
In this paper, we present an adaptive delaminating Levin method for evaluating bivariate
oscillatory integrals over rectangular domains. Whereas previous analyses of Levin
methods impose non-resonance conditions that exclude stationary and resonance points,
we rigorously establish the existence of a slowly-varying, approximate solution to the Levin
PDE across all frequency regimes, even when the non-resonance condition is violated.
This allows us to derive error estimates for the numerical solution of the Levin PDE via
the Chebyshev spectral collocation method, and for the evaluation of the corresponding
oscillatory integrals, showing that high accuracy can be achieved regardless of whether or
not stationary and resonance points are present. We show that, by incorporating adaptive
subdivision in both two and one dimensions, as well as delaminating Chebyshev spectral
collocation, our algorithm is effective in both the presence and absence of stationary and
resonance points, which we demonstrate with a number of numerical experiments.
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1 Introduction

The subject of this paper is the efficient evaluation of oscillatory integrals of the form

I[f, g] =

∫ 1

−1

∫ 1

−1
f(x, y) exp(ig(x, y)) dx dy, (1)

where f : [−1, 1]2 → C and g : [−1, 1]2 → R are smooth, slowly-varying functions, and ∇g
can be of large magnitude. We refer to f as the amplitude function, and g as the phase
function.

When evaluating the integral I[f, g] using the most straightforward quadrature
methods, adaptive Gauss-Legendre quadrature for example, the incurred cost grows at
best linearly and at worst quadratically with the magnitude of ∇g. When the magnitude
of ∇g is large, this exorbitant cost renders such methods impractical, motivating the
development of many approaches for the numerical integration of highly oscillatory
functions, including asymptotic expansions, numerical steepest descent, Filon methods,
and Levin methods. For a review of these methods, we refer to the monograph [1] and
references therein. This paper focuses on Levin methods, which date back to David Levin’s
seminal work [2]. These methods reformulate the problem of evaluating an oscillatory
integral as a problem of solving a differential equation with slowly-varying coefficients,
whose solution can be computed to a fixed desired accuracy in time independent of the
magnitude of ∇g.

The classical Levin method, originally introduced in [2], works by solving the second-
order partial differential equation (PDE)

pxy + igypx + igxpy + (igxy − gxgy)p = f in (−1, 1)2 (2)

by collocation with the monomial basis, so that the slowly-varying solution p satisfies

∂2

∂x∂y
(p(x, y) exp(ig(x, y))) = f(x, y) exp(ig(x, y)), (3)

for all (x, y) ∈ (−1, 1)2. The value of the integral I[f, g] is then readily obtained as

I[f, g] =− p(−1, 1) exp(ig(−1, 1))− p(1,−1) exp(ig(1,−1))

+ p(1, 1) exp(ig(1, 1)) + p(−1,−1) exp(ig(−1,−1)).
(4)

In order to guarantee the existence of a slowly-varying solution to (2), which can then
be approximated by a basis of slowly-varying functions, Levin’s method imposes a
non-resonance condition requiring that both gx and gy are nonvanishing and that their
maximum absolute values over the domain are large. This non-resonance condition
excludes stationary points of g, where both gx and gy vanish, as well as resonance points,
which are boundary points where ∇g aligns with the normal vector.

A generalization of the classical Levin method, applicable to non-polytopal domains,
was later proposed by Olver in [3]. Instead of the PDE (2), Olver’s method considers the
vector-valued first-order PDE,

L[p] = ∇ · p+ i∇g · p = f in Ω, (5)
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which we refer to as the Levin PDE, where Ω ⊂ Rn is a connected, open, and bounded
set with piecewise smooth boundary Γ. If p = (p1, . . . , pn)T : Ω→ Cn is a solution to (5),
then

∇ · (p(x) exp(ig(x))) = f(x) exp(ig(x)), (6)

for all x ∈ Ω, and, by the divergence theorem,∫
Ω
f(x) exp(ig(x)) dA =

∫
Γ
p(x) · n(x) exp(ig(x)) d`. (7)

For Ω = (−1, 1)2, the value of I[f, g] is given by

I[f, g] =−
∫ 1

−1
p2(x,−1) exp(ig(x,−1)) dx+

∫ 1

−1
p1(1, y) exp(ig(1, y)) dy

+

∫ 1

−1
p2(x, 1) exp(ig(x, 1)) dx−

∫ 1

−1
p1(−1, y) exp(ig(−1, y)) dy.

(8)

In order for Olver’s method to be applicable, it must be possible to both accurately solve
(5) over the domain, and to efficiently evaluate the boundary integral in (7). To ensure
the solvability of (5) using collocation, Olver’s method eliminates the null space of the
differential operator L appearing in the left-hand side of the PDE, which consists of
vector fields of the form

p(x) = q(x) exp(−ig(x)), (9)

with ∇ · q(x) = 0, by imposing a non-resonance condition analogous to the condition
found in the classical Levin method. Olver’s non-resonance condition requires that ∇g
is both of large magnitude and is nowhere orthogonal to the boundary of the domain.
This non-resonance condition again excludes both stationary points and resonance points,
noting that, in Olver’s formulation, resonance points are precisely stationary points of
the phase function in the right-hand side of (7).

When the stationary points have locations which are known beforehand, certain
methods, such as the modified Levin-GMRES method [4] and the augmented Levin
method [5], can be used to efficiently evaluate the corresponding integrals in the univariate
case. Besides that these methods have yet to be generalized to higher dimensions, they
are not applicable when the number and locations of the stationary points of the phase
function are unknown a priori. These challenges have led to the long-standing belief that
developing efficient multivariate Levin methods is particularly difficult when stationary
and resonance points are present, and that their absence is essential for the success of
such methods.

It has been observed however that, in the univariate case, Levin methods are much
more effective in the presence of stationary points than was previously believed. For
univariate oscillatory integrals of the form∫ 1

−1
f(x) exp(ig(x)) dx, (10)

3



a Chebyshev spectral collocation method was used by Li et al. in [6, 7] to discretize the
Levin ordinary differential equation (ODE)

p′ + ig′p = f in (−1, 1), (11)

whose solution leads to the formula∫ 1

−1
f(x) exp(ig(x)) dx =

∫ 1

−1

d

dx
(p(x) exp(ig(x))) dx

= p(1) exp(ig(1))− p(−1) exp(ig(−1)).

(12)

Li et al. present numerical evidence showing that, when the resulting linear system is
solved via a truncated singular value decomposition, high accuracy is obtained even
in the presence of stationary points. In fact, a similar Levin collocation method was
previously shown to be effective in Moylan’s thesis [8], in which it was combined with
an adaptive subdivision strategy. Recently, Chen et al. [9] proved the existence of a
slowly-varying, approximate solution to the ODE (11) in the presence of stationary
points, and demonstrated that the univariate Levin method, which discretizes (11) via
the Chebyshev spectral collocation method and solves the resulting linear system using
a truncated singular value decomposition, can be applied adaptively to accurately and
efficiently evaluate the integral (10). We claim that, as a result, it is not actually necessary
to exclude the presence of resonance points when computing I[f, g], since the univariate
adaptive Levin method can be used to evaluate the boundary integrals in (7) efficiently.

In the presence of stationary points, ill-conditioned linear systems are encountered
when solving the PDE (5) using collocation methods, since the null space of the differential
operator is fully resolved by any collocation grid dense enough to resolve f and ∇g.
Ashton [10] observes that, with appropriate Cauchy data, the collocation system can
be transformed into a well-conditioned problem, from which a solution p to (5) with

‖∇ · p‖2L2(Ω) = O(‖|∇g|‖−1/2
L∞(Ω)) can be recovered. In particular, Ashton studies the PDE

c · ∇p+ i(c · ∇g)p = f in Ω, (13)

where Ω is an n-simplex in Rn and g has a stationary point at a vertex of Ω. This PDE
can be derived from (5) by considering solutions of the form p = cp, where c is a nonzero
constant and p : Ω→ C. Under a transversality condition on c and g, Ashton constructs

initial data that determines a solution p satisfying ‖c · ∇p‖2L2(Ω) = O(‖|∇g|‖−1/2
L∞(Ω)), and

uses the initial data to obtain a well-conditioned collocation system. We note that their
solution may have higher order derivatives that grow with ‖|∇g|‖L∞(Ω).

Instead of constructing an appropriate initial condition for (13), Li et al. [11] address
the problem of ill-conditioned linear systems using truncated singular value decompositions.
Specifically, they consider the PDE

py + igyp = f in (−1, 1)2, (14)

which is a special case of (13) with c = (0, 1)T and Ω = (−1, 1)2, and present numerical
evidence showing that, when (14) is discretized using the Chebyshev spectral collocation
method and the resulting linear system is solved using a truncated singular value decom-
position, the integral I[f, g] can be computed much more accurately and efficiently than
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the classical Levin method. The delaminating quadrature method of Li et al. exploits
the block diagonal structure of the resulting linear system, where each block corresponds
to a univariate fiber of the domain, in order to reduce computational complexity by
solving each block independently. Furthermore, it is shown in [11] that their method can
converge rapidly in the presence of stationary and resonance points, provided that the
domain is adaptively refined around them.

In this paper, we prove that the Levin PDE admits a well-behaved, approximate
solution, both in the case where ∇g is nonvanishing, and in the case where ∇g is of small
magnitude and g can have stationary points. We further prove that, when the Levin
PDE is discretized using the Chebyshev spectral collocation method and the resulting
linear system is solved numerically using a truncated singular value decomposition, high
accuracy can be achieved regardless of whether or not g has stationary and resonance
points. Finally, we demonstrate through a set of numerical experiments that an adaptive
delaminating Levin method, which solves the Levin PDE using collocation and computes
the boundary integrals in (8) using the univariate adaptive Levin method presented in [9],
is highly effective for evaluating integrals of the form (1). We note in passing the great
generality of integrals expressible in the form (1), as most oscillators of interest admit
phase function representations that can be efficiently constructed using the algorithms of
[12, 13, 14].

The remainder of this paper is structured as follows. Section 2 reviews the necessary
mathematical and numerical preliminaries. In Section 3, we prove the existence of a slowly-
varying, approximate solution to the Levin PDE. In Section 4, we derive error estimates
for the numerical solution of the Levin PDE via the Chebyshev spectral collocation
method, and for the computed value of the integral. We give a detailed description of the
adaptive delaminating Levin method in Section 5, and present the results of numerical
experiments demonstrating the properties of the algorithm in Section 6. Finally, we
provide a few comments regarding this work and future directions for research in Section 7.

2 Preliminaries

2.1 Notation and conventions

An n-tuple of the form α = (α1, . . . , αn) ∈ Nn0 is called a multi-index of order |α|, where

|α| = α1 + · · ·+ αn. (15)

Given a multi-index α = (α1, . . . , αn) ∈ Nn0 and x = (x1, . . . , xn) ∈ Rn, we define

xα = xα1
1 xα2

2 · · ·x
αn
n , (16)

and

Dαu(x) =
∂|α|u(x)

∂xα1
1 · · · ∂x

αn
n
. (17)

For u : U ⊂ Rn → C, the notation

∂u

∂x
,

∂2u

∂x∂y
(18)
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is used interchangeably with ux, uxy to denote partial derivatives. For u : U ⊂ Rn → Rm,
we employ the notation Du for the Jacobian matrix of u.

If X is a topological space, we denote by C(X) the space of continuous complex-valued
functions on X. For a locally compact Hausdorff space X, we denote the space of complex
Radon measures on X by M(X), and use |µ| for the total variation of µ ∈M(X).

For an open subset U of Rn, we denote by Ck(U) the space of k-times continuously
differentiable functions, and by Ck(U) the subspace of functions u in Ck(U) such that
Dαu is uniformly continuous on bounded subsets of U , and hence extends continuously
to U , for all multi-indices α with |α| ≤ k. We denote by Ckb (U) the subspace of
functions u in Ck(U) such that Dαu is bounded for all multi-indices α with |α| ≤ k,
and by Ckc (U) the subspace of functions in Ck(U) with compact support. We use the
notations C∞(U) =

⋂∞
k=0C

k(U) and C∞(U) =
⋂∞
k=0C

k(U) for the spaces of infinitely
differentiable functions. For a Lebesgue measurable subset U of R2, we denote by L∞(U)
the Banach space of measurable functions which are essentially bounded on U .

We let S (Rn) denote the space of infinitely differentiable functions ϕ such that

‖ϕ‖α,β = sup
x∈Rn

∣∣∣xαDβϕ(x)
∣∣∣ <∞, (19)

for all multi-indices α, β. Its topological dual, which is the space of tempered distributions,
is denoted by S ′(Rn). We write 〈T , ϕ〉 for the action of the tempered distribution T on
the test function ϕ ∈ S (Rn). The support of T ∈ S ′(Rn) is defined as the complement
of the union of all open subsets U of Rn such that 〈T , ϕ〉 = 0 whenever ϕ ∈ S (Rn) is
supported in U . We use E ′(Rn) to denote the subspace of S ′(Rn) consisting of compactly
supported tempered distributions. We say that a tempered distribution T ∈ S ′(Rn) is of
order at most m if, for each compact set K ⊂ Rn, there exists a constant MK such that

|〈T , ϕ〉| ≤MK sup
|α|≤m

sup
x∈K
|Dαϕ(x)| (20)

for every function ϕ ∈ S (Rn) supported in K. The order of a tempered distribution T
is the least nonnegative integer m with the property above, noting that all tempered
distributions are of finite order.

We use the convention

ϕ̂(ξ1, ξ2) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

ϕ(x, y) exp(−i(ξ1x+ ξ2y)) dx dy (21)

for the Fourier transform of ϕ ∈ S (R2), and, accordingly, we have

ϕ(x, y) =

∫ ∞
−∞

∫ ∞
−∞

ϕ̂(ξ1, ξ2) exp(i(ξ1x+ ξ2y)) dξ1 dξ2. (22)

The Fourier transform is extended to a topological automorphism in S ′(R2) via the
formula 〈T̂ , ϕ〉 = 〈T , ϕ̂〉. We use the operators

Fy[ϕ](x, ξ2) =
1

2π

∫ ∞
−∞

ϕ(x, y) exp(−iξ2y) dy, (23)

and

F−1
y [ϕ̂](ξ1, y) =

∫ ∞
−∞

ϕ̂(ξ1, ξ2) exp(iξ2y) dξ2 (24)
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to denote the partial Fourier transform with respect to y and its inverse. If the Fourier
transform of ϕ is supported in [−c, c]2, we say that ϕ has bandlimit c. Note that we do
not require c to be the smallest positive real number with this property.

We use bold capital letters for matrices, and bold lowercase letters for vectors. For
1 ≤ p ≤ ∞, we denote by ‖x‖p the p-norm of a vector x ∈ Cn, and by ‖A‖p the matrix
norm of a matrix A ∈ Cm×n induced by the vector p-norms.

The notation x . y is used to indicate that there is some constant C > 0, not
depending on either x or y, such that x ≤ Cy. For x ∈ Cn, the notations ‖x‖p . y and
‖x‖p & y are used to indicate that there is some nonvanishing polynomial C(n) such that
‖x‖p ≤ C(n)y and C(n)‖x‖p ≥ y, respectively. For A ∈ Cm×n, the notations ‖A‖p . y
and ‖A‖p & y are used to indicate that there is some nonvanishing polynomial C(m,n)
such that ‖A‖p ≤ C(m,n)y and C(m,n)‖A‖p ≥ y, respectively.

2.2 Chebyshev interpolation

We denote by Tn the Chebyshev polynomial of degree n. For k > 1, the extrema of
Tk−1 on the interval [−1, 1] are termed the Chebyshev nodes, which form the k-point
Chebyshev grid, and are denoted by

−1 = t1,k < t2,k < · · · < tk,k = 1, (25)

where

tj,k = cos

(
k − j
k − 1

π

)
, j = 1, . . . , k. (26)

The k × k tensor product Chebyshev grid on [−1, 1]2 is given by{
x

(j)
i,k

}k
i,j=1

, where x
(j)
i,k = (ti,k, tj,k), (27)

so that i indexes nodes in the x-direction and j in the y-direction. We will find it useful
to represent the Chebyshev grid as a single vector of length k2, for which we use the
notation

xi+k(j−1),k2 = x
(j)
i,k , i, j = 1, . . . , k. (28)

For f ∈ C1([−1, 1]2), we denote by Pk[f ] the unique Chebyshev expansion of the form

k−1∑
m,n=0

amnTm(x)Tn(y), amn ∈ C, (29)

which agrees with f at the nodes (27). It is well-known that Pk[f ] converges to f uniformly
as k →∞. For bivariate polynomials, we use the term “degree” to mean the maximum of
the degrees in x and the degrees in y, whichever is larger, of all terms in the polynomial,
rather than the total degree of the polynomial. Evidently, if f is a bivariate polynomial
of degree less than k, then

Pk[f ](x, y) = f(x, y), (30)
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and

Pk

[
∂f

∂x

]
(x, y) =

∂f

∂x
(x, y) =

∂

∂x
Pk[f ](x, y). (31)

We denote by Dk the k × k Chebyshev differentiation matrix which takes the vector(
f(t1,k) f(t2,k) · · · f(tk,k)

)T
(32)

of the values of a univariate polynomial f(x) of degree less than k at the Chebyshev
nodes to the vector(

f ′(t1,k) f ′(t2,k) · · · f ′(tk,k)
)T

(33)

of the values of its derivative at the same nodes. Since the nodes (27) are indexed in the
usual lexicographical order on R2, the matrix

(Dx)k = Ik ⊗Dk (34)

computes the values of the partial derivative of a bivariate polynomial f(x, y) of degree
less than k with respect to x on the k × k tensor product Chebyshev grid, where the
symbol ⊗ denotes the Kronecker product of matrices and Ik is the k × k identity matrix.
We denote by P(k,`) the k2 × `2 interpolation matrix which takes the vector(

f
(
x1,`2

)
f
(
x2,`2

)
· · · f

(
x`2,`2

))T
(35)

of the values of a bivariate polynomial f(x, y) of degree less than ` on the `× ` tensor
product Chebyshev grid to the vector(

f
(
x1,k2

)
f
(
x2,k2

)
· · · f

(
xk2,k2

))T
(36)

of the values of the polynomial on the k × k tensor product Chebyshev grid.
It is well known from classic Sturm-Liouville theory (see, for instance, Section 4 of

[15]) that, if f ∈ C∞([−1, 1]2), then it admits a uniformly convergent Chebyshev series

f(x, y) =
∞∑

m,n=0

bmnTm(x)Tn(y), (37)

such that |bmn| decays super-algebraically as m,n → ∞. It follows from the aliasing
formula for Chebyshev coefficients that

‖Pk[f ]− f‖L∞([−1,1]2) ≤ 2
∑

max{m,n}≥k

|bmn|, (38)

and ∥∥∥∥ ∂∂xPk[f ]− ∂f

∂x

∥∥∥∥
L∞([−1,1]2)

≤ 2
∑

max{m,n}≥k

m2|bmn|. (39)
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Lemma 2.1. Suppose that f is a bivariate polynomial of degree less than k, and that

f =
(
f
(
x1,k2

)
f
(
x2,k2

)
· · · f

(
xk2,k2

))T
. (40)

Then,

‖f‖L∞([−1,1]2) ≤ Λ2
k ‖f‖∞, (41)

where Λk is the Lebesgue constant for the k-point Chebyshev grid on [−1, 1].

Proof. Let (x, y) ∈ [−1, 1]2 with

|f(x, y)| =

∣∣∣∣∣∣
k∑
i=1

k∑
j=1

f(ti,k, tj,k)`i(x)`j(y)

∣∣∣∣∣∣ = ‖f‖L∞([−1,1]2) , (42)

where `1, . . . , `k are the Lagrange polynomials associated with the k-point Chebyshev
grid. The conclusion of the lemma follows immediately from this and the definition

Λk = max
−1≤x≤1

k∑
i=1

|`i(x)|. (43)

�

2.3 Tempered distributions

In this subsection, we collect some standard results from the theory of distributions that
we will use in the analysis of the Levin PDE.

Definition 2.1. For T ∈ S ′(Rn) and ϕ ∈ S (Rn), the convolution T ∗ ϕ is defined as
T ∗ ϕ(x) = 〈T , τxϕ̃〉 for all x ∈ Rn, where τxϕ(y) = ϕ(y − x) denotes translation by x
and ϕ̃(x) = ϕ(−x) denotes reflection through the origin.

The following lemma is reproduced from Proposition 9.10 of [16].

Lemma 2.2. If T ∈ S ′(Rn) and ϕ ∈ S (Rn), then T ∗ ϕ is a slowly increasing C∞

function, and satisfies

Dα(T ∗ ϕ) = (DαT ) ∗ ϕ = T ∗ (Dαϕ) (44)

for all multi-indices α. Furthermore,

supp(T ∗ ϕ) ⊂ supp T + suppϕ. (45)

The following provides the standard definition for the tensor product of two tempered
distributions.

Definition 2.2. For S ∈ S ′(Rm) and T ∈ S ′(Rn), the tensor product S ⊗ T is a
tempered distribution on Rm × Rn defined via the formula

〈S(x)⊗ T (y), ϕ(x,y)〉 = 〈S(x), 〈T (y), ϕ(x,y)〉〉 (46)

for all ϕ(x,y) ∈ S (Rm × Rn).
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The notation we have used has the obvious meaning that, for each fixed x ∈ Rm,
〈T (y), ϕ(x,y)〉 is the action of the distribution T on the function ϕ(x, ·) ∈ S (Rn).
A proof of the fact that 〈T (y), ϕ(x,y)〉 defines a function in S (Rm) can be found in
Chapter 7 of [17].

A proof of the following lemma, which states that the tensor product commutes, can
be found in the same place.

Lemma 2.3. The tensor product is commutative, that is, S(x)⊗ T (y) = T (y)⊗ S(x).

In Theorem 2.6, we prove the structure theorem for tempered distributions that are
compactly supported in a bounded convex set with nonempty interior.

A key ingredient in our proof is the continuity of the following extension operator E,
which is constructed in Chapter VI of [18].

Lemma 2.4. Let U ⊂ Rn be an open, bounded, convex set. Then there exists a linear
extension operator E : Cb(U) → Cb(Rn) such that E maps Cmb (U) continuously into
Cmb (Rn) for all nonnegative integers m, and E[f ], f ∈ Cb(U), is supported in a fixed
compact set that depends only on the domain U .

Note that, if T ∈ E ′(Rn) is of order at most m, then formula (20), together with
the fact that C∞c (Rn) is dense in Cm(Rn), means that T can be continuously extended
to Cm(Rn). The following lemma can be proven by constructing a sequence of bells
(ρn)∞n=1 in C∞c (Rn) such that {x : ρn(x) = 1}◦ ⊃ supp T and

⋂∞
n=1 supp ρn = supp T ,

and showing that T (ϕ) = T (ρnϕ)→ 0.

Lemma 2.5. Let T ∈ E ′(Rn) be of order at most m, and ϕ ∈ Cm(Rn) with Dαϕ = 0
on supp T for all |α| ≤ m. Then 〈T , ϕ〉 = 0.

The following theorem provides a structure theorem for tempered distributions that
are compactly supported in a bounded convex set with nonempty interior. The proof
closely follows Appendix 2 of [17].

Theorem 2.6. Let U ⊂ Rn be an open, bounded, convex set, and suppose that T ∈ E ′(Rn)
is of order at most m with supp T ⊂ U . Then there exist complex Radon measures
µα ∈M(U), corresponding to the set of multi-indices α with |α| ≤ m, such that

〈T , ϕ〉 =
∑
|α|≤m

∫
U
Dαϕ(x) dµα(x) (47)

for all ϕ ∈ Cm(Rn).

Proof. Using the extension operator E in Lemma 2.4, for each ϕ ∈ Cm(Rn), we see
that there exists a function ϕ̃ = E[ϕ|U ] compactly supported in a set K ⊃ U such that
Dαϕ̃ = Dαϕ on supp T for all |α| ≤ m, and

sup
|α|≤m

sup
x∈K
|Dαϕ̃(x)| ≤ Am sup

|α|≤m
sup
x∈U
|Dαϕ(x)| (48)

for some constant Am that depends on the order m.
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Combining Lemma 2.5 with the estimate (48), we obtain the bound

|〈T , ϕ〉| = |〈T , ϕ̃〉| ≤MK sup
|α|≤m

sup
x∈K
|Dαϕ̃(x)|

≤ AmMK sup
|α|≤m

sup
x∈U
|Dαϕ(x)| .

(49)

Let N = |{α : |α| ≤ m}|, and S be the union of N disjoint copies of U endowed
with the disjoint union topology. The space C(S) is the Banach space of all continuous
complex-valued functions ψ = (ψ1, . . . , ψN ) on S, where ψk ∈ C(U) for all 1 ≤ k ≤ N .
Let Y ⊂ C(S) be the subspace consisting of all m-jets (Dαϕ)|α|≤m for ϕ ∈ Cm(Rn).

From (49), it is clear that T induces a bounded linear operator on Y . By the Hahn-
Banach theorem, T has an extension to a bounded linear operator on C(S). Since S
is compact, it then follows from the Riesz representation theorem that there exists a
complex Radon measure µ ∈M(S) such that, for all ϕ ∈ Cm(Rn),

〈T , ϕ〉 =
∑
|α|≤m

∫
U
Dαϕ(x) dµα(x), (50)

where µα ∈M(U) are the restrictions of µ to the disjoint copies of U . �

2.4 Bandlimited approximation of bivariate functions

In this subsection, we provide an explicit construction of certain bandlimited approxi-
mations of a function f defined on a closed subset of [−1, 1]2, under the mild regularity
condition that f extends smoothly to a neighborhood of its domain.

Theorem 2.7. Let Ω ⊂ [−1, 1]2 be closed. Suppose that f : Ω→ C admits an infinitely
differentiable extension to an open neighborhood of Ω. Then, for each positive integer m
and each real number c > 1, there exist a constant C(m, f), depending on m and f , but
not c, and a function fb ∈ S (R2) such that

1. f̂b is supported in [−c− 4, c+ 4]2,

2. ‖fb − f‖L∞(Ω) ≤
C(m, f)

c2m
,

3. ‖fb‖L∞(R2) ≤ 2 ‖f‖L∞(Ω) +
C(m, f)

c2m
,

4.

∥∥∥Dαf̂b∥∥∥
L∞(R2)

≤ 10 ‖f‖L∞(Ω) for all |α| ≤ 2.

Proof. Let f̃ : U → C be an infinitely differentiable extension of f to an open neighbor-
hood U of Ω. Let M = ‖f‖L∞(Ω) and choose an open neighborhood V of Ω such that

V ⊂ U ∩ [−2, 2]2 and f̃ is bounded in magnitude by 2M on V .
By the C∞ Urysohn’s lemma (see Chapter 8 of [16]), there exists an infinitely

differentiable function g1 : R2 → R such that 0 ≤ g1(x, y) ≤ 1 for all (x, y) ∈ R2,
g1(x, y) = 1 on Ω and supp g1 ⊂ V . Then f1(x, y) = f(x, y)g1(x, y) is an element of

11



S (R2), and so is its Fourier transform f̂1. Consequently, there exists a constant k1

(depending on m and f) such that∣∣∣f̂1(ξ1, ξ2)
∣∣∣ ≤ k1(

1 + ξ2
1 + ξ2

2

)m+1 , (51)

for all (ξ1, ξ2) ∈ R2. Since g1 is bounded in magnitude by 1, we have

|f1(x, y)| ≤ 2M, (52)

for all (x, y) ∈ R2. Since supp f1 ⊂ V ⊂ [−2, 2]2, it follows that, for all multi-indices α,

∣∣∣Dαf̂1(ξ1, ξ2)
∣∣∣ =

∣∣∣∣∣(−i)|α|4π2

∫
V
xαf1(x, y) exp(−i(ξ1x+ ξ2y)) dx dy

∣∣∣∣∣
≤ 2|α|

8

π2
M

(53)

holds for all (ξ1, ξ2) ∈ R2, where x = (x, y) ∈ R2.
Using the infinitely differentiable ramp function

H(x) =


0, x ≤ −1,
1
2

(
1 + erf

(
x√

1−x2

))
, x ∈ (−1, 1),

1, x ≥ 1,

(54)

suggested in [19], one can construct an infinitely differentiable window function g2 : R→ R
such that 0 ≤ g2(x) ≤ 1, |g′2(x)| ≤ 1 and |g′′2(x)| ≤ 1 for all x ∈ R, g2(x) = 1 for all
|x| ≤ c and g2(x) = 0 for all |x| ≥ c+ 4. We then define fb by its Fourier transform

f̂b(ξ1, ξ2) = f̂1(ξ1, ξ2)g2(‖(ξ1, ξ2)‖), (55)

so that the first condition listed above is satisfied. From (51) and the definition of g2, it
is clear that, for all (x, y) ∈ R2,

|f1(x, y)− fb(x, y)|

=

∣∣∣∣∫
R2

f̂1(ξ1, ξ2) (1− g2(‖(ξ1, ξ2)‖)) exp(i(ξ1x+ ξ2y)) dξ1 dξ2

∣∣∣∣
≤
∫ 2π

0

∫ ∞
c

k1r

(1 + r2)m+1 dr dθ

=
k1π

m (1 + c2)m
.

(56)

This inequality leads directly to the second condition listed above, and we obtain the
third condition by combining it with (52). Using (53) and the properties of g2, it is
straightforward to verify that the remaining conditions listed above are satisfied by
repeated differentiation of (55). �

12



Definition 2.3. Let Ω ⊂ [−1, 1]2 be closed. Suppose that f : Ω→ C admits an infinitely
differentiable extension to an open neighborhood of Ω. For 0 < ε < 1, we say that
a function fb ∈ S (R2) is an ε-bandlimited approximation of f if fb is a bandlimited
function with the following properties:

1. ‖fb − f‖L∞(Ω) ≤ ε ‖f‖L∞(Ω),

2. ‖fb‖L∞(R2) ≤ 3 ‖f‖L∞(Ω),

3.

∥∥∥Dαf̂b∥∥∥
L∞(R2)

≤ 10 ‖f‖L∞(Ω) for all |α| ≤ 2.

Furthermore, we denote by cf (ε) the infimum of the set of positive real numbers c such
that there exists an ε-bandlimited approximation of f with bandlimit c. Note that
Theorem 2.7 shows that this set is nonempty, hence cf (ε) <∞.

Throughout this paper, we will assume that cf (ε) is positive because it is zero only
in the trivial case where f is the zero function.

2.5 Legendre expansions of bandlimited functions

Here we characterize the super-exponential decay of the coefficients of the Legendre
expansion of a bandlimited function in terms of its bandlimit. Throughout this subsection,
Pn denotes the Legendre polynomial of degree n, and jν denotes the spherical Bessel
function of order ν.

Lemma 2.8. Let ϕ ∈ S ′(R2). If the Fourier transform of ϕ is a tempered distribution
of order at most p supported in [−c, c]2, then ϕ coincides with an entire function of the
form

ϕ(x, y) =
∑
|α|≤p

xα
∫

[−c,c]2
exp(i(ξ1x+ ξ2y)) dµα(ξ1, ξ2), (57)

where µα ∈M([−c, c]2) for all multi-indices α with |α| ≤ p.

Proof. In view of the formula

ϕ(x, y) = 〈ϕ̂(ξ1, ξ2), exp(i(ξ1x+ ξ2y))〉, (58)

the conclusion of the lemma is a direct consequence of Theorem 2.6. �

Theorem 2.9. Let ϕ ∈ S ′(R2) such that the Fourier transform of ϕ is a tempered
distribution of order at most p supported in [−c, c]2 for c ≥ 1. Then ϕ admits a uniformly
convergent Legendre expansion

ϕ(x, y) =

∞∑
m,n=0

amnPm(x)Pn(y), (59)
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and there exists a constant C(ϕ, p), depending only on ϕ and p, but not m and n, such
that

|amn| ≤ C(ϕ, p)
(c/2)m+n+p

Γ(m− p+ 1)Γ(n− p+ 1)
(60)

for all min{m,n} ≥ p, and

|amn| ≤ C(ϕ, p)
(c/2)p

′+p

Γ(p′ − p+ 1)
(61)

for all p′ = max{m,n} ≥ p.

Proof. By Lemma 2.8,∣∣∣∣∫ 1

−1

∫ 1

−1
ϕ(x, y)Pm(x)Pn(y) dx dy

∣∣∣∣
≤ max
|α|≤p

|µα|([−c, c]2)
∑

0≤k+`≤p
max
ξ∈[−c,c]

|Ikm(ξ)| max
ξ∈[−c,c]

|I`n(ξ)|,
(62)

where

Ik`(ξ) =

∫ 1

−1
xkP`(x) exp(iξx) dx. (63)

For k ≤ `, we have the expansion

xkP`(x) =
`+k∑

ν=`−k
bk`νPν(x), (64)

where

bk`ν =
2ν + 1

2

∫ 1

−1
xkP`(x)Pν(x) dx. (65)

Using the three-term recurrence relation for Legendre polynomials, it can be shown that
|bk`ν | ≤ 1. It then follows from Formula 10.54.2 and 10.14.4 in [20] that

|Ik`(ξ)| ≤
`+k∑

ν=`−k

∣∣∣∣∫ 1

−1
Pν(x) exp(iξx) dx

∣∣∣∣
= 2

`+k∑
ν=`−k

|jν(|ξ|)|

≤ 2

`+k∑
ν=`−k

|ξ/2|ν

Γ(ν + 1)

≤ (4k + 2)
(c/2)`+k

Γ(`− k + 1)

(66)

holds for all |ξ| ≤ c. Finally, inserting the bound

|Ik`(ξ)| ≤ 2 (67)

and (66) into (62) yields the conclusion of the theorem. �
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Remark 2.1. Using the asymptotic expansion

jν(ξ) ∼
√
e/2

2ν + 1

(
eξ

2ν + 1

)ν
, as ν →∞, (68)

which is an application of Formula 10.19.1 in [20], in place of the inequality used in (66),
we obtain the approximation

|Ik`(ξ)| ≤ 2
`+k∑

ν=`−k
|jν(|ξ|)|

∼ 2
`+k∑

ν=`−k

√
e/2

2ν + 1

(
e|ξ|

2ν + 1

)ν

≤
√

2e

`+k∑
ν=`−k

1

2ν + 1

(
ec

2ν + 1

)ν
,

(69)

as `→∞, which holds for all |ξ| ≤ c. Applying the bounds (67) and (69) to (62), together
with the condition

max{m,n} > e

2
c+ p− 1

2
, (70)

we see that

ec

2ν + 1
< 1 (71)

holds for all ν involved, so we expect the coefficients in the Legendre expansion (59) of ϕ
to decay super-exponentially as soon as (70) is satisfied.

2.6 Truncated singular value decompositions

If A is a complex-valued m× n matrix with m ≥ n, then any decomposition of the form

A =
(
u1 u2 · · · um

)


σ1

σ2

. . .

σn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


(
v1 v2 · · · vn

)∗
, (72)

where σ1, . . . , σn ≥ 0, {u1, . . . ,um} is an orthonormal basis of Cm, and {v1, . . . , vn} is an
orthonormal basis of Cn, is known as a singular value decomposition of A. The scalars
σ1, . . . , σn are uniquely determined up to ordering, and they are known as the singular
values of A. It is conventional to arrange them in descending order, and we will assume
that this is the case with all singular value decompositions that we consider.
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A k-truncated singular value decomposition of A is an approximation of the form

A ≈ Ak =
(
u1 u2 · · · uk

)

σ1

σ2

. . .

σk

(v1 v2 · · · vk
)∗
,

(73)

where (72) is a singular value decomposition of A with σ1 ≥ σ2 ≥ · · · ≥ σn and 1 ≤ k ≤ n.
Typically, a desired precision ε > 0 is specified and k is taken to be the least integer
between 1 and n− 1 such that σk+1 < ε, if such an integer exists, or k = n otherwise. In
this case, we say that (73) is a singular value decomposition which has been truncated at

precision ε. We call the vector x = A†ky given by

x =
(
v1 v2 · · · vk

)


1
σ1

1
σ2

. . .
1
σk

(u1 u2 · · · uk
)∗

y (74)

the solution of the linear system Ax = y obtained from the truncated singular value
decomposition (73).

The following theorem implies that, when a linear system admits an approximate
solution with a modest norm, and it is solved numerically using a truncated singular
value decomposition, the computed solution will have both a small residual and a modest
norm. We refer the reader to [21] for a proof of the theorem.

Theorem 2.10. Suppose that A ∈ Cm×n, where m ≥ n, and let σ1 ≥ σ2 ≥ · · · ≥ σn be
the singular values of A. Let b ∈ Cm, and suppose that x ∈ Cn satisfies

Ax = b. (75)

Let ε > 0, and suppose further that

x̂k = (A + E)†k(b + e), (76)

where (A + E)†k is the pseudoinverse of the k-truncated singular value decomposition of
A + E, so that

σ̂k ≥ ε ≥ σ̂k+1, (77)

where σ̂k and σ̂k+1 are the kth and (k + 1)th largest singular values of A + E, defining
σ̂n+1 = 0, and where E ∈ Cm×n and e ∈ Cm, with ‖E‖2 < ε/2. Then

‖x̂k‖2 ≤
1

σ̂k
(2ε‖x‖2 + ‖e‖2) + ‖x‖2, (78)

and

‖Ax̂k − b‖2 ≤ 5ε‖x‖2 +
3

2
‖e‖2. (79)
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3 Analysis of the Levin PDE

In this section, we prove that, under mild conditions on gx, the Levin PDE

∇ · p+ i∇g · p = f in (−1, 1)2 (80)

admits a well-behaved, approximate solution of the form

p(x, y) =

(
pb(x, y)

0

)
, (81)

where pb : [−1, 1]2 → C is an infinitely differentiable function.
The main results of this section are Theorem 3.3 and Theorem 3.4. Theorem 3.3

shows that, when gx is nonzero over the domain and the ratio of its maximum absolute
value to its minimum absolute value is small, the Levin PDE admits a well-behaved,
approximate solution of the form (81), whose complexity is independent of the magnitude
of gx. Theorem 3.4 shows that, when gx is of small magnitude over the domain, the
Levin PDE also admits a well-behaved, approximate solution of the form (81), whose
complexity decreases with the magnitude of gx.

We begin our analysis with the following technical lemma, which applies when the
domain is an arbitrary closed subset of [−1, 1]2 and gx is equal to a nonzero constant W .

Lemma 3.1. Let Ω ⊂ [−1, 1]2 be closed. Suppose that f : Ω → C admits an infinitely
differentiable extension to an open neighborhood of Ω and W 6= 0. Suppose further
that 0 < ε < 1, and let W0 = cf (ε). Then there exist a right-continuous function
C : (0,∞)→ R and, for each δ > 0, an entire function pb,δ ∈ S ′(R2) such that

1. p̂b,δ is a tempered distribution of order 1 supported in [−W0 − δ,W0 + δ]2,

2.

∣∣∣∣∂pb,δ∂x
(x, y) + iWpb,δ(x, y)− f(x, y)

∣∣∣∣ ≤ ε ‖f‖L∞(Ω) for all (x, y) ∈ Ω,

3. ‖pb,δ‖L∞(Ω) ≤ C(W0 + δ) min

{
1,

1

|W |

}
‖f‖L∞(Ω),

4.

∥∥∥∥∂pb,δ∂x

∥∥∥∥
L∞(Ω)

≤ C(W0 + δ) min

{
1,

1

|W |

}
‖f‖L∞(Ω).

Proof. We let fb,δ ∈ S (R2) be an ε-bandlimited approximation of f with bandlimit
W0 + δ, and define the function pb,δ via the formula

pb,δ(x, y) =

∫ ∞
−∞

[
p.v.

∫ ∞
−∞

f̂b,δ(ξ1, ξ2)

i(ξ1 +W )
exp(i(ξ1x+ ξ2y)) dξ1

]
dξ2. (82)

Let S denote the tempered distribution induced by the constant function 1, and TW
denote the tempered distribution defined via the formula

〈TW , ϕ〉 = p.v.

∫ ∞
−∞

ϕ(ξ)

i(ξ +W )
dξ. (83)
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Since f̂b,δ is compactly supported, pb,δ is exactly the inverse Fourier transform of the

product of TW ⊗ S and the infinitely differentiable function f̂b,δ. Since TW is of order
1 and S is of order 0, and fb,δ has bandlimit W0 + δ, it is clear that p̂b,δ is a tempered
distribution of order 1 which is supported in [−W0 − δ,W0 + δ]2, so the first condition
listed above is satisfied. In particular, the Schwartz-Paley-Wiener theorem asserts that
pb,δ is an entire function.

From Lemma (2.3), we arrive at the alternative formula

pb,δ(x, y) =
〈
TW (ξ1),

〈
S(ξ2), f̂b,δ(ξ1, ξ2) exp(i(ξ1x+ ξ2y))

〉〉
=
〈
TW (ξ1),F−1

y

[
f̂b,δ

]
(ξ1, y) exp(iξ1x)

〉
= p.v.

∫ ∞
−∞

F−1
y

[
f̂b,δ

]
(ξ1, y)

i(ξ1 +W )
exp(iξ1x) dξ1.

(84)

Then we see that, for all (x, y) ∈ Ω,

∂pb,δ
∂x

(x, y) + iWpb,δ(x, y)

= p.v.

∫ ∞
−∞

i(ξ1 +W )F−1
y

[
f̂b,δ

]
(ξ1, y)

i(ξ1 +W )
exp(iξ1x) dξ1

= fb,δ(x, y),

(85)

so the second condition listed above follows from this and property (1) in Definition 2.3.
To establish the remaining conditions listed above, we will make use of the following

bounds on the partial inverse Fourier transform of f̂b,δ and its derivative. From property (3)
in Definition 2.3, we have∣∣∣F−1

y

[
f̂b,δ

]
(ξ1, y)

∣∣∣ ≤ 20(W0 + δ) ‖f‖L∞(Ω) , (86)

and ∣∣∣∣ ∂∂ξ1
F−1
y

[
f̂b,δ

]
(ξ1, y)

∣∣∣∣ ≤ 20(W0 + δ) ‖f‖L∞(Ω) . (87)

Then an analogous proof to that of Lemma 4 in [9] shows that

‖pb,δ‖L∞(Ω) ≤ C(W0 + δ) min

{
1,

1

|W |

}
‖f‖L∞(Ω) , (88)

and ∥∥∥∥∂pb,δ∂x

∥∥∥∥
L∞(Ω)

≤ C(W0 + δ) min

{
1,

1

|W |

}
‖f‖L∞(Ω) , (89)

where C is a right-continuous function. �

The construction of pb,δ outlined above fails in the case of δ = 0, since the definition
of cf (ε) does not guarantee the existence of an ε-bandlimited approximation of f with
bandlimit cf (ε). Nonetheless, the topological structure of S ′(R2) ensures the existence
of a well-behaved, approximate solution pb to the Levin PDE with bandlimit cf (ε). In
the following corollary, we present the necessary topological arguments to extract pb.
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Corollary 3.2. Under the assumptions of Lemma 3.1, there exist an entire function pb ∈
S ′(R2) and a constant C(W0) such that pb satisfies the properties of pb,δ in Lemma 3.1
for δ = 0, with the exception that p̂b is of order at most 1, rather than of order exactly 1.

Proof. For each n ∈ N, we invoke Lemma 3.1 to obtain an ε-bandlimited approximation
fb,1/n ∈ S (R2) of f with bandlimit W0 + 1

n and an entire function pb,1/n ∈ S ′(R2) such
that

1. p̂b,1/n is a tempered distribution of order 1 supported in
[
−W0 − 1

n ,W0 + 1
n

]2
,

2.

∣∣∣∣∂pb,1/n∂x
(x, y) + iWpb,1/n(x, y)− f(x, y)

∣∣∣∣ ≤ ε ‖f‖L∞(Ω) for all (x, y) ∈ Ω,

3.
∥∥pb,1/n∥∥L∞(Ω)

≤ C
(
W0 +

1

n

)
min

{
1,

1

|W |

}
‖f‖L∞(Ω),

4.

∥∥∥∥∂pb,1/n∂x

∥∥∥∥
L∞(Ω)

≤ C
(
W0 +

1

n

)
min

{
1,

1

|W |

}
‖f‖L∞(Ω).

Recall that the weak dual topology on S ′(R2), which is the topology of pointwise
convergence in S (R2), is defined by the family of seminorms {qϕ : ϕ ∈ S (R2)}, where
qϕ(T ) = |〈T , ϕ〉| for T ∈ S ′(R2).

To see that the sequence (p̂b,1/n)∞n=1 is weakly bounded, we observe that

qϕ(p̂b,1/n) =

∣∣∣∣∣
∫ W0+ 1

n

−W0− 1
n

〈
TW (ξ1), f̂b,1/n(ξ1, ξ2)ϕ(ξ1, ξ2)

〉
dξ2

∣∣∣∣∣
≤ 4

(
W0 +

1

n

)(∥∥∥f̂b,1/nϕ∥∥∥
e1,0

+
∥∥∥f̂b,1/nϕ∥∥∥

0,e1

)
≤ 120 (W0 + 1)2 ‖f‖L∞(Ω) sup

|β|≤1
‖ϕ‖0,β ,

(90)

where e1 = (1, 0), and where the first inequality follows from the fact that∣∣∣∣〈p.v.
1

x
, ϕ

〉∣∣∣∣ ≤ 2
(
‖ϕ‖1,0 + ‖ϕ‖0,1

)
(91)

and second inequality follows from property (3) in Definition 2.3. Since S (R2) is barreled,
it follows that, since (p̂b,1/n)∞n=1 is weakly bounded, it is also relatively compact in the
weak dual topology (see Theorem 33.2 of [22]), and hence contains a convergent subnet
(p̂b,1/F (ν))ν∈I for some monotone final function F : I → N and directed system I. We
denote by p̂b the limit of the subnet, and define pb as the inverse Fourier transform of p̂b.

From (90) and the pointwise convergence of (p̂b,1/F (ν))ν∈I , we observe that

|〈p̂b, ϕ〉| ≤ 120 (W0 + 1)2 ‖f‖L∞(Ω) sup
|β|≤1

‖ϕ‖0,β (92)

for all ϕ ∈ S (R2), which implies that p̂b is of order at most 1. For each test function ϕ
whose support is disjoint from [−W0,W0]2, there exists some n ∈ N such that p̂b,1/n and
ϕ have disjoint support, so we can find some ν ′ ∈ I such that qϕ(p̂b,1/F (ν)) = 0 for all
ν � ν ′. This implies that the limit qϕ(p̂b) must be zero, and thus the support of p̂b is
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contained in [−W0,W0]2. It is then a direct consequence of the Schwartz-Paley-Wiener
theorem that pb is an entire function.

Owing to the formula

pb,1/F (ν)(x, y) =
〈
p̂b,1/F (ν), exp(i(ξ1x+ ξ2y))

〉
, (93)

we conclude that (Dαpb,1/F (ν))ν∈I converges pointwise to Dαpb for all multi-indices α.
By combining the pointwise convergence of Dαpb,1/F (ν) with the right-continuity of C,
the remaining conditions follow immediately. �

We now consider the case where the domain is [−1, 1]2, and gx is nonconstant with
no zeros over the domain. We suppose that f : [−1, 1]2 → C and g : [−1, 1]2 → R admit
infinitely differentiable extensions to an open neighborhood of [−1, 1]2, and that the
extension of gx is nonzero in the neighborhood. We let

G0 = min
(x,y)∈[−1,1]2

∣∣∣∣∂g∂x(x, y)

∣∣∣∣ , G1 = max
(x,y)∈[−1,1]2

∣∣∣∣∂g∂x(x, y)

∣∣∣∣ , (94)

and

W = max
y∈[−1,1]

∣∣∣∣∫ 1

−1

∂g

∂x
(x, y) dx

∣∣∣∣ . (95)

Furthermore, we define u : [−1, 1]2 → R2 via the formula

u(x, y) =

(
1

W

∫ x

−1

∂g

∂x
(t, y) dt, y

)
. (96)

Since gx is nonvanishing on [−1, 1]2, u is injective and has invertible Jacobian on [−1, 1]2.
By the generalized inverse function theorem (see Chapter 1 of [23]), u extends to a
diffeomorphism in an open neighborhood of [−1, 1]2. We denote the image of (−1, 1)2

under u by Ωu, noting that Ωu ⊂ [−1, 1]2, and define h : Ωu → R2 via the formula

h(x′, y′) = f(u−1(x′, y′)) det(Du−1)(x′, y′). (97)

Notice that both u and h are independent of the magnitude of gx, in the sense that they
remain unchanged under any rescaling of gx by a nonzero constant.

We are now ready to prove the first main result of this section.

Theorem 3.3. Suppose that 0 < ε < 1, and let W0 = ch(ε). Then there exists an
infinitely differentiable function pb : [−1, 1]2 → C and a constant C(W0), depending only
on W0, such that

1. the Fourier transform of pb(u
−1(x′, y′)) is a tempered distribution of order at most

1 supported in [−W0,W0]2,

2.

∣∣∣∣∂pb∂x (x, y) + i
∂g

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣ ≤ εG1

G0
‖f‖L∞([−1,1]2) for all (x, y) ∈ [−1, 1]2,

3. ‖pb‖L∞([−1,1]2) ≤ C(W0)
W

G0
min

{
1,

1

W

}
‖f‖L∞([−1,1]2),
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4.

∥∥∥∥∂pb∂x
∥∥∥∥
L∞([−1,1]2)

≤ C(W0)
G1

G0
min

{
1,

1

W

}
‖f‖L∞([−1,1]2).

Proof. Using the change of variables (x′, y′) = u(x, y), the PDE

∂p

∂x
(x, y) + i

∂g

∂x
(x, y)p(x, y) = f(x, y) in (−1, 1)2 (98)

can be reduced to the simpler form

∂p

∂x′
(x′, y′) + iWp(x′, y′) = h(x′, y′) in Ωu. (99)

Since h admits an infinitely differentiable extension to an open neighborhood of Ωu,
an application of Corollary 3.2 to (99) shows that there exist an entire function p1 and a
constant C(W0) such that

1. p̂1 is a tempered distribution of order at most 1 supported in [−W0,W0]2,

2.

∣∣∣∣∂p1

∂x′
(x′, y′) + iWp1(x′, y′)− h(x′, y′)

∣∣∣∣ ≤ ε ‖h‖L∞(Ωu) for all (x′, y′) ∈ Ωu,

3. ‖p1‖L∞(Ωu) ≤ C(W0) min

{
1,

1

W

}
‖h‖L∞(Ωu),

4.

∥∥∥∥∂p1

∂x′

∥∥∥∥
L∞(Ωu)

≤ C(W0) min

{
1,

1

W

}
‖h‖L∞(Ωu).

We define pb as the composition of p1 and u. It is clear that the first condition on pb
is satisfied. From (96) and (97), we see that

‖h‖L∞(Ωu) ≤
W

G0
‖f‖L∞([−1,1]2) , (100)

and therefore

‖pb‖L∞([−1,1]2) ≤ C(W0)
W

G0
min

{
1,

1

W

}
‖f‖L∞([−1,1]2) , (101)

and ∥∥∥∥∂pb∂x
∥∥∥∥
L∞([−1,1]2)

≤ C(W0)
G1

G0
min

{
1,

1

W

}
‖f‖L∞([−1,1]2) . (102)

Moreover, we have∣∣∣∣∂pb∂x (x, y) + i
∂g

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣ ≤ εG1

G0
‖f‖L∞([−1,1]2) (103)

for all (x, y) ∈ [−1, 1]2. �

We note that Theorem 3.3 does not assert that the function pb is bandlimited. However,
we conclude that its smoothness is characterized independently of the magnitude of gx.
This follows from the observation that p1 has a bandlimit independent of the magnitude
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of gx and that the function u is also independent of the magnitude of gx. It is clear
that pb can be approximated to a fixed relative accuracy via a Legendre expansion at a
cost that does not depend on the magnitude of gx, but which necessarily depends on the
complexity of u and h.

We close this section with the second main result of this section, which proves the
existence of a well-behaved, approximate solution to the Levin PDE if gx is of small
magnitude.

Theorem 3.4. Suppose that f : [−1, 1]2 → C and g : [−1, 1]2 → R admit infinitely
differentiable extensions to an open neighborhood of [−1, 1]2, and that G1 < 1/2. Then,
for 0 < ε < 1 and integer n defined via the formula

n =

⌊
log(ε)

log(2G1)

⌋
, (104)

there exists an entire function pb ∈ S ′(R2) such that

1. p̂b is a tempered distribution of order at most 1 supported in

[−cf (ε)− ncgx(ε), cf (ε) + ncgx(ε)]2 ,

2.

∣∣∣∣∂pb∂x (x, y) + i
∂g

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣ ≤ 3ε

(
1 +

G1

1− 2G1

)
‖f‖L∞([−1,1]2) for all

(x, y) ∈ [−1, 1]2,

3. ‖pb‖L∞([−1,1]2) ≤
2

1− 2G1
‖f‖L∞([−1,1]2),

4.

∥∥∥∥∂pb∂x
∥∥∥∥
L∞([−1,1]2)

≤ 4

(
1 +

G1

1− 2G1

)
‖f‖L∞([−1,1]2).

Proof. We will first construct an entire function pb,δ ∈ S ′(R2) for δ > 0 such that pb,δ
satisfies conditions (2)-(4) listed above, and p̂b,δ is a tempered distribution of order at
most 1 supported in

[−cf (ε)− ncgx(ε)− (n+ 1)δ, cf (ε) + ncgx(ε) + (n+ 1)δ]2 . (105)

We let fb,δ and (gx)b,δ be ε-bandlimited approximations of f and gx with bandlimit
cf (ε) + δ and cgx(ε) + δ, respectively. We then define Aδ : L∞([−1, 1]2)→ L∞([−1, 1]2)
via the formula

Aδ[ϕ](x, y) = −i
∫ x

0

(
∂g

∂x

)
b,δ

(t, y)ϕ(t, y) dt, (106)

and define

hδ(x, y) =

∫ x

0
fb,δ(t, y) dt. (107)

The function pb,δ is then defined as

pb,δ(x, y) =

n∑
k=0

Akδ [hδ](x, y), (108)
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where Akδ denotes the repeated application of the operator Aδ and n is defined by (104).
By the same derivation presented in the proof of Theorem 5 in [9], we see that∣∣∣∣∂pb,δ∂x

(x, y) + i
∂g

∂x
(x, y)pb,δ(x, y)− f(x, y)

∣∣∣∣
≤ 3ε

(
1 +

G1

1− 2G1

)
‖f‖L∞([−1,1]2)

(109)

for all (x, y) ∈ [−1, 1]2, and

‖pb,δ‖L∞([−1,1]2) ≤
2

1− 2G1
‖f‖L∞([−1,1]2) , (110)

and ∥∥∥∥∂pb,δ∂x

∥∥∥∥
L∞([−1,1]2)

≤ 4

(
1 +

G1

1− 2G1

)
‖f‖L∞([−1,1]2) . (111)

It remains to verify the bandlimit of pb,δ and the order of its Fourier transform. We first
observe that

ĥδ = f̂b,δ(T0 ⊗ S)− δ(ξ1)⊗
(〈
T0(ξ), f̂b,δ(ξ, ξ2)

〉
S(ξ2)

)
, (112)

where T0 is defined by (83), and S denotes integration. Since fb,δ has bandlimit cf (ε) + δ,
it is clear that hδ has the same bandlimit. Analogously, we have

Âδ[ϕ] = −i
(
Îδ[ϕ](T0 ⊗ S)− δ(ξ1)⊗

(〈
T0(ξ), Îδ[ϕ](ξ, ξ2)

〉
S(ξ2)

))
,

(113)

where Iδ[ϕ] denotes the integrand of Aδ[ϕ]. Suppose that ϕ is a slowly increasing C∞

function with bandlimit c. Accordingly, as a consequence of Lemma 2.2 and the fact that
(gx)b,δ ∈ S (R2) has bandlimit cgx(ε) + δ,

Îδ[ϕ](x) = ϕ̂ ∗ (̂gx)b,δ(x) (114)

defines a C∞ function supported in [−c − cgx(ε) − δ, c + cgx(ε) + δ]2. Hence it is clear
that Aδ[ϕ] has bandlimit c + cgx(ε) + δ. It then follows by induction that Akδ [hδ] has
bandlimit cf (ε) + kcgx(ε) + (k + 1)δ. Moreover, Akδ [hδ]

∧ is of order at most 1 since T0 is
of order 1. We conclude that pb,δ has bandlimit cf (ε) + ncgx(ε) + (n+ 1)δ, and the order
of its Fourier transform is at most 1.

Recall that the weak dual topology on S ′(R2) is defined by the family of seminorms
{qϕ : ϕ ∈ S (R2)}, where qϕ(T ) = |〈T , ϕ〉| for T ∈ S ′(R2). To see that the sequence

(ĥ1/m)∞m=1 is weakly bounded, we first observe that〈
δ(ξ1)⊗

(〈
T0(ξ), f̂b,1/m(ξ, ξ2)

〉
S(ξ2)

)
, ϕ(ξ1, ξ2)

〉
=
〈
f̂b,1/m(ξ, ξ2)(T0(ξ)⊗ S(ξ2)), ϕ(0, ξ2)

〉
,

(115)
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and then apply the same reasoning involved in (90) to (112) to arrive at the bound

qϕ(ĥ1/m) ≤ 240 (cf (ε) + 1)2 ‖f‖L∞([−1,1]2) sup
|β|≤1

‖ϕ‖0,β . (116)

Suppose now that (ψ̂m)∞m=1 is a sequence in E ′(R2) with bandlimit c satisfying

qϕ(ψ̂m) ≤ C sup
|β|≤1

‖ϕ‖0,β (117)

for some constant C independent of m and ϕ. From (44), (117) and property (3) of
((gx)b,1/m)∞m=1 in Definition 2.3, we see that (I1/m[ψm]∧)∞m=1 and their first derivatives
are all uniformly bounded, and are supported in [−c − cgx(ε) − 1, c + cgx(ε) + 1]2. It
follows from the same arguments again that (A1/m[ψm]∧)∞m=1 is weakly bounded and
satisfies a bound of the form (117).

By induction, we see that (Ak1/m[h1/m]∧)∞m=1 is weakly bounded for all positive k.

Consequently, (p̂b,1/m)∞m=1 is weakly bounded due to subadditivity of seminorms. The
existence of an entire function pb satisfying the conditions listed above can be established
by the same arguments used in the proof of Corollary 3.2. �

4 Numerical aspects of the Levin method

In this section, we derive error estimates for the Levin method that discretizes the PDE

px + igxp = f in (−1, 1)2 (118)

using collocation on a tensor product Chebyshev grid and then solves the resulting linear
system numerically using a truncated singular value decomposition.

In this section, we use the symbol x̂ to denote the computed approximation to x,
rather than the Fourier transform of x.

Throughout this section, we will assume that f : [−1, 1]2 → C and g : [−1, 1]2 → R
admit infinitely differentiable extensions to an open neighborhood of [−1, 1]2, and that
0 < ε < 1/2. As in the preceding section, we let

G0 = min
(x,y)∈[−1,1]2

∣∣∣∣∂g∂x(x, y)

∣∣∣∣ , G1 = max
(x,y)∈[−1,1]2

∣∣∣∣∂g∂x(x, y)

∣∣∣∣ , (119)

and

W = max
y∈[−1,1]

∣∣∣∣∫ 1

−1

∂g

∂x
(x, y) dx

∣∣∣∣ . (120)

4.1 Case I: G0 > 0

We let W0 = ch(ε), where h is defined via the formula (97) and ch(ε) is defined in
Definition 2.3. According to Theorem 3.3, there exist an infinitely differentiable function
pb : [−1, 1]2 → C and a constant C(W0), which we assume to satisfy C(W0) ≥ 1 in this
subsection, such that∣∣∣∣∂pb∂x (x, y) + i

∂g

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣ ≤ ε G1

G0
‖f‖L∞([−1,1]2) (121)
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for all (x, y) ∈ [−1, 1]2, and both

‖pb‖L∞([−1,1]2) ≤ C(W0)
W

G0
min

{
1,

1

W

}
‖f‖L∞([−1,1]2) (122)

and ∥∥∥∥∂pb∂x
∥∥∥∥
L∞([−1,1]2)

≤ C(W0)
G1

G0
min

{
1,

1

W

}
‖f‖L∞([−1,1]2) . (123)

From (38), (39), and the discussion following Theorem 3.3, we observe that an integer k
can be chosen independently of the magnitude of gx such that

‖Pk[pb]− pb‖L∞([−1,1]2) ≤ ε ‖pb‖L∞([−1,1]2) , (124)

and ∥∥∥∥ ∂∂xPk[pb]− ∂pb
∂x

∥∥∥∥
L∞([−1,1]2)

≤ ε
∥∥∥∥∂pb∂x

∥∥∥∥
L∞([−1,1]2)

. (125)

Moreover, from the uniform convergence of Chebyshev interpolants, the value of k can
be chosen such that∥∥∥∥Pk[∂g∂x

]
− ∂g

∂x

∥∥∥∥
L∞([−1,1]2)

≤ ε
∥∥∥∥∂g∂x

∥∥∥∥
L∞([−1,1]2)

, (126)

and

‖P2k−1[f ]− f‖L∞([−1,1]2) ≤ ε ‖f‖L∞([−1,1]2) (127)

are also satisfied. With this choice of k and the assumption that 0 < ε < 1/2, we have∥∥∥∥Pk[∂g∂x
]
Pk[pb]−

∂g

∂x
pb

∥∥∥∥
L∞([−1,1]2)

≤
∥∥∥∥Pk[pb](Pk[∂g∂x

]
− ∂g

∂x

)
+
∂g

∂x
(Pk[pb]− pb)

∥∥∥∥
L∞([−1,1]2)

≤ 3ε

∥∥∥∥∂g∂x
∥∥∥∥
L∞([−1,1]2)

‖pb‖L∞([−1,1]2) .

(128)

From (122), (123), (125), (128), and the fact that

max{W, 1}min

{
1,

1

W

}
= 1, (129)

we see that ∥∥∥∥ ∂∂xPk[pb] + iPk

[
∂g

∂x

]
Pk[pb]−

(
∂pb
∂x

+ i
∂g

∂x
pb

)∥∥∥∥
L∞([−1,1]2)

≤ 3ε

∥∥∥∥∂g∂x
∥∥∥∥
L∞([−1,1]2)

‖pb‖L∞([−1,1]2) + ε

∥∥∥∥∂pb∂x
∥∥∥∥
L∞([−1,1]2)

≤ 4 εC(W0)
G1

G0
‖f‖L∞([−1,1]2)

(130)
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holds regardless of the magnitude of gx. Combining (121) with (127) and (130) yields∣∣∣∣ ∂∂xPk[pb](x, y) + iPk

[
∂g

∂x

]
(x, y)Pk[pb](x, y)− P2k−1[f ](x, y)

∣∣∣∣
≤ ε

(
1 + (1 + 4C(W0))

G1

G0

)
‖f‖L∞([−1,1]2)

≤ 6 εC(W0)
G1

G0
‖f‖L∞([−1,1]2) ,

(131)

for all (x, y) ∈ [−1, 1]2, since C(W0) ≥ 1. If we let

pb =


pb
(
x1,k2

)
pb
(
x2,k2

)
...

pb
(
xk2,k2

)
 , f =


f
(
x1,(2k−1)2

)
f
(
x2,(2k−1)2

)
...

f
(
x(2k−1)2,(2k−1)2

)
 , (132)

and define the (2k − 1)2 × (2k − 1)2 diagonal matrix G2k−1 with entries given by

(G2k−1)i,i = gx
(
xi,(2k−1)2

)
, (133)

for all 1 ≤ i ≤ (2k − 1)2, then it follows from (131) that(
P(2k−1,k)(Dx)k + iG2k−1P(2k−1,k)

)
pb = f + r (134)

with

‖pb‖2 . C(W0)
W

G0
min

{
1,

1

W

}
‖f‖L∞([−1,1]2) (135)

and

‖r‖2 . εC(W0)
G1

G0
‖f‖L∞([−1,1]2) , (136)

where (Dx)k and P(2k−1,k) are the Chebyshev differentiation and interpolation matrices
defined in Section 2.2.

We introduce the notation

A = P(2k−1,k)(Dx)k + iG2k−1P(2k−1,k) (137)

in order to simplify the following discussion. We observe that

‖A‖2 . max{G1, 1}, (138)

and, by combining Lemma 2.1 with (126), we see that

‖A‖2 ≥
1√
2k

(
1 +

(1− ε)G1

Λ2
k

)
≥ 1 +G1

2
√

2kΛ2
k

≥ max{G1, 1}
2
√

2kΛ2
k

, (139)

and thus ‖A‖2 & max{G1, 1}. We now solve the linear system

Apb = f (140)
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via a truncated singular value decomposition which has been truncated at precision
ε‖A‖2, and obtain a solution

p̂ = (A + E)†ν(f + e), (141)

where E ∈ C(2k−1)2×k2 and e ∈ C(2k−1)2 with ‖E‖2 < ε‖A‖2/2 and ‖e‖2 . ε‖f‖2, and

where (A + E)†ν is the pseudoinverse of the ν-truncated singular value decomposition of
A + E, so that

σ̂ν ≥ ε‖A‖2 ≥ σ̂ν+1, (142)

where σ̂ν and σ̂ν+1 are the νth and (ν + 1)th largest singular values of A + E, defining
σ̂k2+1 = 0. By Theorem 2.10, we have that

‖p̂‖2 ≤
1

ε‖A‖2
(2ε‖A‖2‖pb‖2 + ‖e− r‖2) + ‖pb‖2, (143)

and

‖Ap̂− f‖2 ≤ 5ε‖A‖2‖pb‖2 +
3

2
‖e− r‖2 + ‖r‖2. (144)

Combining the above inequalities with (135), (136), (138), (139) and the fact that

max{G1, 1}min{W, 1} ≤ 2G1, (145)

we conclude that

‖p̂‖2 . C(W0)
min{G1, 1}

G0
‖f‖L∞([−1,1]2) , (146)

and

‖Ap̂− f‖2 . εC(W0)
G1

G0
‖f‖L∞([−1,1]2) . (147)

We now let p̂ be the unique bivariate polynomial of degree less than k whose values
on the k × k tensor product Chebyshev grid are given by the entries of p̂, and let r̂
be the unique bivariate polynomial of degree less than 2k − 1 whose values on the
(2k − 1) × (2k − 1) tensor product Chebyshev grid equal to the entries of the vector
r̂ = Ap̂− f. It then follows that

∂p̂

∂x
(x, y) + iPk

[
∂g

∂x

]
(x, y) p̂(x, y) = P2k−1[f ](x, y) + r̂(x, y) (148)

for all (x, y) ∈ [−1, 1]2, since both sides of (148) are bivariate polynomials of degree less
than 2k−1 which agree on the (2k−1)× (2k−1) tensor product Chebyshev grid. Finally,
we combine (126), (127), (146) and (147) in order to conclude that∣∣∣∣∂p̂∂x(x, y) + i

∂g

∂x
(x, y)p̂(x, y)− f(x, y)

∣∣∣∣
≤
∥∥∥∥r̂ + (P2k−1[f ]− f) + ip̂

(
∂g

∂x
− Pk

[
∂g

∂x

])∥∥∥∥
L∞([−1,1]2)

. εC(W0)
G1

G0
‖f‖L∞([−1,1]2)

(149)
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for all (x, y) ∈ [−1, 1]2.
To complete our analysis for the case in which G0 > 0, we let

I =

∫ 1

−1

∫ 1

−1
f(x, y) exp(ig(x, y)) dx dy (150)

be the true value of the oscillatory integral we aim to evaluate using the Levin method,
and consider the estimate Î of I given by

Î =

∫ 1

−1
p̂(1, y) exp(ig(1, y)) dy −

∫ 1

−1
p̂(−1, y) exp(ig(−1, y)) dy, (151)

where we assume that the univariate integrals are computed exactly. We observe that

Î =

∫ 1

−1

∫ 1

−1

∂

∂x
(p̂(x, y) exp(ig(x, y))) dx dy, (152)

and it follows from this and (149) that

|Î − I| ≤
∫ 1

−1

∫ 1

−1

∣∣∣∣∂p̂∂x(x, y) + i
∂g

∂x
(x, y)p̂(x, y)− f(x, y)

∣∣∣∣ dx dy

. εC(W0)
G1

G0
‖f‖L∞([−1,1]2) .

(153)

We note that the ratio G1/G0 is small whenever gx does not vary in magnitude too
much over the domain, which is a reasonable assumption for an adaptive integration
scheme. We conclude that (153) shows that the absolute error in the estimate is bounded
independently of the magnitude of gx, provided that gx does not vary too much over the
domain.

4.2 Case II: G1 ≤ 1/4

We now move on to the case in which G1 ≤ 1/4. We invoke Theorem 3.4 to see that
there exists a bandlimied function pb such that∣∣∣∣∂pb∂x (x, y) + i

∂g

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣
≤ 3ε

(
1 +

G1

1− 2G1

)
‖f‖L∞([−1,1]2)

(154)

for all (x, y) ∈ [−1, 1]2, and both

‖pb‖L∞([−1,1]2) ≤
2

1− 2G1
‖f‖L∞([−1,1]2) (155)

and ∥∥∥∥∂pb∂x
∥∥∥∥
L∞([−1,1]2)

≤ 4

(
1 +

G1

1− 2G1

)
‖f‖L∞([−1,1]2) . (156)

From (104) and the assumption that G1 ≤ 1/4, we see that the maximum bandlimit
of pb is bounded, which implies that the Chebyshev coefficients of pb are bounded by a
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rapidly decaying function which is independent of G1. We can thus choose an integer k
independently of G1 such that (124) through (127) hold. Proceeding as in the previous
subsection, we see that∣∣∣∣ ∂∂xPk[pb](x, y) + iPk

[
∂g

∂x

]
(x, y)Pk[pb](x, y)− P2k−1[f ](x, y)

∣∣∣∣
. ε

(
1 +

G1

1− 2G1

)
‖f‖L∞([−1,1]2) ,

(157)

for all (x, y) ∈ [−1, 1]2. If we define pb, f, r and A as before, then we have that

‖pb‖2 .
1

1− 2G1
‖f‖L∞([−1,1]2) , (158)

and

‖r‖2 . ε
(

1 +
G1

1− 2G1

)
‖f‖L∞([−1,1]2) . (159)

We again solve the linear system

Apb = f (160)

via a truncated singular value decomposition which has been truncated at precision
ε‖A‖2, and, by Theorem 2.10, we see that the obtained solution p̂ satisfies

‖p̂‖2 .
1

1− 2G1
‖f‖L∞([−1,1]2) , (161)

and

‖Ap̂− f‖2 . ε
1

1− 2G1
‖f‖L∞([−1,1]2) . (162)

Defining the polynomials p̂ and r̂ as before, we conclude that∣∣∣∣∂p̂∂x(x, y) + i
∂g

∂x
(x, y)p̂(x, y)− f(x, y)

∣∣∣∣ . ε 1

1− 2G1
‖f‖L∞([−1,1]2) (163)

for all (x, y) ∈ [−1, 1]2. It then follows from this that the absolute error in the estimate Î
of I defined by (151) satisfies

|Î − I| . ε 1

1− 2G1
‖f‖L∞([−1,1]2) . (164)

Since G1 ≤ 1/4, we have that 1/2 ≤ 1− 2G1 ≤ 1, so the constant in (164) is small.

5 Algorithm description

In this section, we describe an adaptive delaminating Levin method for the numerical
evaluation of the integral∫ 1

−1

∫ 1

−1
f(x, y) exp(ig(x, y)) dx dy. (165)
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We recall that the rigorous analysis presented in the preceding section concerns
a spectral collocation method in which the solution to the PDE (118) is represented
by a bivariate polynomial of degree less than k, while the PDE is enforced on the
(2k − 1)× (2k − 1) tensor product Chebyshev grid. This is necessary to establish (148)
since the product Pk[gx]p̂ is of degree less than 2k − 1. The algorithm we describe in this
section only enforces the PDE on the k × k tensor product Chebyshev grid. This change
enables the efficient solution of the PDE using the delaminating Levin method, where

the PDE is solved over the fibers {x(j)
i,k}

k
i=1, independently for each 1 ≤ j ≤ k. We justify

this modification as follows.
When the delaminating Levin method is used adaptively, the integration domain is

typically subdivided until both f and gx can be represented by polynomials of degree much
lower than k. This is often the case for adaptive procedures since adaptive subdivision
typically leads to over-discretization of the inputs. If gx is large and has been over-
discretized, the obtained solution p̂ will also be a polynomial of degree somewhat lower
than k. This is because the discretized PDE does not have a nontrivial null space when
gx is large, and so p̂ will closely agree with the slowly-varying solution pb, which can be
represented by a polynomial of low degree. So in the case when gx is large, the product
gxp̂ can often be represented accurately by a polynomial of degree less than k.

On the other hand, when gx is small enough, the discretized null space is nontrivial,
but its elements can be represented by polynomials of low degree. Accordingly, in this
case, the product gxp̂ can also often be represented by a polynomial of degree less than k.

Only when gx is of moderate size, not too large or too small, do we expect p̂ to be of
degree close to k−1, which means that the product gxp̂ is of degree larger than k−1 when
gx is nontrivial. Consequently, when the delaminating Levin method is employed, only
those subrectangles on which gx falls into a relatively narrow range of moderate values
will require additional subdivision. Thus, we do not expect many additional subdivisions
to occur.

We first describe the adaptive subdivision procedure before detailing the fixed order
delaminating Levin method. The adaptive algorithm takes as input a subdivision tolerance
parameter ε > 0, an integer k specifying the order of the Chebyshev spectral collocation
method used to discretize the PDE on each subrectangle considered, and an external
subroutine which evaluates the functions f and g at a specified collection of points. It
maintains an estimated value val of (165) and a list of subrectangles. Initially, the list of
subrectangles contains only [−1, 1]2 and the value of the estimate is set to zero. While
the list of subrectangles is nonempty, the adaptive algorithm repeats the following steps:

1. Remove a subrectangle [a, b]× [c, d] from the list of subrectangles.

2. Compute an estimate val0 of

val0 =

∫ d

c

∫ b

a
f(x, y) exp(ig(x, y)) dx dy (166)

using the delaminating Levin method.

3. Compute an estimate vali of

vali =

∫
Ri

f(x, y) exp(ig(x, y)) dx dy (167)
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for 1 ≤ i ≤ 4, where

R1 =

[
a,
a+ b

2

]
×
[
c,
c+ d

2

]
, R2 =

[
a+ b

2
, b

]
×
[
c,
c+ d

2

]
,

R3 =

[
a,
a+ b

2

]
×
[
c+ d

2
, d

]
, R4 =

[
a+ b

2
, b

]
×
[
c+ d

2
, d

]
,

(168)

using the delaminating Levin method.

4. If val0 − (val1 + val2 + val3 + val4) < ε, then update the estimate val by letting
val = val + val0. Otherwise, add the subrectangle Ri to the list of subrectangles for
all 1 ≤ i ≤ 4.

When the list of subrectangles becomes empty, the adaptive algorithm terminates and
returns the estimate val for (165).

We now set forth the delaminating Levin method, which estimates the value of∫ d

c

∫ b

a
f(x, y) exp(ig(x, y)) dx dy, (169)

where [a, b]× [c, d] is a bounded rectangle in R2. It takes as input the domain [a, b]× [c, d],
an integer k which controls the order of the Chebyshev spectral collocation method, a
truncation tolerance parameter ε0 > 0, and an external subroutine for evaluating the
functions f and g. The delaminating Levin method proceeds as follows:

1. Use the external subroutine provided by the user to evaluate the functions f and g
at the nodes of the k× k tensor product Chebyshev grid translated from [−1, 1]2 to
[a, b]× [c, d], which we also denote by{

x
(j)
i,k

}k
i,j=1

, (170)

where

x
(j)
i,k = xi+k(j−1),k2 = (ti,k, tj,k) (171)

for 1 ≤ i, j ≤ k, so that {ti,k}ki=1 and {tj,k}kj=1 are the Chebyshev nodes translated
to [a, b] and [c, d], respectively.

2. For each 1 ≤ j ≤ k,

(a) Compute the approximate values

˜
gx

(
x

(j)
1,k

)
, . . . ,

˜
gx

(
x

(j)
k,k

)
(172)

of the partial derivative of g with respect to x using the formula

˜
gx

(
x

(j)
1,k

)
˜

gx

(
x

(j)
2,k

)
...

˜
gx

(
x

(j)
k,k

)


= Dk


g
(
x

(j)
1,k

)
g
(
x

(j)
2,k

)
...

g
(
x

(j)
k,k

)

 . (173)
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(b) Form the matrix Aj = Dk + iGj , where Gj is the k × k diagonal matrix with
entries given by

(Gj)i,i =
˜

gx

(
x

(j)
i,k

)
(174)

for all 1 ≤ i ≤ k.

(c) Construct the singular value decomposition

Aj = Uj


σ

(j)
1

σ
(j)
2

. . .

σ
(j)
k

V∗j (175)

of the matrix Aj .

(d) Find the largest integer 1 ≤ νj ≤ k such that σ
(j)
νj ≥ ε0‖Aj‖2. If no such

integer exists, set the values of

˜
p
(
x

(j)
1,k

)
, . . . ,

˜
p
(
x

(j)
k,k

)
(176)

to zero.

(e) Otherwise, let 

˜
p
(
x

(j)
1,k

)
˜
p
(
x

(j)
2,k

)
...

˜
p
(
x

(j)
k,k

)


=
b− a

2
(Aj)

†
νj


f
(
x

(j)
1,k

)
f
(
x

(j)
2,k

)
...

f
(
x

(j)
k,k

)

 , (177)

where (Aj)
†
νj

is the pseudoinverse of the νj-truncated singular value decompo-

sition of Aj .

3. Let p̂ be the bivariate polynomial of degree less than k whose values on the k × k
tensor product Chebyshev grid are given by

p̂ =
(

˜p
(
x1,k2

) ˜p
(
x2,k2

)
· · · ˜p

(
xk2,k2

))T
. (178)

Return the estimate∫ d

c
p̂(b, y) exp(ig(b, y)) dy −

∫ d

c
p̂(a, y) exp(ig(a, y)) dy (179)

computed using the univariate adaptive Levin method presented in [9], with subdi-
vision tolerance parameter ε1D = βmax{‖p̂‖∞/‖f‖∞, 1}ε and truncation tolerance
parameter ε1D0 = ε0, for some safety factor 0 < β < 1.
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A distinctive feature of the delaminating Levin method described above is the use
of the univariate adaptive Levin method, as opposed to a univariate Levin method
with a fixed order. When resonance points are present, but the PDE (118) admits a
smooth solution, a univariate Levin method of a fixed order can fail, which will cause
the algorithm to subdivide the subrectangle. As shown in [9], the univariate adaptive
Levin method can efficiently evaluate univariate oscillatory integrals with stationary
points, requiring at worst a number of subdivisions that scales logarithmically with the
magnitude of the derivative of the phase function. By using an adaptive method for the
univariate integrals in (179), the subrectangles are only subdivided when the PDE does
not admit a smooth solution. This is far more efficient than adaptively subdividing in
two dimensions in order to accurately compute the univariate integrals in (179) using a
method of fixed order.

We note that the choice to delaminate along the x-direction is arbitrary, and that
the discussion of the Levin PDE and its numerical discretization presented above can be
trivially adapted if delamination is performed along the y-direction instead. In view of
the bound (153), it may at first seem advantageous to select the direction in which the
ratio of the maximum to minimum value of the corresponding partial derivative of g is
small. Note however that evaluating the smaller of the two partial derivatives can be an
ill-conditioned procedure, especially when the size of the other partial derivative is much
larger. As a result, we find that delaminating along the direction with the largest partial
derivative is most efficient, in that it requires the fewest subdivisions.

Remark 5.1. In our implementation of the algorithm, we used a rank-revealing QR
decomposition in lieu of the truncated singular value decomposition to solve the linear
systems arising from the discretization of the PDE. This was found to be about twice as
fast overall and leads to no apparent loss in accuracy.

Remark 5.2. Both the delaminating Levin method and the univariate Levin method
involve solving linear systems of the form

(Dk + G)p = f, (180)

where Dk is the k× k Chebyshev differentiation matrix and G is a k× k diagonal matrix.
When G is invertible, (180) can be solved extremely rapidly via the iteration

p0 = 0 and pn+1 = −G−1Dkpn + G−1f, (181)

as long as there is some matrix norm ‖ · ‖p such that ‖G−1Dk‖p � 1. Since

‖G−1Dk‖∞ ≤ ‖G−1‖∞‖Dk‖∞, (182)

this condition is straightforward to check in practice. Furthermore, the iteration can be
implemented in O(k log k) operations using the discrete Chebyshev transform [24], which
results in substantial speedup when k is large. We note that this is often the case when
Levin methods are used non-adaptively.

6 Numerical experiments

In this section, we present the results of numerical experiments conducted to illustrate the
properties of the adaptive delaminating Levin method. We implemented our algorithm
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in Fortran and compiled our code with version 14.2.0 of the GNU Fortran compiler.
All experiments were performed on a desktop computer equipped with an Intel Core
i9-13900K processor and 64GB of memory. No attempt was made to parallelize our code.

In all of our experiments, the value of the parameter k, which determines the order of
the bivariate Chebyshev spectral collocation method, was taken to be 7. The subdivision
tolerance parameter ε was set to 10−12, and the truncation tolerance parameter ε0 was set
to β0ε/‖f‖∞ with β0 = 1/2. For computing the univariate boundary integrals, we used a
12-point Chebyshev spectral collocation method for the univariate adaptive Levin method,
and set the safety factor β to 10−1. To account for task scheduling and other vagaries of
modern computing environments, all reported times were obtained by averaging the cost
of each calculation over 100 runs.

In order to estimate the error in the results produced by the adaptive delaminating
Levin method, we compared the results of the adaptive delaminating Levin method
with the results produced by adaptive tensor product Gauss-Legendre quadrature for
evaluating integrals of the form∫ 1

−1

∫ 1

−1
f(x, y) dx dy. (183)

We used this method to estimate the error in every case, except when explicit formulas
for the integrals were available. Our implementation of the adaptive tensor product
Gauss-Legendre quadrature is written in Fortran and is quite standard. It maintains a
list of subrectangles, which is initialized with the single rectangle [−1, 1]2, and a running
tally of the value of the integral. As long as the list of subrectangles is nonempty, the
algorithm removes a subrectangle [a, b]× [c, d] from the list, and compares the value of∫ d

c

∫ b

a
f(x, y) dx dy (184)

as computed by a 102-point tensor product Gauss-Legendre quadrature rule to the value
of the sum

4∑
i=1

∫
Ri

f(x, y) dx dy, (185)

where the subrectangles Ri are defined in (168), and where each integral is separately
estimated with a 102-point tensor product Gauss-Legendre quadrature rule. If the
difference is larger than ε, where ε is a tolerance parameter specified by the user, then the
subrectangles Ri are inserted into the list of subrectangles. Otherwise, the value of (184)
is added to the running tally of the integral (183). In all of our experiments, the tolerance
parameter for the adaptive Gaussian quadrature code was taken to be ε = 10−14.

6.1 Integrals involving elementary functions, with explicit formulas

In the experiments described in this subsection, we consider the integrals

I1(λ) =

∫ 1

0

∫ 1

0
cos(x+ y) exp(iλ(x+ y + x2 + y2)) dx dy

=
iπ

8λ

1∑
ν=0

e
i

(
2ν− (1+λ)2

2λ

)
erf

(
− (−1)ν + λ√

2λ(1 + i)
,−(−1)ν + 3λ√

2λ(1 + i)

)2 (186)
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Figure 1: The results of the experiments of Section 6.1. The first row of plots pertains to the
integral I1(λ), and the second pertains to I2(λ). In each row, the plot on the left gives the
absolute error in the calculation of the integral as a function of λ, and the plot on the right shows
the running time in milliseconds as a function of λ.

and

I2(λ) =

∫ 2

0

∫ 2

0

exp(iλ(arctan(x) + arctan(y)))

(1 + x2)(1 + y2)
dx dy

= −
(

1− exp(iλ arctan(2))

λ

)2

,

(187)

where erf(z0, z1) = erf(z1)− erf(z0) is the generalized error function. The integral I1(λ)
can be found in [2, 11], and the integral I2(λ) can be computed via a change of variables.

We sampled ` = 100 equispaced points x1, . . . , x` in the interval [1, 4], and used the
adaptive delaminating Levin method to evaluate the integrals I1(λ) and I2(λ) for each
λ = 10x1 , . . . , 10x` . Figure 1 gives the time taken to evaluate these integrals and the
absolute error in the obtained values.

6.2 Integrals involving the Bessel functions, with explicit formulas

In the experiments described in this subsection, we used the adaptive delaminating Levin
method to evaluate the integrals

I3(λ) =

∫ 2

1

∫ 2

1
xyH

(1)
0 (λxy) dx dy

=
−H(1)

0 (λ) + 2H
(1)
0 (2λ)−H(1)

0 (4λ)

λ2
,

(188)
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Figure 2: The results of the experiments of Section 6.2. The first row of plots pertains to the
integral I3(λ), and the second pertains to I4(λ). In each row, the plot on the left gives the
absolute error in the obtained value of the integral as a function of λ, and the plot on the right
shows the running time in milliseconds as a function of λ.

and

I4(λ) =

∫ 2

1

∫ 2

1
x5y3H

(1)
2 (λxy) dx dy

=
H

(1)
4 (λ)− 20H

(1)
4 (2λ) + 64H

(1)
4 (4λ)

λ2
.

(189)

Both of the above integrals can be found in [25].

The Hankel functions of the first kind H
(1)
ν are defined via the formula

H(1)
ν (x) = Jν(x) + iYν(x), (190)

where Jν and Yν are the Bessel function of the first and second kinds of order ν. For each
ν ∈ {0, 2}, we constructed a phase function ψbes

ν for the normal form

y′′(x) +

(
1 +

1
4 − ν

2

x2

)
y(x) = 0 in (0,∞) (191)

of Bessel’s differential equation using the algorithm of [13], allowing the Bessel functions
of the first and second kinds of order ν to be computed as

Jν(x) =

√
2

πx

sin (ψbes
ν (x))√

d
dxψ

bes
ν (x)

and Yν(x) = −
√

2

πx

cos (ψbes
ν (x))√

d
dxψ

bes
ν (x)

. (192)
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Figure 3: The results of the experiments of Section 6.3. The first row of plots shows the absolute
error in the calculated value of I5(λ, n) as a function of λ for the values of n considered. The second
row of plots shows the running time of the adaptive delaminating Levin method in milliseconds
as a function of λ for n = 2, 3, 4, 5, 6, 7, 8, and 9.

The representation

H(1)
ν (x) =

√
2

πx d
dxψ

bes
ν (x)

exp
(
i
(
ψbes
ν (x)− π

2

))
(193)

of the Hankel functions of the first kind was then used in conjunction with the adaptive
delaminating Levin method to evaluate the above integrals. The construction of the

phase functions took 2.79 ms and 1.29 ms for H
(1)
0 and H

(1)
2 , respectively.

We sampled ` = 100 equispaced points x1, . . . , x` in the interval [1, 4], and used
the adaptive delaminating Levin method to evaluate the above integrals for each λ =
10x1 , . . . , 10x` . The results are shown in Figure 2. The reported times account for both
the evaluation of the phase functions and the execution of the adaptive delaminating
Levin method. Note that the time taken to construct the phase function is not included,
as it represents a one-time cost that is independent of λ.

6.3 Behavior in the presence of a stationary point

In the experiments described in this subsection, we consider the integral

I5(λ, n) =

∫ 1

−1

∫ 1

−1

1

1 + x2 + y2
exp(iλ(xn + yn)) dx dy (194)

in order to illustrate the behavior of the adaptive delaminating Levin method in the
presence of a stationary point.
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We sampled ` = 50 equispaced points x1, . . . , x` in the interval [1, 4], and, for each
λ = 10x1 , . . . , 10x` and n = 2, 3, 4, 5, 6, 7, 8, 9, we evaluated I5(λ, n) using the adaptive
delaminating Levin method. The results are shown in Figure 3. We observe that the
running time of our algorithm increases mildly with n and, for each fixed n, it is largely
independent of λ after peaking in the moderate-frequency regime.

This behavior can be explained by the analysis presented in Section 3. Since the phase
function has a stationary point at the origin, Theorem 3.4 implies that the delaminating
Levin method will yield an accurate result on subrectangles of the form [−δ, δ]2, provided
that the magnitude of ∇g is sufficiently small on the subrectangle. Theorem 3.3 indicates
that the delaminating Levin method will also yield an accurate result on any subrectangle
of [−1, 1]2 which is bounded away from the stationary point, provided that the ratio of
the maximum to minimum value of the partial derivative of g along the delamination
direction is small and that

h(x′, y′) = f(u−1(x′, y′)) det(Du−1)(x′, y′) (195)

can be represented by a well-behaved function with a small bandlimit over the subrectangle.
The latter condition is more-or-less equivalent to the requirement that h can be represented
by a Chebyshev expansion of small fixed order. Thus, we expect the adaptive delaminating
Levin method to subdivide the domain until one or both of Theorems 3.3 and 3.4 apply
to the individual subrectangles.

Since gx(x, y) = λnxn−1 and gy(x, y) = λnyn−1, we see that the condition

δ <

(
C

nλ

) 1
n−1

(196)

must be satisfied in order for |gx(x, y)| and |gy(x, y)| to be bounded by a constant C < 1,
so we expect the adaptive delaminating Levin method to subdivide the domain into at
least

O
(

log

(
1

δ

))
= O

(
log(nλ)

n− 1

)
(197)

subrectangles. The algorithm will further subdivide the subrectangles outside this low
frequency region until, on each of the resulting subrectangles, the ratio of the maximum
to minimum value of the partial derivative of g along the delamination direction is small,
and h is accurately represented by a Chebyshev expansion of small fixed order.

Away from the stationary point, the low frequency region is enclosed by a region
in which the variation of the partial derivatives of g is bounded, so that, on each
subrectangle R, the ratio G1/G0 is small, where G1 = max(x,y)∈R |gv(x, y)| and G0 =
min(x,y)∈R |gv(x, y)|, and where v is the delamination direction. It is not hard to see that
the subrectangles must be smallest in the moderate frequency region bordering the low
frequency region, and that they become larger away from the stationary point. As a
result, the majority of the subrectangles lie on an annulus encircling the low frequency
region. From (196), we see that the low frequency region containing the stationary
point expands with increasing n, so the area of the annulus—and hence the number of
subrectangles contained within—increases with n. It then follows that, when λ is fixed,
the total number of subrectangles in the adaptive discretization of the domain must
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Figure 4: The results of the experiments of Section 6.4. The first row of plots shows the
absolute error in the calculated value of the integral I6(λ) and the running time of the adaptive
delaminating Levin method in milliseconds as a function of λ. The second row of plots compares
both the number of rectangles in the adaptive discretization of the domain and the running time,
between the adaptive delaminating Levin method and an adaptive method without delamination.

increase with n, which explains why the running time of our algorithm increases with n.
Our analysis is consistent with the results shown in Figure 6, which displays the adaptive
discretization of the domain produced by the adaptive delaminating Levin method for
λ = 300 and n = 2, 3, 4, and 5. The subrectangles are colored according to the ratio of
the maximum to minimum value of the partial derivative of g along the delamination
direction, except for subrectangles where the relative maximum values of the partial
derivatives of g are less than 1/4, which are shown in grey.

6.4 Behavior in the presence of stationary and resonance points

In the experiments described in this subsection, we consider the integral

I6(λ) =

∫ 1

−1

∫ 1

−1
(1 + xy) exp(iλ(x2 − xy − y2)) dx dy, (198)

which can be found in [26], in order to understand the behavior of the adaptive delami-
nating Levin method in the presence of both stationary and resonance points. The phase
function of I6(λ) is noteworthy due to the stationary point at the origin, and the lines
y = 2x and y = −x/2 where gx and gy vanish, respectively.

In the first set of experiments, we sampled ` = 100 equispaced points x1, . . . , x` in
the interval [1, 4], and used the adaptive delaminating Levin method to evaluate the
integral I6(λ) for each λ = 10x1 , . . . , 10x` . The first row of Figure 4 presents the results.
We note that resonance points arise whenever the lines y = 2x and y = −x/2 intersect
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the boundaries of a subrectangle. Nevertheless, since the univariate Levin method is
used to compute the boundary integrals in (179), the resonance points do not trigger any
additional subdivisions of subrectangles, as evidenced by Figure 7.

In a second set of experiments, we evaluated the above integral for each λ =
10x1 , . . . , 10x` using an adaptive method which solves a rectangular linear system that
enforces the collocation condition on the (2k − 1)× (2k − 1) tensor product Chebyshev
grid. The results are shown in the second row of Figure 4. This approach follows the
analysis presented in Section 4 more closely, but the resulting rectangular linear system
lacks a block structure and must be solved monolithically. Consequently, it incurs a
significantly higher computational cost, especially as the size of the collocation system
increases with the value of k and the collocation grid size. We observe that, while the
adaptive delaminating Levin method produces slightly more subdivisions in the moderate
frequency regime, its overall running time is substantially lower due to the smaller linear
systems it solves. Figure 7 shows the adaptive discretization of the domain produced
by the adaptive delaminating Levin method and the adaptive method described above,
for λ = 101, 102, 103, 104. The subrectangles are colored according to the ratio of the
maximum to minimum value of the partial derivative of g along the delamination direction.
The subrectangles where the relative maximum values of the partial derivatives of g are
less than 1/4 are colored grey.

6.5 Behavior in the presence of many stationary points

In the experiments described in this subsection, we considered the integral

I7(λ,m) =

∫ 1

0

∫ 1

0
exp

(
iλ
(

sin2
(π

2
mx
)

+ sin2
(π

2
my
)))

dx dy, (199)

which has (m+ 1)2 stationary points in the unit square [0, 1]2.
We sampled ` = 50 equispaced points x1, . . . , x` in the interval [1, 4], and for each

λ = 10x1 , . . . , 10x` and m = 1, 2, 3, 4, 5, 6, 7, 8, we evaluated I7(λ,m) using the adaptive
delaminating Levin method. The results are shown in Figure 5. We observe that the
running time of our algorithm grows linearly with the number of stationary points, and
is essentially independent of λ for all values of m considered.

7 Conclusions

We have shown that the Levin PDE admits a slowly-varying, approximate solution across
all frequency regimes, regardless of whether stationary and resonance points are present,
and that the adaptive delaminating Levin method, when combined with a univariate
adaptive Levin method, rapidly and accurately evaluates bivariate oscillatory integrals
over rectangular domains. We have also presented numerical experiments demonstrating
the effectiveness of the adaptive delaminating Levin method on a large class of bivariate
oscillatory integrals, including many with stationary and resonance points.

The numerical method can be readily extended to evaluate bivariate oscillatory
integrals over general non-polytopal domains, provided that the integrand is defined on a
bounding box containing the domain. With a piecewise smooth parametrization of the
boundary, the univariate adaptive Levin method is well-suited for evaluating the boundary
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Figure 5: The results of the experiments of Section 6.5. The plots in the first row give the
number of rectangles in the adaptively determined discretization of [0, 1]2 used to compute the
integral I7(λ,m) as a function of λ for the values of m considered. The plots in the second row
show the runtime of the adaptive delaminating Levin method as a function of λ for the values of
m considered. The third row of plots gives the absolute error in the calculated value of I7(λ,m)
as a function of λ for m = 1, 2, 3, 4, 5, 6, 7, and 8.

integrals after solving the Levin PDE on the bounding box. When the integrand cannot
be evaluated outside the domain, but a smooth mapping exists from a rectangle to the
domain, the adaptive delaminating Levin method can be applied on the pullback, with
the Jacobian of the mapping appearing in the integrand. As a result, the method can
be applied to any domain meshed with curved quadrilateral elements, provided that the
mapping functions for each element are sufficiently smooth.

Finally, we note that both the delaminating Levin method and the theoretical analysis
presented in this paper are only weakly dependent on the dimensionality of the ambient
space, as tensor products are the primary theoretical tool. As a result, our method can
be easily generalized to evaluate volumetric oscillatory integrals in dimensions three and
higher.
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Figure 6: The plots show the adaptive discretization of the domain produced by the adaptive
delaminating Levin method for computing the integral I5(300, n) with n = 2, 3, 4, and 5. The
subrectangles are colored according to the ratio of the maximum to minimum value of the partial
derivative of g along the delamination direction. The subrectangles are grey if the relative
maximum values of the partial derivatives of g are less than 1/4.
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Figure 7: The plots in the column on the left and right show the adaptive discretization
of the domain produced by the adaptive method that solves the rectangular systems without
delamination, and by the adaptive delaminating Levin method, respectively, for computing the
integral I6(λ) with λ = 101, 102, 103, 104. The subrectangles are colored according to the ratio of
the maximum to minimum value of the partial derivative of g along the delamination direction.
The subrectangles are grey if the relative maximum values of the partial derivatives of g are less
than 1/4.
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