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Abstract. The Nyström method can produce ill-conditioned systems of linear equations when

applied to integral equations on domains with corners. This defect can already be seen in the
simple case of the integral equations arising from the Neumann problem for Laplace’s equation.

We explain the origin of this instability and show that a straightforward modification to the

Nyström scheme, which renders it mathematically equivalent to Galerkin discretization, corrects
the difficulty without incurring the computational penalty associated with Galerkin methods. We

also present the results of numerical experiments showing that highly accurate solutions of integral

equations on domains with corners can be obtained, irrespective of whether their solutions exhibit
bounded or unbounded singularities, assuming that proper discretizations are used.

1. Introduction

It is well known that Neumann boundary value problems for Laplace’s equation can be formulated
as second kind integral equations. In the case of a compact simply-connected planar domain Ω with
Lipschitz boundary ∂Ω, the exterior problem

∆u = 0 in Ωc

∂u

∂ν
= g on ∂Ω

(1.1)

is solvable when g is in the space L2
0(∂Ω) of square integrable functions of zero mean on ∂Ω. Here,

ν is the outward-pointing unit normal of ∂Ω and the boundary condition must be understood as a
limit in the appropriate non-tangential sense. If the additional condition

u(x) = O

(
1
|x|

)
as |x| → ∞ (1.2)

is imposed, then the solution is unique. The usual integral equation method exploits the observation
that the solution u can be represented uniquely in the form of a single-layer charge distribution σ
on ∂Ω; that is, as

u(x) =
1

2π

∫
∂Ω

log |x− y|σ(y)ds(y). (1.3)

The charge distribution σ which, when inserted into (1.3), produces the solution of (1.1) can be
determined by solving the integral equation

σ(x) +Nσ(x) = 2g(x), x ∈ ∂Ω, (1.4)

where N is the operator

Nσ(x) =
1
π

∫
∂Ω

(
∂

∂νx
log |x− y|

)
σ(y)ds(y). (1.5)

In this article, we will consider domains ∂Ω which are piecewise smooth with corner points. By
corner point, we mean a point on the boundary curve ∂Ω at which the limits of the normal derivative
as one approaches from the clockwise and the counter-clockwise directions exist but are not equal.
For these domains, the kernel

K(x, y) =
1
π

∂

∂νx
log |x− y| (1.6)
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of the integral operator N is smooth except on the set consisting of points (x, y) ∈ ∂Ω × ∂Ω such
that either x or y is a corner point.

The Nyström method is one of the standard approaches to the discretization of the integral
equation (1.4). It proceeds by fixing an appropriate quadrature formula x1, . . . , xn, w1, . . . , wn and
approximating the values of the charge distribution σ at the quadrature nodes x1, . . . , xn by solving
the system

σ(xi) +
n∑
j=1

K(xi, xj)σ(xj)wj = 2g(xi), i = 1, . . . , n, (1.7)

of n linear equations in the n unknowns σ(x1), . . . , σ(xn).
For many domains, the linear system (1.7) is an effective means for solving the integral equa-

tion (1.4). If the boundary of ∂Ω is twice continuously differentiable, then N is compact as an
operator on the Banach space C(∂Ω) of continuous functions on ∂Ω endowed with the uniform
norm. The boundedness and invertibility of I + N as an operator on C(∂Ω) follow from the Fred-
holm theory. Moreover, bounds on the operator norms of I + N and (I + N)−1 can be used to
estimate the l∞ condition number of the linear system (1.7). Convergence results follow from sim-
ilar considerations; for instance, if the domain Ω is smooth, then exponential convergence can be
achieved by choosing an appropriate quadrature formula. See, for instance, [13] for a discussion of
the classical Riesz theory and its application to the numerical solution of the integral equations of
potential theory.

When the boundary ∂Ω is merely Lipschitz, this analysis breaks down. In this case, I + N is
bounded and invertible as an operator on L2

0(∂Ω), but it is not bounded with respect to the uniform
norm (see, for instance, [5] or [7]). Indeed, there are functions g ∈ C(∂Ω) such that the charge
distribution σ satisfying the integral equation (1.4) is unbounded so the usual estimates on the l∞

condition number of the linear system (1.7) no longer apply.
Stability can be restored by discretizing I+N as an operator on L2

0(∂Ω) rather than C(∂Ω). This
can be accomplished by switching from Nyström to Galerkin discretization. That is, by choosing an
appropriate orthonormal basis ψ1, . . . , ψn and discretizing the integral operator I +N via the n×n
matrix A with entries

Aij = δij +
∫
∂Ω

∫
∂Ω

K(x, y)ψj(y)ψi(x)ds(y)ds(x).

Bounds for the condition number of A as a function of singular values of the operator

I +N : L2
0(∂Ω)→ L2

0(∂Ω)

can be readily obtained. There is, however, a disadvantage to this approach: Galerkin discretizations
are computationally more expensive and more complicated to construct than Nyström discretizations
because of the need to evaluate double integrals numerically.

It is the purpose of this article to show that a second remedy, which does not suffer from this
disadvantage, is available. In particular, the Nyström scheme can be modified to produce discretiza-
tions which reflect the properties of I +N as an operator on L2

0(∂Ω). The modified scheme results
in well-conditioned linear systems approximating (1.4) on domains with corners whose solutions are
highly accurate. Moreover, this method is simpler and more efficient than Galerkin discretization
in that it does not require the numerical evaluation of double integrals.

There are further difficulties complicating the discretization of integral equations on domains
with corners: the operator N is not compact and both the kernel K(x, y) and solutions of the
equation (1.4) are singular. It has long been standard practice to address the first problem by
forming a modified boundary curve ∂Ωδ which excludes from ∂Ω a δ-neighborhood of each corner
point, introducing the compact integral operator

Nδ(x) =
1
π

∫
∂Ωδ

(
∂

∂νx
log |x− y|

)
σ(y)ds(y), (1.8)

and considering, in lieu of (1.4), the integral equation

I +Nδ = 2g(x), x ∈ ∂Ωδ. (1.9)
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It is well established that solutions σδ of (1.9) converge to those of (1.4) in a distributional sense;
that is,

∫
∂Ωδ

log |x− y|σδ(y)ds(y)→
∫
∂Ω

log |x− y|σ(y)ds(y) as δ → 0

for x ∈ Ωc. To combat the difficulties associated with singular solutions and kernels, the Nyström
discretization of (1.9) is usually formed using graded mesh quadratures; that is, with the help of
quadratures of various types which become increasingly dense near corner points.

Moreover, while the discretization of boundary integral equations on domains with corners via
the Nyström method and graded mesh quadrature can be made accurate and stable, this is not by
itself a reasonable approach to the solution of boundary integral equations on large-scale domains
with corners. The systems of linear equations arising from such domains are excessively large and
must be compressed in some fashion. In Section 3, we present a scheme for the compression of
linear systems obtained by discretizing boundary integral equations on domains with corners which
is based on ideas introduced in [2] and [3]. In conjunction with fast multipole methods and fast
direct solvers, it allows for the very rapid solution of boundary integral equations on large-scale
domains with corners. Although we only consider the Neumann problem for Laplace’s equation
here, the scheme of Section 3 applies to a wide class of boundary value problems; see, for instance,
[3] where a similar approach is used to solve the Dirichlet problem for the Helmholtz equation at
low wavenumbers. Moreover, certain components of these schemes generalize readily to the three-
dimensional environment. The specific approach discussed in Section 3 can be readily extended to
this setting, for instance.

It has long been known that difficulties arise when numerically solving the systems of linear
equations resulting from the Nyström discretization of integral equations on singular domains. The
paper [4], for instance, observes that the Nyström method, when applied to the integral operator
arising from the Neumann problem for Laplace’s equation on a domain with a corner point, can
produce inaccurate results. Note that approximations formed using the Nyström approach converge
in exact arithmetic; the issue is one of conditioning and not accuracy per se. It goes on to draw
a distinction between integral equations whose solutions are bounded in uniform norm and those
that are not and introduces a scheme based on subtraction of singularities for the later case. The
scheme requires extensive a priori knowledge of the asymptotic behavior of solutions and does not
appear to be applicable to large-scale problems. It does, however, yield highly-accurate results
for those problems to which it applies. In [6], extended precision precomputation is suggested
as a partial remedy for the ill-conditioning which arises from Nyström discretization of singular
integral equations. In [11], a scheme dubbed “recursive compressed inverse preconditioning” is
introduced and shown to be an effective means for solving large-scale electrostatic crack problems.
It is strongly related to the algorithm of Section 3; however, the algorithm of [11] is complicated
by the need to address the ill-conditioning which results from the naive Nyström discretization of
singular integral operators. The approach of [11] is further developed in [10] and [9]. Finally, we
note that many successful Nyström methods for the integral equations arising from the Dirichlet
problem for Laplace’s equation have been proposed (for instance, [12]). The success of such methods
can be attributed to the boundedness of the L∞ operator norms of the associated integral operator
and its inverse.

This article is structured as follows. In Section 2, we discuss the Nyström discretization of integral
operators on domains with corners. Section 3 gives the details of a scheme for the compression of
systems of linear equations arising from boundary integral equations on domains with corners. In
Section 4, we present the results of numerical experiments showing that the boundary integral
equation (1.4) can be solved stably and to high accuracy with graded mesh quadrature provided
appropriate discretizations are used. Finally, we close with a few remarks on the numerical solution
of integral equations on domains with corners in Section 5.
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2. Discretization of integral equations on domains with corners

2.1. Discretization of compact operators acting on L2 spaces. If (X,µ) is a measure space,
then we say that a mapping Φ of M ⊂ L2(X, dµ) into Cn preserves inner products provided

Φ(f) · Φ(g) =
∫
X

f(x)g(x)dµ(x)

for all f, g ∈M .
Consider a compact operator S : L2(X, dµ)→ L2(X, dµ). It is well known that S admits singular

value decomposition. We will denote by {λj} the singular values of S and for each j, we will let uj
and vj be the left and right singular functions corresponding to λj . In the event that the rank of S
is finite, we set λj = 0 and uj = vj = 0 for all j greater than the rank of S. Moreover, we will let
Uε and Vε be the subspaces spanned by {uj | λj < ε} and {vj | λj < ε}, respectively.

We say a matrix A in Cn×n is an inner product preserving discretization of S of accuracy ε if
there exist inner product preserving mappings Φ of Uε into Cn and Ψ of Vε into Cn such that the
diagram

Vε ⊂ L2(X,µ) S−−−−→ Uε ⊂ L2(X,µ)yΨ

yΦ

Cn A−−−−→ Cn
commutes. This is equivalent to requiring that

AΨ(f) · Φ(g) =
∫
X

Sf(x)g(x)dµ(x)

for all f ∈ Vε and g ∈ Uε. One of the key properties of such a discretization is that

A∗AΨ(f) ·Ψ(g) = AΨ(f) ·AΨ(g) =
∫
X

Sf(x)Sg(x)dµ(x) =
∫
X

S∗Sf(x)g(x)dµ(x)

for all f, g ∈ Vε, from which it follows that the singular values of the restriction of the matrix A to
Ψ(Vε) are those of the restriction of the operator S to Vε.

Remark 2.1. Galerkin discretization is perhaps the easiest way to produce an inner product pre-
serving discretization of a compact operator S : L2(X, dµ) → L2(X, dµ). Let f1, . . . , fn be an
orthonormal basis spanning Vε and let g1, . . . , gn be an orthonormal basis spanning Uε. The map-
ping which takes functions in Vε to their coefficient expansions with respect to the basis {fj} is inner
product preserving, as is the mapping which takes functions in Uε to their coefficient expansions in
the basis {gi}. The Galerkin discretization of S with respect to these bases, which is the n×n matrix
A with entries

Aij =
∫
X

Sfi(x)gj(x)dµ(x),

is then an inner product preserving discretization of S of accuracy ε.

2.2. Inner product preserving Nyström discretizations. Now suppose that S is a compact
integral operator L2(X, dµ)→ L2(X, dµ) whose kernel L(x, y) is defined pointwise everywhere and
let Vε and Uε be as in the preceding section. A quadrature rule of the form∫

X

f(y)dµ(y) ≈
n∑
l=1

f(xl)wl (2.1)

with positive weights induces a mapping Φ of L2(X, dµ) into Cn; to wit,

Φ (f) =


f(x1)

√
w1

f(x2)
√
w2

...
f(xn)

√
wn

 .
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If the quadrature rule (2.1) is exact for products of the form fg with f, g ∈ Vε and hf with h, f ∈ Uε,
then Φ is an inner product preserving mapping of Uε and Vε into Cn.

Moreover, the choice of quadrature x1, . . . , xn, w1, . . . , wn induces a mapping of the space of
integrals operators on L2(X, dµ) with pointwise defined kernels into the space of operators on Cn.
In particular, S is mapped to the n× n matrix A with entries

Aij = L(xi, xj)
√
wi
√
wj .

If the quadrature rule is sufficiently dense to integrate the products of the kernel with the functions
in Uε and Vε, then we will have

AΦ(f) · Φg(x) =
∫
X

Sf(x)g(x)ds(x)

for f ∈ Vε and g ∈ Uε; that is, A will be an inner product preserving discretization of the integral
operator S of accuracy ε.

This notion of discretization, when applied to the operator I + N , leads to the n × n matrix B
with entries

Bij = δij +K(xi, xj)
√
wi
√
wj , (2.2)

where K(x, y) is the kernel (1.6) of N . This is in contrast to the standard Nyström discretization
of I +N , which is the matrix C with entries

Cij = δij +K(xi, xj)wj . (2.3)

The salient difference between the matrices B and C is that the singular values of B approximate
those of I + N while the singular values of C do not. Since the operator I + N and its inverse
have well-behaved L2(∂Ω) operator norms on most curves of interest, it follows that the matrix B is
well-conditioned in typical cases, including on many singular domains. The matrix C, on the other
hand, is generally ill-conditioned when ∂Ω is singular.

The solution of the integral equation (1.4) using the inner product preserving discretization B
proceeds by letting y be the vector of length n with entries

yi = g(xi)
√
wi

and inverting the linear system Bz = y. The entries of the resulting vector z are the values of the
charge distribution σ satisfying (1.4) at the quadrature nodes xi scaled by the square roots of the
corresponding quadrature weights; that is,

zi = σ(xi)
√
wi.

In other words, the analog of (1.7) is the system

σ(xi)
√
wi +

n∑
j=1

K(xi, xj)
√
wiwjσ(xj) = 2g(xi)

√
wi, i = 1, . . . , n, (2.4)

of n linear equations in the n unknowns

σ(x1)
√
w1, σ(x2)

√
w2, . . . , σ(xn)

√
wn.

We will refer to linear systems of this type as inner product preserving discretizations of the integral
equation (1.4). Note that the vector obtained from solving the linear system (2.4) is the image of
the charge distribution σ under the inner product preserving mapping Φ; i.e., we solve for σ in an
L2(∂Ω) sense rather than in a pointwise sense.

Remark 2.2. We have neglected certain details in this section in order to simply the discussion.
Specifically, in finite precision arithmetic it is inevitable that the quadrature formula (2.1) will not
hold exactly for the requisite integrands. This means that our discretizations will suffer from inac-
curacies both as a result of finite rank approximation and from quadrature error. Limitations of this
type, however, apply to all methods for the discretization of integral operators.

Remark 2.3. Inner product preserving Nyström discretizations can be produced in the case of
integral operators whose kernels are not defined pointwise provided the appropriate interpolatory
quadratures are available.
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3. Compression of linear systems arising from integral equations on domains with
corners

We now describe a mechanism for the compression of systems of linear equations arising from
boundary integral equations on domains with corners. It is a variant of the schemes of [3] and [2]
which operates via two tools, generalized quadrature and charge bases. Generalized quadrature and
charge bases are discussed in Sections 3.1 and 3.2, respectively, and the compression scheme proper
is detailed in Section 3.3.

3.1. Generalized quadrature. We define the ε-rank of an n×m matrix A to be the least integer
k such that the k largest singular values of A are greater than ε, assuming that such an integer
exists. If it does not, then we say that the ε-rank of A is min(m,n).

If f1, . . . , fm is a collection of functions in L2(X,µ) and Φ is an inner product preserving mapping
of the span of the fj into Cn, then we define the ε-rank of f1, . . . , fm to be the ε-rank of the n×m
matrix

A =
(

Φ(f1) . . . Φ(fm)
)

whose columns consist of the images of the fj under the embedding Φ.
As described in the last section, a quadrature formula x1, . . . , xn, w1, . . . , wn with positive weights

which integrates products of the functions f1, . . . , fm induces an inner product preserving mapping
of the span of the fj into Cn. The following theorem on the existence of efficient quadrature formulas
is an almost immediate consequence of that fact.

THEOREM 3.1. If x1, . . . , xn, w1, . . . , wn is a quadrature rule with positive weights which inte-
grates products of the functions f1, . . . , fm ∈ L2(X, dµ), then for every ε > 0 there exists a quadrature
rule y1, . . . , yk, v1, . . . , vk, whose length k is the ε-rank of the collection f1, . . . , fm, such that

m∑
i=1

∣∣∣∣∣∣
∫
X

f(x)dµ(x)−
k∑
j=1

f(yj)vj

∣∣∣∣∣∣
2

< (1 +mk(m− k)) ε2.

Quadratures of this type can be constructed by finding a sparse least squares solution to a system
of linear equations. Let

F =


f1(x1)

√
w1 f1(x2)

√
w2 . . . f1(xn)

√
wn

f2(x1)
√
w1 f2(x2)

√
w2 . . . f2(xn)

√
wn

...
...

fm(x1)
√
w1 fm(x2)

√
w2 . . . fm(xn)

√
wn

 (3.1)

and

b =


b1
b2
...
bm

 ,

where

bj =
∫
X

fj(x)dµ(x), j = 1, . . . ,m.

If the ε-rank of the collection f1, . . . , fm is k, then a vector z ∈ Cn with no more than k nonzero
entries such that

‖Fz − b‖2 < ε
√

1 +mk(m− k)
can be constructed stably in O(nmk log(n)) floating-point operations in the worst case and O(nmk)
operations in typical cases (see [8]). If we let i1, . . . , ik denote the indices of the nonzero entries of
the vector z and set

yj = xij , j = 1, . . . , k,
and

vj = zij
√
wij , j = 1, . . . , k,
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then y1, . . . , yk, v1, . . . , vk is a k-point quadrature for the functions f1, . . . , fm. See [1] for an extended
discussion of the construction of such quadratures.

Remark 3.1. Note the scaling by square roots of quadrature weights in (3.1). As in the case
of integral operators, the use of inner product preserving embeddings of this type leads to bounds
on the condition number of the matrix (3.1). Their omission, by contrast, generally results in ill-
conditioning. For instance, if the functions fj are taken to be the monomials xj on the interval
[−1, 1] and square roots are omitted, then (3.1) becomes a Vandermonde matrix. Further details can
be found in [14], which utilized scaling like that in (3.1) for the purpose of stabilizing the computation
of quadrature formulae.

3.2. Charge bases. In this section, we show that a basis spanning the space of restrictions of
solutions of the integral equation (1.4) to a corner region can be constructed under a mild assumption
on the right-hand sides of (1.4). We will refer to a basis of this type as a charge basis for the corner
region.

Let Γ0 be a corner region which is part of the boundary curve ∂Ω and let B be the disc of
minimum radius centered at the corner point of Γ0 which contains Γ0. Denote by Γ1 the portion of
the contour ∂Ω contained in 2B \ B, and by Γ2 the portion of ∂Ω contained in the complement of
the disc 2B. Figure 1 depicts the situation. Our assumption on right-hand side g(x) of (1.4) is that
it is the normal derivative of a function satisfying the Laplace equation in the disc 2B.

Γ0

Γ1

Γ1

Γ2

Γ2

B

2B

Figure 1: The geometry assumed for the charge basis construction.

The boundary integral equation

σ(x) +
∫
∂Ω

K(x, y)σ(y)ds(y) = 2g(x), x ∈ ∂Ω, (3.2)

can be rearranged as

σ(x)+
∫

Γ0

K(x, y)σ(y)ds(y) = 2g(x)−
∫

Γ2

K(x, y)σ(y)ds(y)−
∫

Γ1

K(x, y)σ(y)ds(y), x ∈ ∂Ω. (3.3)

The charge basis construction procedure operates by considering the restricted integral equation

σ(x)+
∫

Γ0

K(x, y)σ(y)ds(y) = 2g(x)−
∫

Γ2

K(x, y)σ(y)ds(y)−
∫

Γ1

K(x, y)σ(y)ds(y), x ∈ Γ0, (3.4)

and introducing series approximations for the terms on the right-hand side. By solving this restricted
equation for each term of each approximation, we form a set of functions which spans the space of
solutions of equation (3.4). Of course, the restriction of any solution of the integral equation (3.2)
to Γ0 satisfies (3.4), so such a collection of functions is a charge basis.

The first approximation depends on our assumption on the right-hand side, namely, that g is the
restriction to ∂Ω of the normal derivative of a function u which is harmonic in the disc 2B. It is
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well known that u can be represented as a multipole expansion

u(x) =
∞∑
j=0

αjr
j cos(jθ) + βjr

j sin(jθ)

in the disc 2B. Here, (r, θ) denotes the usual polar coordinate system with respect to the center of
the disc B. For points x in B, this expansion achieves exponential convergence; in particular, there
is a constant C such that for x ∈ B we have∣∣∣∣∣∣u(x)−

N∑
j=0

αjr
j cos(jθ) + βjr

j sin(jθ)

∣∣∣∣∣∣ ≤ C2−N .

It follows that g can be approximated on Γ0 as the normal derivative of a finite sum of multipoles;
that is, as

N1∑
j=1

αj
∂

∂ν

(
rj cos(jθ)

)
+ βj

∂

∂ν

(
rj sin(jθ)

)
,

where the number of terms N1 grows logarithmically with the precision of the approximation.
Similar considerations apply to the second term in equation (3.4). Since K(x, y) is harmonic

and Γ0 is separated by a distance equal to its radius from Γ2, for x in Γ0 we can introduce the
approximation ∫

Γ2

K(x, y)σ(y)dy ≈
N2∑
j=0

(
γjr

j cos(jθ) + ηjr
j sin(jθ)

)
, (3.5)

where once again (r, θ) is the polar coordinate system with respect to the center of the disc B. The
number of terms N2 in (3.5) also grows as O (log2 (ε)) with the desired precision ε.

The approximation of the last term in (3.4) requires a different strategy since Γ0 is not separated
from Γ1. Here we exploit the fact that the integral operator L2(Γ1)→ L2(Γ0) defined by

Rσ(x) =
∫

Γ1

K(x, y)σ(y)ds(y) (3.6)

is compact and, barring complex geometry, of low rank. This means that the operator R can be
approximated via a quadrature formula∫

Γ1

K(x, y)σ(y)ds(y) ≈
N3∑
j=1

K(x, yj)σ(yj)wj . (3.7)

The number of terms in (3.7) depends on the desired accuracy of the approximation and the decay
of the singular values of integral operator R. In most cases of interest, N3 grows as O

(
log2

3(ε)
)
,

where ε is the accuracy achieved; see [3] for a detailed estimate.
It follows that a charge basis can be formed by combining the functions σ obtained by repeatedly

solving the integral equation

σ(x) +
∫

Γ0

K(x, y)σ(y)ds(y) = g(x), x ∈ Γ0, (3.8)

for right-hand sides g(x) consisting of the normal derivatives

∂

∂ν
rj cos(jθ) and

∂

∂ν
rj sin(jθ), j = 1, . . . , N1, (3.9)

the multipoles
rj cos(jθ) and rj sin(jθ), j = 0, . . . , N2, (3.10)

and the kernel functions
K(x, yj), y1, . . . , yN3 ∈ Γ1. (3.11)

It is easy to see from our earlier estimates that, in typical cases, the dimension of the resulting basis
is O

(
log2

3 (ε)
)
, where ε is the desired precision for the basis.
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3.3. The compression procedure. The mechanisms discussed in the two preceding sections,
charge bases and generalized quadrature, can be used to compress the systems of linear equa-
tions resulting from boundary integral equations on domains with corners. We now describe one
algorithm for doing so; it is a variant of that introduced in [2] and amounts to a local direct solver
for corner regions.

Setup for the procedure

We will consider the discretization of the integral equation (1.4) on a contour ∂Ω which is piecewise
smooth with a corner region Γ0. By corner region we mean a compact connected subset of ∂Ω which
contains a corner point in its interior. Let r : [−δ, δ]→ Γ0 be a parameterization of the corner region
Γ0. Also, let x1, . . . , xn, w1, . . . , wn be a quadrature rule for functions on the corner region Γ0 and
let xn+1, . . . , xn+m, wn+1, . . . , wn+m be a quadrature rule for functions on the remaining portion of
the curve ∂Ω \ Γ0, so that we have the approximation formulae∫

Γ0

f(x)ds(x) ≈
n∑
j=1

f(xj)wj

and ∫
∂Ω\Γ0

f(x)ds(x) ≈
n+m∑
j=n+1

f(xj)wj .

These quadratures lead to the system

σ(xi)
√
wi +

n+m∑
j=1

K(xi, yj)σ(xj)
√
wiwj = 2g(xi)

√
wi, i = 1, . . . , n+m, (3.12)

of n+m linear equations in n+m unknowns, which discretizes the integral equation (1.4).
The purpose of this algorithm is to replace the linear system (3.12) with a compressed system

of l + m linear equations in l + m variables, where l � n. This is accomplished by constructing a
quadrature rule y1, . . . , yl, v1, . . . , vl such that the restriction of a solution σ of the equation (1.4) to
Γ0 is determined to high precision by the values

σ(y1)
√
w1, . . . , σ(yl)

√
wl.

By “determined to high precision,” we mean that the coefficients {αj} in a highly-accurate coefficient
expansion

σ(x) ≈
k∑
j=1

αjσj(x) for x ∈ Γ0

of the restriction of σ to Γ0 in terms of a charge basis can be computed accurately and stably
given the scaled values of σ at the nodes y1, . . . , yl. This quadrature is then used to discretize the
self-interaction of Γ0 as an l × l matrix and the interactions of Γ0 with ∂Ω \ Γ0 through l ×m and
m× l matrices.

Step one: construction of a charge basis

The restricted integral operator (which is defined on Γ0) appearing in (3.4) is discretized using
the quadrature rule with nodes x1, . . . , xn and weights w1, . . . , wn. This results in a matrix A with
entries

Aij = K(xi, xj)
√
wi
√
wj .

Next, a collection of vectors {bj} is formed by sampling the properly scaled values of the functions
(3.9), (3.10), and (3.11) at the quadrature nodes xj . That is, each vector bj is of the form

f(x1)
√
w1

f(x2)
√
w2

...
f(xn)

√
wn


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with f a multipole, derivative of a multipole, or kernel function. The number of such vectors is
N = N1 +N2 +N3; note, however, that N1, N2, and N3 can all be taken to be quite small because
of the exponential convergence of the various approximations of the preceding section. For the
experiments of this article, N1, N2, and N3 were all taken to be 10.

For each j = 1, . . . , N , the linear system

Aηj = bk

is solved in order to obtain ηj . The resulting vectors η1, . . . , ηN are then orthonormalized using the
pivoted Gram-Schmidt algorithm with double orthogonalization. This results in an orthonormal
collection of vectors σ1, . . . , σk. These vectors can be thought of as a charge basis for the region Γ0.
More precisely, they are, up to a small error introduced by the use of finite precision arithmetic,
the images of such a collection of functions under the embedding Φ associated with the quadrature
x1, . . . , xn, w1, . . . , wn.

Step two: formation of a generalized quadrature

In this step, a quadrature rule for integrals of the form∫
Γ0

K(x, y)σj(y)ds(y), j = 1, . . . , k, x ∈ ∂Ω \ Γ0,

is constructed. To accomplish this, we take advantage of the fact that the function f : Γ0 → R
defined by f(y) = K(x, y) is piecewise smooth with a single discontinuity at the corner point of Γ0

when x ∈ ∂Ω \ Γ0. This means that f(y) can be approximated on Γ0 by the images of piecewise
polynomials on the intervals [−δ, 0] and [0, δ] under the parameterization r : [−δ, δ] → Γ0. In the
first instance, an orthonormal basis φ1, . . . , φl for the space spanned by the functions

σj(x)p(x), j = 1, . . . , k, (3.13)

where p(x) is the image of a piecewise polynomial of a fixed order, is formed. Then, the procedure
described in Section 3.1 is applied to the functions φ1, . . . , φl in order to generate the desired
quadrature formula y1, . . . , yl, v1, . . . , vl. This quadrature rule is generally much smaller than the
initial quadrature x1, . . . , xn, w1, . . . , wn. For the calculations of this article, we took the degree of
the polynomials to be 9.

Step three: construction of two transformation matrices

Let Φ denote the inner product preserving mapping of the span of the φ1, . . . , φl into Cl defined
by

Φ

(
l∑
i=1

αiφi

)
=


α1

α2

...
αl


and let Ψ be the mapping of the span of φ1, . . . , φl into Cl induced by the quadrature y1, . . . , yl, v1, . . . , vl:

Ψ (f) =


f(y1)

√
v1

f(y2)
√
v2

...
f(yl)

√
vl

 .

The mapping Ψ is not inner product preserving. Nonetheless, as described in [3], the matrices
ΨΦ−1 and ΦΨ−1 exist and are well-conditioned. The matrix ΨΦ−1 : Cl → Cl takes the coefficient
expansion of a function f with respect to the basis φ1, . . . , φl to its scaled values at the quadrature
nodes (here, by scaled values, we mean the values of the function f at the quadrature nodes y1, . . . , yl
scaled by the square roots of the corresponding quadrature weights). Similarly, ΦΨ−1, takes the
scaled values of a function f in the span of the φ1, . . . , φl to its coefficient expansion with respect
to φ1, . . . , φl.
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In this step, we construct the l × l matrices ΨΦ−1 and ΦΨ−1 by first forming the matrix

ΨΦ−1 =


φ1(y1)

√
v1 φ2(y1)

√
v1 · · · φl(y1)

√
v1

φ1(y2)
√
v2 φ2(y2)

√
v2 · · · φl(y2)

√
v2

...
...

φ1(yl)
√
vl φ2(yl)

√
vl · · · φl(yl)

√
vl


and then inverting it to obtain ΦΨ−1.

Step four: formation of the compressed linear system

In this final step, the system (3.12) of n+m linear equations in n+m unknowns is replaced by
a compressed system of l +m linear equations in l +m unknowns of the form(

s1

s2

)
+
(
A11 A12

A21 A22

)(
s1

s2

)
= 2

(
t1
t2

)
, (3.14)

where:
A11 is an l × l matrix discretizing the operator T11 : L2(Γ0)→ L2(Γ0) defined by

T11σ(x) =
∫

Γ0

K(x, y)σ(y)ds(y);

A12 is an l ×m matrix discretizing the operator T12 : L2(∂Ω \ Γ0)→ L2(Γ0) defined by

T12σ(x) =
∫
∂Ω\Γ0

K(x, y)σ(y)ds(y);

A21 is an m× l matrix discretizing the operator T21 : L2(Γ0)→ L2(∂Ω \ Γ0) defined by

T21σ(x) =
∫

Γ0

K(x, y)σ(y)ds(y); and

A22 is an m×m matrix discretizing the operator T22 : L2(∂Ω \ Γ0)→ L2(∂Ω \ Γ0) defined by

T22σ(x) =
∫
∂Ω\Γ0

K(x, y)σ(y)ds(y).

The l × l matrix A11 is constructed by forming the product

A11 = B ·
(
ΦΨ−1

)
, (3.15)

where ΦΨ−1 is the transformation matrix from the preceding step and B is the l × l matrix whose
entries are

Bij =
√
vi

∫
Γ0

K(yi, x)φj(x)ds(x), i = 1, . . . , l, j = 1, . . . , l.

Note that the entries of B can be calculated with the initial quadrature rule x1, . . . , xn, w1, . . . , wn
for the corner region Γ0. That A11 approximates the operator T11 can be seen easily. The matrix
ΦΨ−1 maps the scaled values of functions in the span of the basis φ1, . . . , φl to their coefficient
expansions and the matrix B takes coefficient expansions to the scaled values of their images under
the operator T11.

The matrix A22, which corresponds to the self-interaction of the curve segment ∂Ω\Γ0, is formed
in the usual fashion; that is, A22 is the m×m matrix with entries

(A22)ij = K(xn+i, xn+j)
√
wn+i

√
wn+j , i = 1, . . . ,m, j = 1, . . .m.

The matrices A12 and A21, which approximate the interactions of Γ0 with ∂Ω\Γ0, are discretized
through the quadrature y1, . . . yl, v1, . . . , vl. Specifically, A12 is taken to be the l ×m matrix with
entries

(A12)ij = K(yi, xn+j)
√
wn+j

√
vi, i = 1, . . . , l, j = 1, . . . ,m,

and A21 is taken to be the m× l matrix with entries

(A21)ij = K(xn+i, yj)
√
wn+i

√
vj , i = 1, . . . ,m, j = 1, . . . , l.
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Finally, we form the right-hand side of the system (3.14) by setting

t1 =


g(y1)

√
v1

g(y2)
√
v2

...
g(yl)

√
vl

 and t2 =


g(xn+1)√wn+1

g(xn+2)√wn+2

...
g(xn+m)√wn+m

 .

The unknowns in the compressed linear system are the vectors

s1 =


σ(y1)

√
v1

σ(y2)
√
v2

...
σ(yl)

√
vl

 and s2 =


σ(xn+1)√wn+1

σ(xn+2)√wn+2

...
σ(xn+m)√wn+m

 .

Note that the scaled values of a charge distribution σ at the quadrature nodes y1, . . . , yl are
sufficient to specify the restriction of the σ to Γ0 in that a highly-accurate coefficient expansion
for the restriction in terms of the basis φ1, . . . , φl can be computed by applying the transformation
matrix ΦΨ−1 constructed in the preceding section to the vector s1.

Remark 3.2. The procedure of this section applies to many boundary integral operators, not just
those associated with Laplace’s equation. See, for instance, [3] for a discussion of the application of
these ideas to the boundary integral operators arising from the Helmholtz equation. Moreover, it can
extended to more general partial differential equations, including certain classes of equations with
nonconstant coefficients. This generalization will be reported at a later date.

Remark 3.3. The algorithm of [2] produces smaller compressed systems than the procedure of this
section, but it does so at the cost of greater complexity. Rather than using a quadrature for the
functions (3.13) to discretize the interactions of the curve segment Γ0, it uses a quadrature for the
smaller collection of functions

σj(x), j = 1, . . . , k.

The advantage of this approach is, of course, that the resulting compressed systems of linear equations
are smaller. The disadvantage is that interpolatory quadratures must used to evaluate the integrals∫

Γ0

K(x, y)σj(y)ds(y)

when x ∈ ∂Ω \Γ0. Depending the solver applied to the compressed linear systems, this approach can
actually result in a less efficient algorithm.

4. Numerical Experiments

This section describes several numerical experiments performed to assess the accuracy and stabil-
ity of inner product preserving Nyström discretizations of (1.4) and to compare such discretizations
to those obtained via the standard Nyström approach.

Although the computations described here could be accelerated greatly through the use of fast
multipole methods and fast direct solvers, for the sake of simplicity and in the interests of repro-
ducibility the experiments were conducted using standard LAPACK routines. In particular, singular
value decompositions, which were used to solve all linear systems save for those related to the com-
pression scheme of Section 3, were constructed using the routine DGESDD. Linear systems arising
from the compression scheme were solved using the DGESV routine.

Note also that the accuracy of solutions was given priority over the efficiency of discretizations.
Substantially more efficient discretizations can be obtained in some cases by sacrificing a few digits
of precision.

All experiments were performed on a PC equipped with a 2.54GHz Intel Core 2 Duo processor
and 8GB of RAM. Code for the experiments was written in Fortran 77 and compiled with the Intel
Fortran Compiler, version 11.1.
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4.1. Graded meshes. Before beginning the description of the experiments proper, we need to
introduce the terminology which will be used throughout this section to describe quadratures for
the discretization of integral operators. Let ∂Ω be a boundary curve parameterized by the mapping
r : [a, b] → ∂Ω ⊂ R2. A quadrature formula on the interval [a, b] can be mapped into ∂Ω via the
parameterization r. More specifically, the quadrature rule x1, . . . , xn, w1, . . . , wn on [a, b] induces
the approximation formula ∫

Γ

f(x)ds(x) ≈
n∑
j=1

f(xj)|r′(xj)|wj .

In what follows, we will implicitly identify the parameterization domain [a, b] and the boundary
curve ∂Ω through the use of this mapping. That is, we will describe quadratures on the curve ∂Ω
by describing their preimage in the parameterization domain [a, b] under this mapping.

To that end, we shall call the piecewise Legendre quadrature of order m on the intervals

[−2−j+1,−2−j ], [2−j , 2−j+1], j = 1, . . . , N,

a simply-graded mesh1 of order m on [−1, 1] with cutoff 2−N . We call the image of such a quadrature
under the substitution

u = xk,

where k is a positive odd integer, a graded mesh on [−1, 1] of order m, exponent k, and cutoff 2−kN .
Note that the quadrature formula associated with a graded mesh on [−1, 1] is∫ 1

−1

f(x)dx ≈
l∑

j=1

f(xkj )kxk−1
j wj ,

where x1, . . . , xl and w1, . . . , wl denote the nodes and weights of the original piecewise Legendre
quadrature.

In order to form a quadrature for a boundary curve with corner points parameterized over [a, b]
we will use a combination of graded meshes and piecewise Legendre quadratures. For each corner
point r(tj) on the boundary curve, we form a graded mesh on [−1, 1] and map it affinely into a
neighborhood [tj − δ, tj + δ] of tj . A quadrature on the remaining portion of the interval [a, b] is
then formed using a piecewise Legendre rule. In many of the following experiments, we will describe
graded meshes using these 4 parameters: the order m of the piecewise Legendre quadrature used to
form the graded mesh, the radius δ, the cutoff εcut for the mesh, and the exponent k.

4.2. A family of domains with a single outward-pointing corner. For 0 < θ < π, let Ωθ
denote the domain bounded by the simply-connected curve parameterized over the torus [−π, π] by

xθ(t) =

{
−2 sin(t/2) −π < t < 0,
2 sin(t/2) 0 < t < π

yθ(t) = − tan(θ/2) sin(t).

The parameterization (xθ(t), yθ(t)) has counter-clockwise orientation and maps t = 0 to a corner
point with interior angle θ at the origin; Figure 2 depicts Ωπ/2. We will refer to the Ωθ as “snowcone”
domains.

Several discretizations of the operator

Tσ(x) = σ(x) +
1
π

∫
∂Ωπ/2

(
∂

∂νx
log |x− y|

)
σ(y)ds(y)

were formed using various graded mesh quadratures. In each case, the mesh parameters m and δ
were 30 and 1, respectively, and an 180-point piecewise Legendre quadrature was used to discretize
the operator over the smooth portions of the curve — that is, the regions parameterized over the
intervals [−π,−1] and [1, π]. For each graded mesh quadrature considered, both the inner product
preserving discretization (2.2) and the usual Nyström discretization (2.3) were formed. Moreover,

1The term simply-graded is borrowed from [11].
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Figure 2: The domain Ωπ/2.
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Figure 3: The single-layer potentials on ∂Ωπ/2 (left) and ∂Ψ3π/2 (right) which generate the harmonic
function (4.1). Note that the function on the right has an unbounded singularity at 0 which has
been truncated.

each inner product preserving discretization was used to compute a solution to an exterior Neumann
problem on the domain Ωπ/2. The boundary data was taken to be the restriction to ∂Ωπ/2 of the
normal derivative of the function

u(x) = log |x− z0| − log |x− z1| , (4.1)

where z0 = (1.0, 0.0) and z1 = (1.1, 0.1). Note that

u(x) = O (1/|x|) as |x| → ∞.

For each obtained solution, the error in the representation (1.3) was measured at 300 points on the
circle C of radius 3 centered at the origin. The results appear in Table 1; the quantities reported
are as follows:

· εcut refers to the cutoff for the graded mesh;
· k is the exponent of the graded mesh;
· n is the dimension of the systems of linear equations;
· κ is the condition number of the inner product preserving discretization;
· E is the largest absolute error observed while testing the representation (1.3) on the circle C;
· κN is the condition number of the standard Nyström discretization.

Figure 3 shows the single layer potential on ∂Ωπ/2 which gives rise to the harmonic function (4.1)
in Ωcπ2

. It is clear from Table 1 that inner product preserving discretization leads to well-conditioned
systems while the standard Nyström approach results in numerical instability. It is also clear that
high accuracy can be achieved for this problem.
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εcut k n κ E κN

1.0×10−7 1 1620 5.55×10+0 3.66×10−15 5.82×10+4

1.0×10−15 1 3180 6.44×10+0 4.44×10−16 4.59×10+7

1.0×10−7 3 660 5.55×10+0 3.11×10−15 5.31×10+4

1.0×10−15 3 1200 6.44×10+0 1.11×10−14 5.01×10+7

1.0×10−30 3 2200 6.82×10+0 3.33×10−16 1.11×10+13

1.0×10−7 5 480 5.55×10+0 2.55×10−15 5.79×10+4

1.0×10−15 5 780 6.44×10+0 6.66×10−16 4.21×10+7

1.0×10−30 5 1380 6.82×10+0 1.55×10−15 8.23×10+12

1.0×10−7 7 420 5.55×10+0 3.00×10−15 7.88×10+4

1.0×10−15 7 660 6.44×10+0 7.77×10−16 7.95×10+7

1.0×10−30 7 1080 6.82×10+0 1.00×10−14 1.33×10+13

Table 1: Numerical results for the snowcone domain Ωπ/2.

We also solved exterior Neumann problems on a collection of domains Ωθ with angles θ close to
0 and π via the integral equations

σ(x) +
1
π

∫
∂Ωθ

(
∂

∂νx
log |x− y|

)
σ(y)ds(y) = 2g(x), x ∈ ∂Ωθ. (4.2)

For these experiments, inner product preserving discretizations were used and the boundary data g
was taken to be the normal derivative of the potential

log |x− z2| − log |x− z3| , (4.3)

where z2 = (1, 0) and z3 = (1.1, 0). These locations were chosen because z2 and z3 are contained
in the domains Ωθ for all values of θ. Table 2 reports the results of these experiments. There, θ
refers to the angle of the corner, n is the number of quadrature nodes used to discretize the integral
equation, κ is the condition number of the system of linear equations, and E is the largest absolute
error observed while testing the representation (1.3) at a collection of 300 points sampled randomly
in the box with corners (−5,−1) and (−4, 1).

θ n κ E

π/10 960 3.28×10+1 6.66×10−16

π/20 1080 6.90×10+1 8.88×10−16

π/100 1800 4.70×10+2 5.55×10−15

π/1000 1980 5.09×10+4 1.25×10−12

π − π/10 1080 1.06×10+1 8.88×10−16

π − π/20 1140 2.09×10+1 2.00×10−15

π − π/100 1440 1.03×10+2 1.02×10−14

π − π/1000 3480 2.64×10+4 5.12×10−11

Table 2: Results for nearly degenerate snowcone domains.

It is expected that the conditioning of the linear systems discretizing (4.2) will deteriorate as θ
goes to 0 and π. This phenomenon is not related to the corner singularity. It is instead a consequence
of the fact that the domains Ωθ become elongated as θ goes to 0 and π. The same behavior can be
observed in potential theoretic operators on eccentric ellipses.
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4.3. A family of domains with a single inward-pointing corner. In this section, we describe
several numerical experiments involving a family of “boomerang” domains which have a single
inward-pointing corner. For π < θ < 2π, let Ψθ be the simply-connected domain whose boundary
is parameterized over [π, π] by

xθ(t) =

{
2 sin(3t/2) −π ≤ t < 0,
−2 sin(3t/2) 0 < t ≤ π

yθ(t) = tan(θ/2) sin(t).

The domain Ψθ has a single corner point with interior angle θ at the origin; see Figure 4, which
depicts Ψ3π/2.
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Figure 4: The domain Ψ3π/2.

εcut k n κ E κN

1.0×10−15 1 3600 3.41×10+1 1.18×10−10 3.27×109

1.0×10−15 3 1620 3.37×10+1 2.54×10−10 1.59×109

1.0×10−25 3 2280 3.91×10+1 6.66×10−16 6.13×1013

1.0×10−30 3 2640 4.07×10+1 4.44×10−16 1.41×1016

1.0×10−30 5 1800 4.05×10+1 3.72×10−12 5.22×1015

Table 3: Numerical results for the boomerang domain Ψ3π/2.

We formed several discretizations of the integral equation

σ(x) +
1
π

∫
∂Ψ3π/2

(
∂

∂νx
log |x− y|

)
σ(y)ds(y) = 2g(x), x ∈ ∂Ψ3π/2,

with g(x) taken to be the normal derivative of the function defined by (4.1). A number of different
graded meshes were used and both inner product preserving and standard Nyström discretizations
were formed for each mesh. In all cases, the parameters δ and m were taken to be 1/2 and 30,
respectively, and the integral equation was discretized over smooth portions of the curve using
piecewise Legendre quadratures. The results appear in Table 3; the quantities reported are the
same as those in Table 1 of the preceding section. The charge distribution σ which gives rise to the
harmonic function (4.1) in Ψc

3π/2 is shown in Figure 3. Note that σ has an unbounded singularity
at 0.
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Figure 5: The domain Ψ2π−π/10.
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We also solved exterior Neumann problems on a collection of domains Ψθ with angles θ close to
π and 2π via inner product preserving discretizations of the integral equations

σ(x) +
1
π

∫
∂Ψθ

(
∂

∂νx
log |x− y|

)
σ(y)ds(y) = 2g(x), x ∈ ∂Ψθ. (4.4)

For each problem, the boundary data was taken to be the normal derivative of the function (4.3).
Table 4 presents the results of these experiments; the quantities reported are the same as those in
Table 2. Note that the resulting charge distributions exhibit unbounded singularities in the case of
angles near π but not in the case of angles near 2π; see, for instance, Figure 6, which shows the
single-layer potentials on ∂Ψ2π−π/10 and ∂Ψπ+π/10 which generate the harmonic function (4.3).
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Figure 6: The single-layer potentials on ∂Ψ2π−π/10 (left) and ∂Ψπ+π/10 (right) which generate the
function (4.3).

Nonetheless, much more difficulty was encountered in the solution of the Neumann problems
when θ was close to 2π than when θ was close to π. These difficulties do not arise because of the
corner singularities, but because of the elongated segments of the boundary contours. Figure 5
shows the domain Ψ2π−π/10, whose boundary features two elongated regions.

θ n κ E

π + π/10 1680 7.59×10+0 1.11×10−14

π + π/20 1800 1.22×10+1 7.55×10−15

π + π/100 1860 5.53×10+1 5.40×10−14

π + π/1000 4080 5.56×10+2 3.70×10−12

2π − π/10 4440 2.09×10+3 2.46×10−14

2π − π/20 2280 1.06×10+4 4.33×10−14

2π − π/100 3808 2.85×10+5 6.84×10−14

Table 4: Results for nearly degenerate boomerang domains.

4.4. A domain with 8 corner points. In this experiment, we solved an exterior Neumann problem
on the simply-connected “inkblot” domain Ωink shown in Figure 7. The boundary of this domain
has 8 corner points, 4 inward-pointing and 4 outward-pointing, and is parameterized by the polar
equation

r(θ) = 4 + 2 |cos (4θ)| sin (4θ) , 0 ≤ θ ≤ 2π.

The boundary data g was taken to be the normal derivative of a potential generated by two charges
of equal magnitude and opposite signs which were randomly placed in the interior of Ωink.
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Figure 7: The domain Ωink of Section 4.4.

n ncorner nsmooth κ E TSVD Tcompress

Uncompressed system 8700 1020 540 1.95×10+1 9.27×10−15 1112.5 -
Compressed system 1004 58 540 5.41×10+1 5.55×10−15 1.34 3.26

Table 5: Numerical results for the domain Ωink of Section 4.4. Entries marked with a dash are not
applicable.

In order to obtain the solution of this Neumann problem, an inner product preserving discretiza-
tion of the integral equation

σ(x) +
1
π

∫
∂Ωink

(
∂

∂νx
log |x− y|

)
σ(y)ds(y) = 2g(x), x ∈ ∂Ωink,

was formed and a singular value decomposition of the matrix associated with this linear system was
computed and used to solve the linear system. The resulting charge distribution is singular at each
corner point of ∂Ωink; the singularities occurring at inward-pointing corner points are unbounded
while those at outward-pointing corner points are bounded. The compression scheme of Section 3
was also applied to this discretization in order to form a compressed system of equations. Table 5
presents the results; the quantities reported are as follows:
· n is the dimension of the system of linear equations;
· ncorner is the average number of nodes used to discretize corner regions;
· nsmooth is the number of quadrature nodes used to discretize the smooth portions of the curve;
· κ is the condition number of system;
· E is the largest absolute error in the representation (1.3) occurring on the circle of radius 6 centered

at the origin;
· TSVD is the wall-clock time, in seconds, which was required to compute the singular value decom-

position of the matrix;
· Tcompress is the wall-clock time, in seconds, required to execute the corner compression procedure.

4.5. A polygonal domain with 38 corner points. In this experiment, an inner product pre-
serving discretization of the the integral equation

σ(x) +
1
π

∫
∂Ωstar

(
∂

∂νx
log |x− y|

)
σ(y)ds(y) = 2g(x), x ∈ ∂Ωstar,
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Figure 8: The starburst domain Ωstar.

n ncorner nsmooth κ E TSVD Tcompress

Uncompressed system 70740 1800 2340 * * * -
Compressed system 5198 75.21 2340 1.40×10+2 1.45×10−15 223.2 84.2

Table 6: Numerical results for the domain Ωstar. Entries marked with a dash are not applicable,
while those marked with an asterisk could not be calculated due to computational limitations.

where Ωstar is the simply-connected “starburst” domain shown in Figure 8, was formed. The bound-
ary of Ωstar is a polygon with 38 vertices. The procedure of Section 3, which is absolutely essential
in this case, was applied to that discretization in order to form a compressed system of linear equa-
tions. The compressed linear system was used to solve the exterior Neumann problem on Ωstar for
boundary data which was the normal derivative of a potential generated by two charges of equal
magnitude and opposite sign placed randomly in the domain. Table 6 describes the results; the
quantities reported are the same as those of Table 5 in Section 4.4.

4.6. An integral operator arising from scattering theory. In this final experiment, we apply
the methodology of this paper to an operator arising from scattering theory.

The integral equation

−1
2
σ(x) +

∫
∂Ω

H0 (ω |x− y|)σ(y)ds(y) (4.5)

+
∫
∂Ω

i

4

(
∂

∂νy
H0 (ω |x− y|)

)
σ(y)ds(y) = g(x), x ∈ ∂Ω, (4.6)

arises from the combined field representation

u(x) =
∫
∂Ω

H0 (ω |x− y|)σ(y)ds(y) +
i

4

∫
∂Ω

(
∂

∂νy
H0 (ω |x− y|)

)
σ(y)ds(y) (4.7)

for the solution u of the exterior Dirichlet problem

∆u+ ω2u = 0 in Ωc

u = g on ∂Ω

∂ru− iku = o(r−1/2).

(4.8)

Here, H0 denotes the Hankel function of the first kind of order 0 and ω is a complex-valued wavenum-
ber.
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Figure 9: The quadrature nodes used to discretize the operator T of Section 4.6 on the domain
Ψ8/7π.

The discretization of the integral operator

Tf(x) =
∫
∂Ω

H0 (ω |x− y|) f(y)ds(y) +
i

4

∫
∂Ω

(
∂

∂νy
H0 (ω |x− y|)

)
f(y)ds(y) (4.9)

appearing in (4.6) is slightly complicated by the logarithmic singularities exhibited by its kernel.
One common approach to this difficulty is to use the fact that the logarithmic singularity in H0 can
be made explicit:

H0 (z) =
2i
π

log
(z

2

)
J0 (z) + f(z) (4.10)

with J0(z) the Bessel function of the first kind of order 0 and f(z) analytic. This enables us to
rewrite the integrand in (4.9) as

log |x− y| k1(x, y) + k2(x, y)

with k1 and k2 smooth functions which can be evaluated at arbitrary points (x, y). Quadrature
rules for smooth functions and for integrals of the form∫ 1

−1

log |z − x|

 n∑
j=1

αjPj(x)

 dx, (4.11)

where Pj denotes the Legendre polynomial of degree j and z is a fixed point in C /∈ {−1, 1}, can
then be used to discretize the operator T . A quadrature rule x1, . . . , xn, w1, . . . , wn for functions
of the form (4.11) can be constructed by letting x1, . . . , xn be the nodes of the n-point Legendre
quadrature and constructing weights with the help of the well-known formula∫ 1

−1

log |z − x| Pn(x)dx =
2Qn+1(z)− 2Qn(z)

2n+ 1
. (4.12)

Here, Qn denotes the Legendre function of the second kind of order n. The branch cuts of Qn must
be chosen depending on the location of z in order to make formula (4.12) hold. See Chapter 12
of [13] for a similar approach. The author choose a slightly different and more direct approach.
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Domain ω n κ E

Ωπ/2 1 840 2.40× 10+1 1.95× 10−12

Ωπ/2 5 840 7.32× 10+0 4.76× 10−12

Ωπ/3 5 1380 1.47× 10+1 1.20× 10−12

Ψ8π/7 3 1020 1.30× 10+1 1.16× 10−13

Ψ8π/7 3+i 1140 4.90× 10+0 8.35× 10−17

Ψ3π/2 1 900 1.56× 10+2 2.34× 10−14

Ψ3π/2 10 1920 4.86× 10+0 2.84× 10−13

Table 7: Numerical results for the experiemnts of Section 4.6.

Quadrature rules for integrals of the form∫ 1

−1

log |z − x|

 n∑
j=1

αjPj(x)

+

 n∑
j=1

βjPj(x)

 dx

which hold for appropriately chosen z were constructed using the numerical procedure of [1]. A
detailed discussion of exactly what is required is contained in [3].

The boundary value problem (4.8) was solved on a number of snowcone domains Ωθ and boomerang
domains Ψθ (see Sections 4.2 and 4.3) and for a various wavenumbers ω. In each case, the boundary
data g(x) was taken to be the potential generated by the unit single layer charge distribution

g(x) =
∫

Γ

H0(ω |x− y|)ds(y)

over the circle Γ of radius 1/10 centered at the origin. The error was tested by computing the
maximum absolute error observed in the representation formula (4.7) on a circle of radius 10 centered
at the origin. Table 7 shows the results of these experiments; n refers to the dimension of matrix
discretizing the integral operator (4.9), κ is the condition number of that matrix, and E is the
largest observed error. Figure 9 shows the nodes of the piecewise Legendre quadrature on Ψ7π/8

used in the discretization of the operator T over that domain.
Remark 4.1. The LAPACK ZGESDD and ZGESVD routines failed to converge in a number of

instances when applied to the discretizations of the integral operator (4.9) formed in the course of
the experiments of this section. The author computed the condition numbers shown in Table 7 using
Jacobi rotations. When the LAPACK routines converged, a high degree of agreement with the results
of the Jacobi rotation algorithm was observed.

5. Conclusions

There is an extant problem regarding the solution of boundary integral equations on planar
domains with corners, but it is not the stability or accuracy of graded mesh discretization. Rather,
the outstanding issue is the compression of the large systems of linear equations which result from the
discretization of boundary integral equations on such domains. Of particular interest are schemes,
like those presented in [11] and [3, 2], which do not require a priori analytic information about
the behavior of solutions. This property allows them to be applied to the many problems which
can be formulated as boundary integral equations with little modification. Moreover, it is almost a
prerequisite for schemes in the three-dimensional environment, where estimates of the behavior of
solutions are difficult to obtain. Indeed, one of the principal advantages of the approach of Section 3
is that it admits generalization to three-dimensional domains with singularities, a generalization
which will be reported by the author at a later date.
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