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Abstract

We express a certain complex-valued solution of Legendre’s differential equation as the product
of an oscillatory exponential function and an integral involving only nonoscillatory elementary
functions. By calculating the logarithmic derivative of this solution, we show that Legendre’s
differential equation admits a nonoscillatory phase function. Moreover, we derive from our
expression an asymptotic expansion useful for evaluating Legendre functions of the first and
second kinds of large orders, as well as the derivative of the nonoscillatory phase function.
Our asymptotic expansion is not as efficient as the well-known uniform asymptotic expansion
of Olver; however, unlike Olver’s expansion, it coefficients can be easily obtained. Numerical
experiments demonstrating the properties of our asymptotic expansion are presented.
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1. Introduction

The Legendre functions of degree ν ∈ C — that is, the solutions of the second order linear
ordinary differential equation

y′′(z)− 2z

1− z2
y′(z) +

ν(ν + 1)

1− z2
y(z) = 0 (1)

— appear in numerous contexts in physics and applied mathematics. For instance, they arise
when certain partial differential equations are solved via separation of variables, they are often
used to represent smooth functions defined on bounded intervals, and their roots are the nodes of
Gauss-Legendre quadrature rules. For our purposes, it is convenient to work with the functions
P̄ν and Q̄ν defined for θ ∈

`

0, π2
˘

and ν ≥ 0 via the formulas

P̄ν(θ) =

d

ˆ

ν +
1

2

˙

Pν(cos(θ))
a

sin(θ) (2)
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and

Q̄ν(θ) = − 2

π

d

ˆ

ν +
1

2

˙

Qν(cos(θ))
a

sin(θ), (3)

where Pν andQν are the Legendre functions of the first and second kinds of degree ν, respectively.
The functions (2) and (3) are solutions of the second order linear ordinary differential equation

y′′(θ) +

˜

ˆ

ν +
1

2

˙2

+
1

4
cosec2(θ)

¸

y(θ) = 0 for all 0 < θ <
π

2
. (4)

By a slight abuse of terminology, we will refer to (4) as Legendre’s differential equation.

The coefficient of y in (4) is positive and increases with ν, with the consequence that P̄ν and Q̄ν
are highly oscillatory when ν is of large magnitude. It has long been known that despite this
there exist phase functions for (4) which are nonoscillatory in some sense. In particular, there
is a nonoscillatory function αν whose derivative is positive on

`

0, π2
˘

and such that

P̄ν(θ) =
?
W

cos(αν(θ))
a

α′ν(θ))
(5)

and

Q̄ν(θ) =
?
W

sin(αν(θ))
a

α′ν(θ)
, (6)

where W is the Wronskian

W =
2

π

ˆ

ν +
1

2

˙

(7)

of the pair P̄ν , Q̄ν . By differentiating the expressions

Q̄ν(θ)

P̄ν(θ)
= tan pαν(θ)q and

P̄ν(θ)

Q̄ν(θ)
= cotan pαν(θ)q , (8)

at least one of which is sensible at any point in
`

0, π2
˘

since P̄ν and Q̄ν cannot vanish simulta-
neously there, we obtain

α′ν(θ) =
W

`

P̄ν(θ)
˘2

+
`

Q̄ν(θ)
˘2 . (9)

That (9) is nonoscillatory is well known. Indeed, this can be seen in a straightforward fashion
from Olver’s uniform asymptotic expansions

P̄ν(θ) ∼
?
λθ

¨

˝J0 pλθq

∞∑
j=0

Aj(−θ2)
λ2j

− θ

λ
J1 pλθq

∞∑
j=0

Bj(−θ2)
λ2j

˛

‚ as ν →∞ (10)

and

Q̄ν(θ) ∼
?
λθ

¨

˝Y0 pλθq

∞∑
j=0

Aj(−θ2)
λ2j

− θ

λ
Y1 pλθq

∞∑
j=0

Bj(−θ2)
λ2j

˛

‚ as ν →∞ (11)

for the Legendre functions (a derivation of these expansions can be found in Chapter 5 of [13]).
In (10) and (11), λ = ν+ 1

2 , A0(ξ) = 1, and the remaining coefficients A1, A2, . . . and B0, B1, . . .
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are defined via the formulas

Bk(ξ) = −A′k(ξ) +
1

|ξ|
2

∫ 0

ξ

˜

1

16

ˆ

cosec2
´

a

|τ |
¯

+
1

τ

˙

Ak(τ) −
A′k(τ)

2
a

|τ |

¸

dτ (12)

and

Ak+1(ξ) = −ξB′k(ξ)−
1

16

∫ 0

ξ

ˆ

cosec2
´

a

|τ |
¯

+
1

τ

˙

Bk(τ) dτ. (13)

By plugging (10) and (11) into (9) and taking (7) into account, we obtain

α′ν(θ) =
2

πθ

1

pJ0(λθ)q
2 + pY0(λθ)q

2 +O
ˆ

1

ν

˙

as ν →∞. (14)

The function
2

πt

1

pJµ(t)q
2 + pYµ(t)q

2 (15)

is the derivative of a phase function for the normal form

y′′(z) +

˜

1−
1
4 − µ

2

z2

¸

y(z) = 0 (16)

of Bessel’s differential equation (see, for example, [3]). It is well known that its reciprocal is
completely monotonic (see Section 2.1 for a brief discussion of completely monotonic functions).
This follows, for instance, from Nicholson’s integral formula

pJµ(z)q
2 + pYµ(z)q

2 =
8

π2

∫ ∞
0

K0 p2z sinh(t)q cosh(µt) dt, (17)

a derivation of which can be found in Section of Chapter XIII of [15]. This is typically what is
meant when it is said that Bessel’s equation admits a nonoscillatory phase function. Figure 1
displays plots of the function (15) for two values of µ.
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Figure 1: On the left is a plot of the function (15) on the interval (0, 100) when µ = 10. On the right is a plot
of the same function on the interval (0, 1000) when µ = 100. The reciprocals of these functions are completely
monotonic.

In the case of Legendre’s differential equation, (14) strongly suggests that α′ν itself is completely
monotonic. This appears to be the case, although the authors are not aware of a proof to
this effect in the literature and will not give one here (here, we adopt a different notion of
nonoscillatory which is more relevant in numerical calculations). Figure 2 contains plots of α′ν
for two different values of ν. No doubt, many other second order differential equations defining
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special functions of interest have the property that they admit a phase function whose derivative
is either completely monotonic or the reciprocal of a completely monotone function. However,
this and other similar notions of nonoscillatory are unsatisfactory for at least two reasons.
First, there are many differential equations which admit phase functions which are emphatically
nonoscillatory, but whose derivatives are neither completely monotonic nor the reciprocal of a
completely monotonic function. An example is given by

y′′(t) +
1 + γ2

p1− t2q
2 y(t) = 0 for all − 1 < t < 1, (18)

which admits a phase function α0 such that

α′0(t) =
γ

1− t2
. (19)

Second, from the point of view of numerical analysis, the complete monotonicity of phase func-
tions representing solutions of second order differential equations is of little interest. Of much
more fundamental importance are estimates of the complexity of representing and evaluating
the phase functions.
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Figure 2: On the left is a plot of the function α′ν defined via (9) when ν = 100, and on the right is a plot of α′ν
when ν = 1000. We conjecture that αν(t)′ is completely monotonic as a function of t whenever ν ≥ 0.

In [12] and [4], a notion of “nonoscillatory phase function” for second order differential equations
of the form

y′′(x) + γ2q(x)y(x) = 0 for all a < x < b (20)

which is much more relevant in the context of numerical calculations is considered. In those
articles, it is shown that under mild conditions on q, there exist a positive constant µ, a function
α∞ which is nonoscillatory, and a basis {u∞, v∞} in the space of solutions of the differential
equation (20) such that

u∞(x) =
cos(α∞(x))
a

α′∞(x)
+O pexp(−µγ)q (21)

and

v∞(x) =
sin(α∞(x))
a

α′∞(x)
+O pexp(−µγ)q . (22)

The function α∞ is nonoscillatory in the sense that it can be represented using a series expansion
the number of terms in which depends on the complexity of q but not on the parameter γ. In
other words, α∞ represents the solutions of (20) with O pexp(−µγ)q accuracy using O(1)-term
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expansions. Moreover, a reliable and efficient numerical algorithm for the computation of α∞
which runs in time independent of γ and only requires knowledge of the values of q on the
interval (a, b) is introduced in [2]. Much like standard WKB estimates, the results of [12, 4, 2]
easily apply to large class of differential equations whose coefficients are allowed to vary with γ
— that is, equations of the more general form

y′′(x) + q(x, γ)y(x) = 0 (23)

— assuming that q satisfy certain innocuous conditions independent of γ.

The framework of [12, 4, 2] applies to (1) and it can be used to, among other things, evaluate
Legendre functions of large orders and their zeros in time independent of degree. However, in
the case of Legendre’s differential equation a result along these lines which is not asymptotic
in nature (unlike formulas (21) and (22)) can be obtained. To that end, after dispensing with
certain preliminaries in Section 2 of this article, we factor the solution ϕν of (4) defined via

ϕν(θ) = P̄ν(θ) + iQ̄ν(θ) (24)

as

ϕν(θ) = −i
a

λ sin(θ) exp(i(ν + 1)θ)Fν(θ), (25)

where Fν is defined via an integral formula involving only nonoscillatory elementary functions.
This is done in Section 3. Since α′ν is related to Fν through the formula

α′ν(θ) =
π

2 sin(θ)
|Fν(θ)|

−2 , (26)

which can be readily seen from (7), (9), (24) and (25), this provides a rather strong statement
to the effect that α′ν is nonoscillatory. In Section 4, we use our integral formula to derive an
asymptotic formula for ϕν . Our expansion is not as efficient as Olver’s uniform asymptotic
expansions for Legendre functions, but it has the advantage that its coefficients can be read-
ily computed. Numerical experiments demonstrating the properties of these expansions are
discussed in Section 5. We conclude this article with brief remarks in Section 6.

2. Preliminaries

2.1. Completely monotonic functions

We say that a smooth function f : (0,∞)→ R is completely monotonic if

(−1)nf (n)(x) ≥ 0 (27)

for all nonnegative integers n and all x > 0. Obviously, the function f(t) = t is completely
monotonic. A theorem of Bernstein (a proof of which can be found in Chapter IV of [16],
among many other sources) asserts that f is completely monotonic if and only if there exists a
nonnegative Borel measure µ on p0,∞q such that

f(t) =

∫ ∞
0

exp(−tx) dµ(x) (28)

where the integral converges for all 0 < x < ∞. It follows immediately from this that the
product of two completely monotonic functions is completely monotonic.
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2.2. The Lipschitz-Hankel integrals

The formulas

Pν(cos(θ)) =
1

Γ(ν + 1)

∫ ∞
0

exp(− cos(θ)x)J0(sin(θ)x)xν dx (29)

and

− 2

π
Qν(cos(θ)) =

1

Γ(ν + 1)

∫ ∞
0

exp(− cos(θ)x)Y0(sin(θ)x)xν dx (30)

hold when 0 < θ < π/2 and Re(ν) > −1. Here, of course, Γ denotes the Gamma function.
Derivations of (29) and (30) can be found in Chapter 13 of [15]; they can also be found as
Formulas 6.628(1) and 6.628(2) in [10].

2.3. The Laplace transforms of
`

x2 + bx
˘−1/2

and xν

For complex numbers z and b such that Re(z) > 0 and |arg(b)|< π,∫ ∞
0

exp(−zx)
?
x2 + bx

dx = exp

ˆ

bz

2

˙

K0

ˆ

bz

2

˙

(31)

(as usual, we take the principal branch of the square root function). A careful derivation of (31)
can be found in Section 7.3.4 of [8] and it appears as Formula 3.383(8) in [10]. By combining
(31) with the formula

Kn(z) =
π

2
exp

´

n
π

2
i
¯

iHn(iz), (32)

which can be found in Chapter VII of [8], we see that∫ ∞
0

exp(−zx)
?
x2 + bx

dx =
π

2
i exp

ˆ

bz

2

˙

H0

ˆ

i
bz

2

˙

(33)

whenever Re(z) > 0, −π < arg(bz) ≤ π/2 and |arg(b)|< π.

It is well known that for any complex numbers z and ν such that Re(ν) > −1 and Re(z) > 0,∫ ∞
0

exp(−zx)xν dx =
Γ(1 + ν)

z1+ν
; (34)

this identity appears, for instance, as Formula 3.381(4) in [10].

2.4. Steiltjes’ asymptotic formula for Legendre functions

For all positive real ν and all 0 < θ < π/2 and positive integers M ,

Pν(cos(θ)) =

ˆ

2

π sin(θ)

˙1/2 M−1∑
k=0

Cν,k
cos pβν,kq

sin(θ)k
+Rν,M (θ), (35)

where

βν,k =

ˆ

ν + k +
1

2

˙

θ −
ˆ

k +
1

2

˙

π

2
, (36)

Cν,k =

`

Γ
`

k + 1
2

˘˘2
Γ(ν + 1)

π2kΓ
`

ν + k + 3
2

˘

Γ pk + 1q
, (37)
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and

|Rν,M (θ)| ≤ 2

ˆ

2

π sin(θ)

˙1/2 Cν,M
sin(θ)M

. (38)

This approximation was introduced by Stieltjes; the error bound is a special case of Theo-
rem 8.21.11 in Section 8.21 of [14]. In [1], an efficient method for computing the coefficients Cν,k
is suggested. The coefficient in the first term is given by

Cν,0 =
Γ pν + 1q

Γ
`

ν + 3
2

˘ . (39)

This ratio of gamma functions can be approximated via a series in powers of 1/ν; however, it
can be calculated more efficiently by observing that the related function

τ(x) =
?
x

Γ
`

x+ 1
4

˘

Γ
`

x+ 3
4

˘ (40)

admits an expansion in powers of 1/x2. In particular, the 7-term expansion

τ(x) = 1− 1

64x2
+

21

8192x4
− 671

524288x6
+

180323

134217728x8

− 20898423

8589934592x10
+

7426362705

1099511627776x12
+O

ˆ

1

x14

˙ (41)

gives roughly double precision accuracy for all x > 10 (see the discussion in [1]). The coefficient
Cν,0 is related to τ through the formula

Cν,0 =
1

b

ν + 3
4

τ

ˆ

ν +
3

4

˙

. (42)

The subsequent coefficients are obtained through the recurrence relation

Cν,k+1 =

`

k + 1
2

˘2

2(k + 1)
`

ν + k + 3
2

˘Cν,k. (43)

2.5. Olver’s uniform asymptotic expansion for ϕν

By combining (10) and (11), we obtain the uniform asymptotic expansion

ϕν(θ) ∼
?
λθ

¨

˝H0 pλθq

∞∑
j=0

Aj(−θ2)
λ2j

− θ

λ
H1 pλθq

∞∑
j=0

Bj(−θ2)
λ2j

˛

‚ as ν →∞ (44)

of the function ϕν defined via (24). Here, λ = ν + 1
2 , as before. Only the first three coefficients

in (44) can be expressed using elementary functions. They are:

A0(ξ) = 1, (45)

B0(ξ) =

?
−ξ cotan

`?
−ξ

˘

− 1

8ξ
, (46)

and

A1(ξ) = −
ξ cotan2

`?
−ξ

˘

− 6
?
−ξ cotan

`?
−ξ

˘

+ 8ξ cosec2
`?
−ξ

˘

+ 15

128ξ
. (47)
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Obviously, (44) can be rewritten as

ϕν(θ) ∼
?
λθ

¨

˝H0 pλθq

∞∑
j=0

Ãj(θ)

λ2j
− θ

λ
H1 pλθq

∞∑
j=0

B̃j(θ)

λ2j

˛

‚ as ν →∞ (48)

with

Ã0(ξ) = 1, (49)

B̃0(ξ) =
1− ξ cotan(ξ)

8ξ2
(50)

and

Ã1(ξ) =
15− 6ξ cotan(ξ)− ξ2 cotan2(ξ)− 8ξ2 cosec2(ξ)

128ξ2
. (51)

As is clear from these formulas, when ξ is close to 0, the evaluation of B̃0(ξ) and Ã1(ξ) via (50)
and (51) can lead to significant roundoff errors due to numerical cancellation.

3. An integral representation of a particular solution of Legendre’s equation

In this section, we derive an integral representation of the function ϕν defined via (24) involving
only elementary functions. From (24), (29) and (30), we see that

ϕν(θ) =
a

λ sin(θ)
1

Γ(ν + 1)

∫ ∞
0

exp(− cos(θ)t)H0(sin(θ)t)tν dt, (52)

where λ = ν + 1
2 , whenever 0 < θ < π/2 and Re(ν) > −1. We rearrange (52) as

ϕν(θ) =
a

λ sin(θ)
1

Γ(ν + 1)

∫ ∞
0

exp(− exp(−iθ)t) exp(−i sin(θ)t)H0(sin(θ)t)tν dt (53)

and let β = exp(iθ) sin(θ). Then, we apply Cauchy’s theorem to change the contour of integration
in (53) to that defined via

w(t) = exp(−iθ)t for all 0 < t <∞. (54)

This yields the formula

ϕν(θ) =
a

λ sin(θ)
exp(i(ν + 1)θ)

Γ(ν + 1)

∫ ∞
0

exp(−w) exp(−iβw)H0(βw)wν dw. (55)

Now by letting b = 2i and z = βw in (33), we find that

− 2

π
i

∫ ∞
0

exp(−βwx)
?
x2 − 2ix

dx = exp p−iβwqH0 pβwq . (56)

Formula (33) holds since 0 < arg(z) < π/2 and arg(b) = −π/2. Inserting (56) into (55) yields

ϕν(θ) = −i 2
π

a

λ sin(θ)
exp(i(ν + 1)θ)

Γ(ν + 1)

∫ ∞
0

∫ ∞
0

exp(−(1 + βx)w)
?
x2 − 2ix

wν dx dw. (57)

Since Re(1 + βx) > 0, we may use Formula (34) to evaluate the integral with respect to w in
(57) whenever Re(ν) > −1. In this way we see that

ϕν(θ) = −i 2
π

a

λ sin(θ) exp(i(ν + 1)θ)

∫ ∞
0

1
?
x2 − 2ix p1 + βxq

ν+1 dx (58)
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when Re(ν) > −1 and 0 < θ < π/2. Finally, we invoke Cauchy’s theorem once more to change
the contour of integration in (58) to that defined via

τ(x) = βx for all 0 < x <∞. (59)

This yields

ϕν(θ) = −i 2
π

a

λ sin(θ) exp(i(ν + 1)θ)

∫ ∞
0

1
a

τ2 − 2iβτ p1 + τq
ν+1

dτ (60)

for all ν and θ such that Re(ν) > −1 and 0 < θ < π/2. From (60), we see that the function Fν
appearing in (25) is

Fν(θ) =

∫ ∞
0

1
a

τ2 − 2iβτ p1 + τq
ν+1

dτ. (61)

One of the principal differences between the expression (60) and Olver’s asymptotic expansion
(48) is that because |exp(i(ν + 1)θ)| = 1, (60) immediately gives yields an expression for |ϕν |

2

which obviously involves only nonoscillatory functions. In particular,

|ϕν(θ)|
2 =

4

π

ˆ

ν +
1

2

˙

sin(θ) |Fν(θ)|
2 . (62)

On the other hand, applying the same procedure to a n-term truncation of the expansion (48)
when n > 1 yields a complicated expression consisting of a sum of products of oscillatory
functions which happen to cancel in such a way that the result is nonoscillatory. This observation
is of interest since α′ν(θ) is related to |ϕν(θ)|

2 through the formula

α′ν(θ) =
2

π

ˆ

ν +
1

2

˙

|ϕν(θ)|
−2 , (63)

as is obvious from (7), (9) and (24).

4. An asymptotic formula for Legendre functions of large degrees

In order to derive an asymptotic expansion for ϕν , we replace the function

f(τ) =
1

(1 + τ)ν+1
(64)

in (60) with a sum of the form

g(τ) = a0 exp(−pτ) +
N∑
k=1

ak exp(−(p+ kq)τ) + bk exp(−(p− kq)τ), (65)

where p = ν + 1, q =
?
p, and the coefficients a0, a1, . . . , aN and b1, b2, . . . , bN are chosen so the

power series expansions of f and g around 0 agree to order 2N . That is, we require that the
system of 2N + 1 linear equations

f (k)(0) = g(k)(0) for all k = 0, 1, . . . , 2N (66)
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in the 2N + 1 variables a0, a1, . . . , aN , b1, b2, . . . , bN be satisfied. By so doing, we obtain the
approximation

(67)
ϕν(θ) ≈ − 2

π
i exp(i(ν + 1)θ)

a

λ sin(θ)

(
a0

∫ ∞
0

exp(−pτ)
a

τ2 − 2iβ
dτ

+
N∑
k=1

ak

∫ ∞
0

exp(− (p+ kq) τ)
a

τ2 − 2iβ
dτ +

N∑
k=1

bk

∫ ∞
0

exp(− (p− kq) τ)
a

τ2 − 2iβ
dτ

)
.

Now by applying Formula (33) to (67) we conclude that

ϕν(θ) ≈ exp(i(ν + 1)θ)
a

λ sin(θ)

ˆ

a0 exp(−iβp)H0(βp)+

N∑
k=1

ak exp(−iβ pp+ kqq)H0 pβ pp+ kqqq + bk exp(−iβ pp− kqq)H0 pβ pp− kqqq

˙

,

(68)

where β = sin(θ) exp(iθ), p = ν + 1, and q =
?
p. The use of Formula (33) is justified so long as

Re(p) > N2 and 0 < θ < π/2 (the second condition ensures that |arg(2iβ)|< π). When N = 0,
Formula (68) becomes

ϕν(θ) ≈ exp(i(ν + 1)θ)
a

λ sin(θ) exp(−iβp)H0(βp). (69)

For larger values of N the linear system (66) can be solved easily using a computer algebra
system. Our Mathematica script for doing so appears in an appendix of this paper. A second
appendix lists the coefficients when N = 1, N = 2, N = 3, N = 4, N = 5 and N = 6. That the
functions

exp p−iβ pp± kqqqH0 pβ pp± kqqq (70)

appearing in (68) are nonoscillatory is obvious from the formula

exp p−izqH0 pzq = − 2

π
i

∫ ∞
0

exp(−zx)
?
x2 − 2ix

dx (71)

obtained by letting b = −2i in (33).

One of the most useful features of (68) is that it gives an asymptotic expansion of α′ν which does
not involve oscillatory functions. In particular, it follows immediately by taking absolute values
in (68) and making use of (63) that

α′ν(θ) ≈ 2

π sin(θ)

ˇ

ˇ

ˇ

ˇ

a0 exp(−iβp)H0(βp)+

N∑
k=1

ak exp(−iβ pp+ kqq)H0 pβ pp+ kqqq + bk exp(−iβ pp− kqq)H0 pβ pp− kqqq

ˇ

ˇ

ˇ

ˇ

−2
,

(72)

where β = sin(θ) exp(iθ), p = ν + 1, and q =
?
p.

Errors bounds for the asymptotic expansion (68) can be obtained in a straightforward fashion;
however, the calculations are somewhat tedious. Here, we give the details only in the case N = 0.
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We first observe that

(73)

∣∣∣∣∣ 1
a

τ2 − 2iβτ

1

(1 + τ)p
− 1

a

τ2 − 2iβτ
exp(−pτ)

∣∣∣∣∣
≤ 1

τ

(
1

(1 + τ)p
− exp(−pτ)

)
for all p > 0, 0 < θ < π

2 and τ > 0. It follows that

(74)

∫ ∞
ε

∣∣∣∣∣ 1
a

τ2 − 2iβτ

1

(1 + τ)p
− 1

a

τ2 − 2iβτ
exp(−pτ)

∣∣∣∣∣ dτ
≤
∫ ∞
ε

1

τ

(
1

(1 + τ)p
− exp(−(ν + 1)τ)

)
dτ

for all p > 0, ε > 0 and 0 < θ < π
2 . Now∫ ∞

ε

ˆ

1

τ

1

p1 + τq
p −

1

τ
exp(−pτ)

˙

dτ =
ε−p

p
2F1

ˆ

p, p; p+ 1;−1

ε

˙

− Γ(0, pε), (75)

where 2F1

`

p, p; p+ 1;−1
ε

˘

denotes the hypergeometric series

2F1

ˆ

p, p; p+ 1;−1

ε

˙

=
∞∑
n=0

(−1)n
pΓ(p+ n)q

2 Γ(p+ 1)

pΓ(p)q
2 Γ(p+ n+ 1)

1

εnΓ(n+ 1)
(76)

and Γ(z, a) is the upper incomplete Gamma function. Formula (75) can be verified directly
by differentiation. From transformation formulas for Gauss’ hypergeometric function (see, for
instance, Section 2.9 of [9]), it follows that

ε−p

p
2F1

ˆ

p, p; p+ 1;−1

ε

˙

= −γ − log(ε)− ψ(p) +O pεq . (77)

Here, we use ψ to denote the digamma function

ψ(z) =
d

dz
log pΓ(z)q (78)

and γ is Euler’s constant. Similarly, Γ(0, εp) admits the expansion

Γ(0, εp) = −γ − log(p)− log(ε) +O pεq (79)

(see, for instance, Section 8.5 of [10]). By combining (75) with (77) and (79), we see that∫ ∞
ε

ˆ

1

τ

1

p1 + τq
p −

1

τ
exp(−pτ)

˙

dτ = log(p)− ψ(p) +O pεq . (80)

By taking the limit of both sides of (80) as ε→ 0, we obtain∫ ∞
0

ˆ

1

τ

1

p1 + τq
p −

1

τ
exp(−pτ)

˙

dτ = log(p)− ψ(p). (81)

It is the case that

0 ≤ log(p)− ψ(p) ≤ 1

p
(82)

for all p > 0; a proof of this can be found, for instance, in [5]. It follows from (73), (81) and (82)
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that
ˇ

ˇ

ˇ

ˇ

ˇ

∫ ∞
0

˜

1
a

τ2 − 2iβτ

1

p1 + τq
p −

1
a

τ2 − 2iβτ
exp(−pτ)

¸

dτ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ 1

p
. (83)

We combine (83) with (60) and (33) to conclude that
ˇ

ˇ

ˇ
ϕν(θ)− exp(i(ν + 1)θ)

a

λ sin(θ) exp(−iβp)H0(βp)
ˇ

ˇ

ˇ
≤ 2

π

1

p
(84)

for all ν > 0 and 0 < θ < π
2 . We note that the bound (84) is uniform in θ for all 0 < θ < π

2 .

5. Numerical experiments

In this section, we describe numerical experiments which were conducted to assess the perfor-
mance of the asymptotic expansions of Section 4. Our code was written in Fortran and compiled
with the GNU Fortran Compiler version 5.2.1. The calculations were carried out on a laptop
equipped with an Intel i7-5600U processor running at 2.60GHz.

5.1. The accuracy of the expansion (68) as a function of N and ν

We measured the accuracy of the expansion (68) for various values of N and ν. For each pair of
values of N and ν considered, we evaluated (68) at a collection of 1,000 points on the interval
(0, π/2). The first 500 points were drawn at random from the uniform distribution on the interval

ν N = 2 N = 3 N = 4 N = 5 N = 6

102 1.55× 10−06 5.30× 10−08 1.48× 10−09 6.05× 10−11 1.17× 10−11

102π 5.02× 10−08 5.00× 10−10 2.84× 10−12 6.49× 10−14 5.63× 10−14

103 1.55× 10−09 4.74× 10−12 2.09× 10−13 2.09× 10−13 2.09× 10−13

103π 5.02× 10−11 1.16× 10−12 1.16× 10−12 1.16× 10−12 1.16× 10−12

104 2.46× 10−12 1.90× 10−12 1.90× 10−12 1.90× 10−12 1.90× 10−12

104π 6.70× 10−12 6.70× 10−12 6.70× 10−12 6.70× 10−12 6.70× 10−12

105 2.17× 10−11 2.17× 10−11 2.17× 10−11 2.17× 10−11 2.17× 10−11

105π 1.11× 10−10 1.11× 10−10 1.11× 10−10 1.11× 10−10 1.11× 10−10

106 2.15× 10−10 2.15× 10−10 2.15× 10−10 2.15× 10−10 2.15× 10−10

106π 9.36× 10−10 9.36× 10−10 9.36× 10−10 9.36× 10−10 9.36× 10−10

107 2.00× 10−09 2.00× 10−09 2.00× 10−09 2.00× 10−09 2.00× 10−09

107π 7.87× 10−09 7.87× 10−09 7.87× 10−09 7.87× 10−09 7.87× 10−09

108 2.33× 10−08 2.33× 10−08 2.33× 10−08 2.33× 10−08 2.33× 10−08

108π 1.06× 10−07 1.06× 10−07 1.06× 10−07 1.06× 10−07 1.06× 10−07

109 2.15× 10−07 2.15× 10−07 2.15× 10−07 2.15× 10−07 2.15× 10−07

Table 1: The relative accuracy of the expansion (68) as a function of ν and N . Here, the expansion was evaluated
using double precision arithmetic.
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(0, π/2), while the remaining points were constructed by drawing 500 points from the uniform
distribution on the interval (0, 1) and applying the mapping t→ exp(−36t) to each of them. In
this way, we ensured that the accuracy of (68) was tested near the singular point of Legendre’s
equation which occurs when θ = 0.

The results are reported in Tables 1 and 2. Table 1 gives the maximum relative error in the
value of ϕν which was observed when these calculations were carried out in double precision
arithmetic as a function of ν and N , and Table 2 reports the maximum relative error in the
value of ϕν which was observed when they were performed using quadruple precision arithmetic
as a function of ν and N . Reference values were computed by running the algorithm of [2]
in quadruple precision arithmetic. Like the asymptotic expansion (68), the algorithm of [2]
is capable of achieving high accuracy near the singular point of Legendre’s equation whereas
Stieltjes’ expansion (35) and the well-known three term recurrence relations are inaccurate when
θ is near 0. See [1, 11], though, for the derivation of asymptotic expansions of Legendre functions
which are accurate for θ near 0 and [13, 6, 7] for expansions of Legendre functions which are
accurate for all θ ∈ (0, π/2).

The routine we used to evaluate the Hankel function of order 0 achieves roughly double precision
accuracy, even when executed using quadruple precision arithmetic. Thus the minimum error
achieved when the computations were performed using quadruple precision arithmetic was on
the order of 10−16 (see Table 2).

We also observe that relative accuracy was lost as ν increases when (68) is evaluated using double
precision arithmetic. This loss of precision is unsurprising and consistent with the condition

ν N = 2 N = 3 N = 4 N = 5 N = 6

102 1.55× 10−06 5.30× 10−08 1.48× 10−09 6.05× 10−11 1.17× 10−11

102π 5.02× 10−08 5.00× 10−10 2.84× 10−12 3.28× 10−14 3.15× 10−15

103 1.55× 10−09 4.74× 10−12 7.06× 10−15 3.94× 10−16 4.10× 10−16

103π 5.02× 10−11 4.83× 10−14 3.72× 10−16 3.58× 10−16 3.61× 10−16

104 1.55× 10−12 4.80× 10−16 4.94× 10−16 4.70× 10−16 4.73× 10−16

104π 5.02× 10−14 4.95× 10−16 5.06× 10−16 4.84× 10−16 4.87× 10−16

105 1.53× 10−15 3.41× 10−16 3.50× 10−16 3.28× 10−16 3.31× 10−16

105π 2.31× 10−16 2.39× 10−16 2.49× 10−16 2.24× 10−16 2.27× 10−16

106 5.10× 10−16 4.86× 10−16 4.95× 10−16 4.73× 10−16 4.76× 10−16

106π 4.89× 10−16 4.64× 10−16 4.72× 10−16 4.51× 10−16 4.54× 10−16

107 4.85× 10−16 4.57× 10−16 4.67× 10−16 4.42× 10−16 4.45× 10−16

107π 5.17× 10−16 4.90× 10−16 4.99× 10−16 4.75× 10−16 4.78× 10−16

108 4.43× 10−16 4.14× 10−16 4.24× 10−16 3.98× 10−16 4.02× 10−16

108π 3.91× 10−16 3.64× 10−16 3.73× 10−16 3.50× 10−16 3.53× 10−16

109 4.91× 10−16 4.63× 10−16 4.72× 10−16 4.48× 10−16 4.51× 10−16

Table 2: The relative accuracy of the expansion (68) as a function of ν and N . Here, the expansion was evaluated
using quadruple precision arithmetic.
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number of the evaluation of the highly oscillatory functions Pν and Qν . Indeed, evaluating
Pν(x) and Qν(x) is analogous to calculating the values of cos(νx) and sin(νx). If cos(νx) and
sin(νx) can be evaluated with accuracy on the order of ε, then so can the value of mod(ν, 1).
This clearly limits the precision with which cos(νx) and sin(νx) can be evaluated using finite
precision arithmetic. A similar argument applies to Pν(x) and Qν(x). The only exception is
when the value of mod(ν, 1) is known to high precision (for instance, when ν is an integer).
Then cos(νx) and sin(νx) can be calculated with comparable precision, as can Pν and Qν (via
the well-known three term recurrence relations, for instance).

5.2. The accuracy of the expansion (68) as a function of θ

In order to measure the accuracy of the expansion (68) as a function of θ, we sampled a collection
of 1,000 points on the interval (0, π/2) using the same method as in Section 5.1. Then, we
evaluated (68) with N = 2 and ν = 1, 000 at each of the chosen points. We repeated this
procedure with N taken to be 3 and ν = 1, 000, and with N taken to be 4 and ν = 1, 000. The
base-10 logarithms of the resulting relative errors are plotted in Figure 3. Once again, reference
values were computed by running the algorithm of [2] in quadruple precision arithmetic. We
observe that the error in Formula (68) is remarkably uniform as a function of θ — it is nearly
constant until θ nears the singular point at 0, at which point it decreases slightly.

0.0 0.5 1.0 1.5

-15

-14

-13

-12

-11

-10

-9

Figure 3: The base-10 logarithm of the relative accuracy of the expansion (68) as a function of θ when
ν = 1,000 and N = 2 (top line), N = 3 (middle line), N = 4 (bottom line).

5.3. The speed of the expansion (68) as function of N

Next, we measured the time required to evaluate ϕν using the expansion (68). In particular,
for several pairs of values of N and ν, we evaluated (68) at a collection of 1,000 points drawn
from the uniform distribution on the interval (0, π/2). We also applied the same procedure to
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Stieltjes’ expansion (35) with M = 16. Table 3 gives the average time required to evaluate (68)
and (35).

We note that while the time required to evaluate (68) is slightly larger than the time required to
evaluate Stieltjes’ Formula (35), the expansion of Section 4 gives both the value of Pν and that
of Qν while Stieltjes’ formula gives only the value of Pν . Moreover, unlike Stieltjes’ formula, our
asymptotic approximation is accurate for θ near 0.

ν N = 3 N = 4 N = 5 N = 6 Stieltjes’ formula

102 1.49× 10−06 1.83× 10−06 2.41× 10−06 2.67× 10−06 1.69× 10−06

102π 1.42× 10−06 1.77× 10−06 2.40× 10−06 2.44× 10−06 1.60× 10−06

103 1.35× 10−06 1.73× 10−06 2.34× 10−06 2.38× 10−06 1.59× 10−06

103π 1.41× 10−06 1.65× 10−06 2.36× 10−06 2.42× 10−06 1.62× 10−06

104 1.32× 10−06 1.77× 10−06 2.36× 10−06 2.44× 10−06 1.61× 10−06

104π 1.31× 10−06 1.65× 10−06 2.36× 10−06 2.37× 10−06 1.57× 10−06

105 1.33× 10−06 1.73× 10−06 2.36× 10−06 2.35× 10−06 1.56× 10−06

105π 1.31× 10−06 1.72× 10−06 2.39× 10−06 2.42× 10−06 1.58× 10−06

106 1.31× 10−06 1.68× 10−06 2.39× 10−06 2.35× 10−06 1.56× 10−06

106π 1.33× 10−06 1.66× 10−06 2.37× 10−06 2.38× 10−06 1.55× 10−06

107 1.39× 10−06 1.67× 10−06 2.35× 10−06 2.41× 10−06 1.58× 10−06

107π 1.32× 10−06 1.65× 10−06 2.32× 10−06 2.40× 10−06 1.58× 10−06

108 1.31× 10−06 1.70× 10−06 2.33× 10−06 2.48× 10−06 1.60× 10−06

108π 1.35× 10−06 1.68× 10−06 2.36× 10−06 2.41× 10−06 1.83× 10−06

109 1.37× 10−06 1.72× 10−06 2.33× 10−06 2.39× 10−06 1.69× 10−06

Table 3: A comparison of the average time (in seconds) required to evaluate (68) for various values of N and
ν with the time requires to evaluate the first 16 terms of Stieltjes’ expansion (35). Note that Stieltjes’ formula
yields only the value of Pν while (68) yields both Pν and Qν . Moreover, unlike (68), Stieltjes’ is not accurate for
arguments close to the singular points of Legendre’s differential equation.

5.4. The accuracy of the expansion (72)

In this experiment, we measured the accuracy achieved by the expansion (72). More specifically,
for each of several pairs of values of N and ν, we evaluated (72) at a collection of 1,000 points
in the interval (0, π/2) which were chosen as in Section 5.1. These experiments were performed
using double precision arithmetic. The obtained values of α′ν were compared with reference
values computed by running the algorithm of [2] using quadruple precision arithmetic.

The results are reported in Table 4. For each pair of values of ν and N , it lists the maximum rel-
ative error in α′ν which was observed. We note that, unlike the experiments of Section 5.1, near
double precision accuracy was obtained by performing the calculations in double precision arith-
metic. This is not surprising since the condition number of the evaluation of the nonoscillatory
function α′ν is small and not dependent on ν.
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ν N = 2 N = 3 N = 4 N = 5 N = 6

102 4.87× 10−07 2.07× 10−08 7.36× 10−09 7.04× 10−09 7.03× 10−09

102π 1.53× 10−08 1.64× 10−10 1.60× 10−10 1.60× 10−10 1.60× 10−10

103 4.78× 10−10 1.22× 10−12 2.42× 10−15 1.27× 10−15 1.41× 10−15

103π 1.54× 10−11 1.29× 10−14 1.07× 10−15 1.27× 10−15 1.36× 10−15

104 4.78× 10−13 1.36× 10−15 1.36× 10−15 1.48× 10−15 1.36× 10−15

104π 1.56× 10−14 1.08× 10−15 1.26× 10−15 1.08× 10−15 1.34× 10−15

105 1.10× 10−15 9.65× 10−16 1.38× 10−15 1.14× 10−15 1.20× 10−15

105π 9.89× 10−16 8.95× 10−16 1.04× 10−15 1.00× 10−15 1.35× 10−15

106 1.30× 10−15 1.30× 10−15 1.19× 10−15 1.30× 10−15 1.33× 10−15

106π 1.39× 10−15 1.39× 10−15 1.25× 10−15 1.25× 10−15 1.37× 10−15

107 1.22× 10−15 1.22× 10−15 1.22× 10−15 1.70× 10−15 1.62× 10−15

107π 1.44× 10−15 1.44× 10−15 1.44× 10−15 1.55× 10−15 1.44× 10−15

108 1.56× 10−15 1.42× 10−15 1.45× 10−15 1.56× 10−15 1.42× 10−15

108π 9.47× 10−16 9.75× 10−16 1.04× 10−15 1.10× 10−15 1.33× 10−15

109 1.12× 10−15 1.34× 10−15 1.34× 10−15 1.41× 10−15 1.38× 10−15

Table 4: The relative accuracy with which the derivative of the nonoscillatory phase function for Legendre’s
differential equation is evaluated via the expansions of Section 4. These calculations were performed using double
precision arithmetic.

5.5. Comparison with Olver’s asymptotic expansion

In this experiment, we repeated the procedure of preceding section, but this time we used
the combination of Olver’s asymptotic expansion (48) and Formula (63) to evaluate α′ν . We
calculated the coefficients in Olver’s expansion through (49), (50) and (51). In some cases,
accuracy was lost due to the numerical cancellation errors which occur when these formulas
are evaluated in a straightforward fashion. Table 5 shows the results. There, the accuracies
obtained using the first 1, 2 and 3 terms of Olver’s expansions are given as a function of ν.

We observe that Olver’s expansions are generally more efficient than those of Section 4. However,
Tables 4 and 5 also reveal the two principal advantages of the asymptotic expansions of Section 4.
First, since their coefficients are easy to calculate, high order expansions can be used with the
consequence that higher accuracy approximations can sometimes be obtained via (72) than
using Olver’s expansions. Second, and more critically, the expansions of Section 4 do not suffer
from the difficulties with numerical cancellation which limit the precision obtained by Olver’s
asymptotic expansion when its coefficients are evaluated in a straightforward fashion.

6. Conclusions

Nonoscillatory phase functions are powerful analytic and numerical tools. Among other things,
explicit formulas for them can be used to efficiently and accurately evaluate special functions,
their zeros and to apply special function transforms.
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ν One term Two terms Three terms

102 7.34× 10−06 2.95× 10−06 2.07× 10−05

102π 7.49× 10−07 3.02× 10−07 2.10× 10−06

103 7.41× 10−08 2.98× 10−08 2.07× 10−07

103π 7.52× 10−09 3.03× 10−09 2.08× 10−08

104 7.42× 10−10 2.99× 10−10 2.04× 10−09

104π 7.52× 10−11 3.03× 10−11 2.05× 10−10

105 7.42× 10−12 2.99× 10−12 2.00× 10−11

105π 7.52× 10−13 3.03× 10−13 1.99× 10−12

106 7.41× 10−14 3.34× 10−14 1.93× 10−13

106π 7.85× 10−15 3.91× 10−15 1.90× 10−14

107 1.11× 10−15 8.24× 10−16 2.05× 10−15

107π 8.30× 10−16 8.30× 10−16 8.30× 10−16

108 8.51× 10−16 8.51× 10−16 8.51× 10−16

108π 9.48× 10−16 9.48× 10−16 9.48× 10−16

109 7.15× 10−16 7.15× 10−16 7.15× 10−16

Table 5: The relative accuracy with which the derivative of the nonoscillatory phase function for Legendre’s dif-
ferential equation is evaluated via Olver’s uniform asymptotic expansion (48). These calculations were performed
using double precision arithmetic.

Here, we factored a particular solution of Legendre’s differential equation as the product of
an oscillatory exponential function and an integral involving only nonoscillatory elementary
functions. By so doing, we showed the existence of a nonoscillatory phase function and derived
an asymptotic formula a type which is useful for evaluating the derivative of the nonoscillatory
phase function.

We will report on the use of the results of the paper to apply the Legendre transform rapidly and
on generalizations of this work to the case of associated Legendre functions, prolate spheroidal
wave functions and other related special functions at a later date.
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[8] Erdélyi, A., et al. Higher Transcendental Functions, vol. II. McGraw-Hill, 1953.
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Appendix A. Mathematica source code

Below is a Mathematica script for generating the coefficients a0, a1, b1, . . . , an, bn in the expansion
(68).

(***************************************************************************************)

ClearAll["Global‘*"]

(* Construct the (2n+1)-term expansion *)

n=3;

f[t_]=1/(1+t)^(q^2);

g[t_]=a0*Exp[-q^2*t]+Sum[a[k]*Exp[-(q^2+k*q)*t]+b[k]*Exp[-(q^2-k*q)*t],{k,1,n}];

eqs={};

vars={};

h0[t_]=f[t]-g[t];

For[k=0,k<=2*n,k++,eqs=Simplify[Join[eqs,{h0[0]==0}]];h0[t_]=h0’[t]];

For[k=1,k<=n,k++,vars=Join[vars,{a[k],b[k]}]];

vars=Join[vars,{a0}];

sol=Simplify[Solve[eqs,vars][[1]],p>0]

(* Write the TEX version of the expansion to the file tmp2 *)

OpenWrite["tmp2"];

WriteString["tmp2","\\begin{equation}\n\\begin{aligned}\n"];

WriteString["tmp2","a_0 &="ToString[TeXForm[a0/.sol]],", \\\\ \n"];

For[k=1,k<=n,k++,

WriteString["tmp2","a_",k," &="ToString[TeXForm[a[k]/.sol]],", \\\\ \n"]];

For[k=1,k<=n-1,k++,

WriteString["tmp2","b_",k," &="ToString[TeXForm[b[k]/.sol]],", \\\\ \n"]];

WriteString["tmp2","b_",k," &="ToString[TeXForm[b[k]/.sol]],".\n"];

WriteString["tmp2","\\end{aligned}\n\\end{equation}"];

Close["tmp2"];

(* Write the FORTRAN version of the expansion to tmp *)

OpenWrite["tmp"];

WriteString["tmp","a0 = ",ToString[FortranForm[N[Expand[a0/.sol],36]]],"\n"];

For[k=1,k<=n,k++,

WriteString["tmp","a(",k,") ="ToString[FortranForm[N[Expand[a[k]/.sol],36]]],"\n"]];

For[k=1,k<=n-1,k++,

WriteString["tmp","b(",k,") ="ToString[FortranForm[N[Expand[b[k]/.sol],36]]],"\n"]];

WriteString["tmp","b(",k,") ="ToString[FortranForm[N[Expand[b[k]/.sol],36]]],"\n"];

Close["tmp"];

(***************************************************************************************)
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Appendix B. The coefficients in the expansion (68)

When N = 1, the coefficients are
a0 = 0,

a1 =
1

2
,

b1 =
1

2
.

When N = 2, the coefficients are

a0 =
3

2q2
+

1

2
,

a1 =
q2 − 2q − 6

6q2
,

a2 =
q2 + 2q + 3

12q2
,

b1 =
q2 + 2q − 6

6q2
,

b2 =
q2 − 2q + 3

12q2
.

When N = 3, they are

a0 = −
−7q4 + 23q2 + 60

18q4
,

a1 =
6q4 − 3q3 + 26q2 + 12q + 60

24q4
,

a2 = −
−3q4 + 35q2 + 24q + 60

60q4
,

a3 =
2q4 + 15q3 + 50q2 + 36q + 60

360q4
,

b1 =
6q4 + 3q3 + 26q2 − 12q + 60

24q4
,

b2 =
3q4 − 35q2 + 24q − 60

60q4
,

b3 =
2q4 − 15q3 + 50q2 − 36q + 60

360q4
.

When N = 4:

a0 =
115q6 + 59q4 + 1854q2 + 2520

288q6
,

a1 = −
−87q6 + 59q5 + 37q4 + 114q3 + 1914q2 + 360q + 2520

360q6
,

a2 =
39q6 + 28q5 + 7q4 + 300q3 + 2094q2 + 720q + 2520

720q6
,

a3 = −
−11q6 − 63q5 + 77q4 + 630q3 + 2394q2 + 1080q + 2520

2520q6
,

a4 =
3q6 + 56q5 + 427q4 + 1176q3 + 2814q2 + 1440q + 2520

20160q6
,

b1 =
87q6 + 59q5 − 37q4 + 114q3 − 1914q2 + 360q − 2520

360q6
,

b2 =
39q6 − 28q5 + 7q4 − 300q3 + 2094q2 − 720q + 2520

720q6
,

b3 = −
−11q6 + 63q5 + 77q4 − 630q3 + 2394q2 − 1080q + 2520

2520q6
,

b4 =
3q6 − 56q5 + 427q4 − 1176q3 + 2814q2 − 1440q + 2520

20160q6
.
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When N = 5:

a0 = −
−359q8 + 20q6 + 1530q4 + 21636q2 + 22680

900q8
,

a1 =
2091q8 − 1396q7 + 747q6 − 104q5 + 12654q4 + 12672q3 + 175608q2 + 20160q + 181440

8640q8
,

a2 = −
−204q8 − 137q7 + 372q6 − 259q5 + 3654q4 + 6876q3 + 45792q2 + 10080q + 45360

3780q8
,

a3 =
179q8 + 1068q7 + 403q6 − 2184q5 + 20286q4 + 46656q3 + 195768q2 + 60480q + 181440

40320q8
,

a4 = −
−3q8 − 53q7 − 276q6 − 7q5 + 4158q4 + 9036q3 + 26676q2 + 10080q + 22680

22680q8
,

a5 =
3q8 + 100q7 + 1635q6 + 13160q5 + 58590q4 + 106560q3 + 236088q2 + 100800q + 181440

1814400q8
,

b1 =
2091q8 + 1396q7 + 747q6 + 104q5 + 12654q4 − 12672q3 + 175608q2 − 20160q + 181440

8640q8
,

b2 = −
−204q8 + 137q7 + 372q6 + 259q5 + 3654q4 − 6876q3 + 45792q2 − 10080q + 45360

3780q8
,

b3 =
179q8 − 1068q7 + 403q6 + 2184q5 + 20286q4 − 46656q3 + 195768q2 − 60480q + 181440

40320q8
,

b4 = −
−3q8 + 53q7 − 276q6 + 7q5 + 4158q4 − 9036q3 + 26676q2 − 10080q + 22680

22680q8
,

b5 =
3q8 − 100q7 + 1635q6 − 13160q5 + 58590q4 − 106560q3 + 236088q2 − 100800q + 181440

1814400q8
.

When N = 6:

a0 =
51693q10 − 856q8 + 18721q6 + 1433070q4 + 10994040q2 + 9979200

129600q10
,

a1 = −
−73191q10 + 48926q9 − 22097q8 + 10306q7 + 35192q6 − 1980q5 + 2951028q4 + 1504080q3 + 22169520q2 + 1814400q + 19958400

302400q10
,

a2 =
13053q10 + 8834q9 − 21784q8 + 23242q7 + 5185q6 + 1476q5 + 1617966q4 + 1564560q3 + 11356920q2 + 1814400q + 9979200

241920q10
,

a3 = −
−4839q10 − 28638q9 − 6833q8 + 78966q7 − 69640q6 + 64908q5 + 3811572q4 + 4996080q3 + 23621040q2 + 5443200q + 19958400

1088640q10
,

a4 =
237q10 + 4372q9 + 24104q8 + 13892q7 − 93599q6 + 160200q5 + 2414574q4 + 3612960q3 + 12445560q2 + 3628800q + 9979200

1814400q10
,

a5 = −
−39q10 − 770q9 − 13937q8 − 111430q7 − 166408q6 + 1035540q5 + 6500340q4 + 9939600q3 + 26524080q2 + 9072000q + 19958400

19958400q10
,

a6 =
−3q10 + 198q9 + 2024q8 + 19998q7 + 239041q6 + 1324620q5 + 4548654q4 + 6629040q3 + 14259960q2 + 5443200q + 9979200

119750400q10
,

b1 =
73191q10 + 48926q9 + 22097q8 + 10306q7 − 35192q6 − 1980q5 − 2951028q4 + 1504080q3 − 22169520q2 + 1814400q − 19958400

302400q10
,

b2 =
13053q10 − 8834q9 − 21784q8 − 23242q7 + 5185q6 − 1476q5 + 1617966q4 − 1564560q3 + 11356920q2 − 1814400q + 9979200

241920q10
,

b3 =
4839q10 − 28638q9 + 6833q8 + 78966q7 + 69640q6 + 64908q5 − 3811572q4 + 4996080q3 − 23621040q2 + 5443200q − 19958400

1088640q10
,

b4 =
237q10 − 4372q9 + 24104q8 − 13892q7 − 93599q6 − 160200q5 + 2414574q4 − 3612960q3 + 12445560q2 − 3628800q + 9979200

1814400q10
,

b5 =
39q10 − 770q9 + 13937q8 − 111430q7 + 166408q6 + 1035540q5 − 6500340q4 + 9939600q3 − 26524080q2 + 9072000q − 19958400

19958400q10
,

b6 =
−3q10 − 198q9 + 2024q8 − 19998q7 + 239041q6 − 1324620q5 + 4548654q4 − 6629040q3 + 14259960q2 − 5443200q + 9979200

119750400q10
.
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