ 10´03 9.88ˆ 10´05 4.63ˆ 10´03 46.87

10,000 to 50,000 0.00´ 0.25 7.58ˆ 10´03 4.74ˆ 10´04 5.12ˆ 10´03 10.79

0.25´ 0.50 7.53ˆ 10´03 4.99ˆ 10´04 1.04ˆ 10´02 20.96

0.50´ 0.75 4.94ˆ 10´03 2.94ˆ 10´04 1.45ˆ 10´02 49.39

0.75´ 1.00 3.12ˆ 10´03 1.02ˆ 10´04 1.81ˆ 10´02 177.52

50,000 to 100,000 0.00´ 0.25 7.71ˆ 10´03 5.04ˆ 10´04 1.24ˆ 10´02 24.75

0.25´ 0.50 7.78ˆ 10´03 5.33ˆ 10´04 2.58ˆ 10´02 48.36

0.50´ 0.75 5.49ˆ 10´03 3.32ˆ 10´04 3.63ˆ 10´02 109.16

0.75´ 1.00 3.84ˆ 10´03 1.28ˆ 10´04 4.91ˆ 10´02 381.27

100,000 to 500,000 0.00´ 0.25 7.07ˆ 10´03 5.73ˆ 10´04 5.40ˆ 10´02 94.38

0.25´ 0.50 1.27ˆ 10´02 1.14ˆ 10´03 3.14ˆ 10´01 275.27

0.50´ 0.75 1.21ˆ 10´02 9.41ˆ 10´04 5.47ˆ 10´01 582.02

0.75´ 1.00 9.30ˆ 10´03 4.18ˆ 10´04 7.39ˆ 10´01 1766.48

500,000 to 1,000,000 0.00´ 0.25 1.06ˆ 10´02 9.22ˆ 10´04 2.96ˆ 10´01 321.57

0.25´ 0.50 1.86ˆ 10´02 1.72ˆ 10´03 1.07ˆ 10`00 619.20

0.50´ 0.75 1.54ˆ 10´02 1.19ˆ 10´03 1.56ˆ 10`00 1306.14

0.75´ 1.00 1.20ˆ 10´02 4.99ˆ 10´04 1.98ˆ 10`00 3979.82

Table 3: The average time (in seconds) required by the accelerated and unaccelerated versions of the algorithm of
this paper to construct the phase function ΨS npx; γq they use to represent Psnpz; γq, as well as the time required by
the Osipov-Xiao-Rokhlin method to construct the Legendre expansion it uses to represent Psnpz; γq. The “Ratio”
column reports the ratio of the time taken by the Osipov-Xiao-Rokhlin method to the time taken by the accelerated
version of the algorithm of this paper.

Table 3 gives the average time required to construct the phase function ΨS npx; γq using the ac-
celerated and unaccelerated versions of this algorithm as well as the average time taken by the
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Osipov-Xiao-Rokhlin algorithm to construct the Legendre expansion representing Psnpz; γq for
various ranges of the parameters γ and σ. To generate the data for each row of the table, first
100 equispaced values of the each of the parameters γ and σ were sampled. Then, for each of
the 10, 000 pairs of sampled values of the parameter, the phase function ΨS npx; γq representing
Psnpz; γq was constructed using both the accelerated and unaccelerated algorithms of this paper
and a Legendre expansion representing Psnpz; γq was constructed with the Osipov-Xiao-Rokhlin
method. The average time taken by each of these procedures is reported. The column labelled
‘Ratio’ in Table 3 gives the ratio of the average time taken by the Osipov-Xiao-Rokhlin method to
the average time taken by the accelerated version of our algorithm.

Each of the plots on the left side of Figure 4 gives the time required by the accelerated version of
our algorithm to construct ΨS npx; γq as a function of γ for several different values of σ. Similarly,
each plot on the right side of Figure 4 gives the time needed to construct ΨS npx; γq as a function
of σ for various values of γ.

Figure 5 contains plots comparing the time required to construct ΨS npx; γq using the accelerated
version of the method of this paper with the time required by the Osipov-Xiao-Rokhlin algorithm
to construct the Legendre expansion representing Psnpz; γq. Each plot on the left side of Figure 5
gives these quantities as functions of γ for a fixed σ, while the plots on the right side of the figure
gives these quantities as functions of σ for a fixed γ. We choose the range of γ displayed in each
plot on the right in order to emphasize the break-even point between the two methods.

From these experiments, we conclude that the time required to construct ΨS npx; γq grows subloga-
rithmically with γ and is bounded independent of σ. Moreover, we see that the Osipov-Xiao-Rokhlin
algorithm is faster for small values of the parameter, but for γσ ą 250 or so, the accelerated version
of the algorithm of this paper becomes more efficient, and it is much more efficient at large values
of γ.

6.4. The time required to evaluate Psnpz; γq

In this final set of experiments, we measured the time required to evaluate Psnpz; γq using the
phase function ΨS npx; γq and compared it to the time needed to evaluate the Legendre expansion
used by the Osipov-Xiao-Rokhlin to represent Psnpz; γq. Table 4 and Figures 6 give the results.

Table 4 gives the average time required to evaluate Psnpz; γq using the the phase function ΨS npx; γq
as well as the average time required to evaluate the Legendre expansion used by the Osipov-Xiao-
Rokhlin algorithm to represent Psnpz; γq for various ranges of the parameters γ and σ. To generate
the data for each row of the table, we first sampled 20 equispaced values of the each of the parameters
γ and σ. Then, for each of the 400 pairs of sampled values of the parameter, the phase function
ΨS npx; γq representing Psnpz; γq was constructed using the algorithm of this paper and a Legendre
expansion representing Psnpz; γq was constructed with the Osipov-Xiao-Rokhlin method. Next,
for each pair of the parameters γ and n, Psnpz; γq was evaluated at 100 equispaced points on the
interval p0, 1q. The average time taken to perform these 40, 000 evaluations is reported.

Each of the plots on the left side of Figure 6 gives the time required to evaluate ΨS npx; γq as a
function of γ for several different values of σ. Similarly, each plot on the right side of Figure 4 gives
the time needed to evaluate Psnpz; γq as a function of σ for various values of γ.

We omit the analog of Figure 5 comparing the time required to evaluate the phase function
ΨS npx; γq used by the algorithm of this paper to represent Psnpz; γq and the time required to eval-
uate it using the Legendre expansion used by Xiao-Osipov-Rokhlin method to represent Psnpz; γq.
This is because, even for small values of γ and σ, the phase function method is considerably faster.
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We conclude from these experiments that the time required to evaluate Psnpz; γq using the phase
function ΨS npx; γq is largely independent of the parameters γ and σ.

Range of γ Range of σ Average time Average time Ratio
Phase Rokhlin, et. al.

100 to 500 0.00´ 0.25 1.22ˆ 10´07 1.66ˆ 10´06 13.67

0.25´ 0.50 1.14ˆ 10´07 2.17ˆ 10´06 18.99

0.50´ 0.75 1.36ˆ 10´07 2.44ˆ 10´06 17.88

0.75´ 1.00 1.16ˆ 10´07 2.70ˆ 10´06 23.30

500 to 1,000 0.00´ 0.25 1.36ˆ 10´07 3.28ˆ 10´06 24.08

0.25´ 0.50 1.18ˆ 10´07 4.59ˆ 10´06 38.74

0.50´ 0.75 1.17ˆ 10´07 5.29ˆ 10´06 45.25

0.75´ 1.00 1.18ˆ 10´07 5.89ˆ 10´06 49.92

1,000 to 5,000 0.00´ 0.25 1.55ˆ 10´07 9.89ˆ 10´06 63.71

0.25´ 0.50 1.26ˆ 10´07 1.57ˆ 10´05 124.06

0.50´ 0.75 1.17ˆ 10´07 1.86ˆ 10´05 158.33

0.75´ 1.00 1.17ˆ 10´07 2.10ˆ 10´05 178.54

5,000 to 10,000 0.00´ 0.25 1.62ˆ 10´07 2.23ˆ 10´05 137.12

0.25´ 0.50 1.30ˆ 10´07 3.73ˆ 10´05 287.03

0.50´ 0.75 1.18ˆ 10´07 4.49ˆ 10´05 378.10

0.75´ 1.00 1.18ˆ 10´07 5.09ˆ 10´05 429.64

10,000 to 50,000 0.00´ 0.25 1.66ˆ 10´07 8.18ˆ 10´05 491.98

0.25´ 0.50 1.32ˆ 10´07 1.43ˆ 10´04 1088.13

0.50´ 0.75 1.19ˆ 10´07 1.74ˆ 10´04 1465.68

0.75´ 1.00 1.17ˆ 10´07 1.98ˆ 10´04 1683.48

50,000 to 100,000 0.00´ 0.25 1.66ˆ 10´07 1.99ˆ 10´04 1196.92

0.25´ 0.50 1.35ˆ 10´07 3.58ˆ 10´04 2645.23

0.50´ 0.75 1.21ˆ 10´07 4.35ˆ 10´04 3597.88

0.75´ 1.00 1.20ˆ 10´07 4.96ˆ 10´04 4129.21

100,000 to 500,000 0.00´ 0.25 1.61ˆ 10´07 7.87ˆ 10´04 4864.34

0.25´ 0.50 1.39ˆ 10´07 1.61ˆ 10´03 11542.75

0.50´ 0.75 1.33ˆ 10´07 2.75ˆ 10´03 20682.52

0.75´ 1.00 1.35ˆ 10´07 3.27ˆ 10´03 24266.13

500,000 to 1,000,000 0.00´ 0.25 1.70ˆ 10´07 2.49ˆ 10´03 14689.04

0.25´ 0.50 1.78ˆ 10´07 1.28ˆ 10´02 72054.88

0.50´ 0.75 1.64ˆ 10´07 1.73ˆ 10´02 105582.86

0.75´ 1.00 1.58ˆ 10´07 1.80ˆ 10´02 114213.05

Table 4: The average time (in seconds) required by the algorithm of this paper and by the Osipov-Xiao-Rokhlin
method to evaluate Psnpz; γq. The “Ratio” column reports the ratio of the time taken by the two methods.

18



7. Conclusions

It is well known that many second order differential equations have solutions whose logarithms are
easier to represent than the solutions themselves. Historically, this observation has mainly been
used to construct asymptotic expansions of the solutions of such equations. Here we suggest a
more direct approach: the numerical computation of the logarithms. We discuss the results of
experiments which indicate such an approach leads to a method for the numerical evaluation of
the prolate spheroidal wave functions of order zero whose running time grows much more slowly
with bandlimit and characteristic exponent than standard algorithms. Moreveor, the algorithm
presented here can be viewed as a template suitable for application to many other families of
special functions satisfying second order differential equations, such as the Jacobi polynomials and
Hermite functions.

We rely on experimental evidence for our claims. It would be of great interest to prove a bound on
the cost of representing the phase function ΨS npx; γq or a related function using piecewise poly-
nomial expansions. Proving the conjectures made in this article regarding the associated modulus
function might provide a good starting point for such an endeavor. Formulas which imply the
monotonicity properties of many related second order differential equations (such as those estab-
lished in [6] and [7]) have been proved using Koornwinder’s addition formula for Jacobi functions
[13]. An analagous result for the spheroidal wave functions would most likely lead to proofs of the
conjectures made in Section 4.

We believe it is possible to eliminate the dependence of the running time of the algorithm described
here on the bandlimit γ. The cost of representing the logarithms of the WKB solution in regions
bounded away from the turning points of the reduced spheroidal wave equation appears to be
independent of γ. It is only near the turning point where the complexity increases with γ. A more
sophisticated approach, which used an alternate representation of Psnpz; γq near turning points,
would most likely yield an O p1q algorithm for evaluation the prolate spheroidal wave functions of
order zero.

Finally, we note that the methodology discussed here and in [21] can be applied to the spheroidal
wave functions of nonzero orders. We believe the conjectures of Section 4 extend essentially without
modification to that equation. The only additional difficulty is that the expansions used in [21] to
evaluate the Sturm-Liouville eigenvalues of the spheroidal wave functions would depend on three
variables instead of two, and be correspondingly larger and cost more to evaluate.
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Figure 2: The number of Chebyshev coefficients required to represent ΨS npγq. Each of the graphs on the left gives
the number of coefficients as function of γ for several values of σ, while the plots on the right give the number of
coefficients as a function of σ for several values of γ. A logarithmic scale is used for the x-axis in each of the plots on
the left.
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Figure 3: The accuracy with which Psnpγq is evaluated. Each of the graphs on the left gives the maximum observed
error as a function of γ for several values of σ, while the plots on the right give the maximum observed error as a
function of σ for several values of γ. A logarithmic scale is used for the x-axis in each of the plots on the left.
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Figure 4: The time (in microseconds) required by the accelerated version of the algorithm of this paper to construct
ΨS npγ; zq. Each of the graphs on the left gives the time required as a function of γ for several values of σ, while the
plots on the right give the required time as a function of σ for several values of γ. A logarithmic scale is used for the
x-axis in each of the plots on the left.
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Figure 5: A comparison of the time required to construct a representation of Psnpz; γq using the accelerated version
of the algorithm of this paper and the Xiao-Osipov-Rokhlin method. Each plot on the left gives these quanitites as
a function of gamma for a fixed value of σ. From top to bottom, σ “ 0.10, σ “ 0.25 and σ “ 0.50. Each plot on the
right gives these quanitites as a function of sigma for fixed values of γ. From top to bottom, γ “ 100, γ “ 500 and
γ “ 1, 000.
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Figure 6: The time (in nanoseconds) required to evaluate Psnpz; γq using the algorithm of this paper. Each of the
graphs on the left gives the time required as a function of γ for several values of σ, while the plots on the right give
the required time as a function of σ for several values of γ. A logarithmic scale is used for the x-axis in each of the
plots on the left.
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