
Fast algorithms for Jacobi expansions via nonoscillatory phase functions

James Bremera, Haizhao Yangb

aDepartment of Mathematics, University of California, Davis

bDepartment of Mathematics, National University of Singapore

Abstract

We describe a suite of fast algorithms for evaluating Jacobi polynomials, applying the correspond-
ing discrete Sturm-Liouville eigentransforms and calculating Gauss-Jacobi quadrature rules. Our
approach is based on the well-known fact that Jacobi’s differential equation admits a nonoscillatory
phase function which can be loosely approximated via an affine function over much of its domain.
Our algorithms perform better than currently available methods in most respects. We illustrate
this with several numerical experiments, the source code for which is publicly available.

Keywords: fast algorithms, fast special function transforms, butterfly algorithms, special
functions, nonoscillatory phase functions, asymptotic methods

1. Introduction

Expansions of functions in terms of orthogonal polynomials are widely used in applied mathematics,
physics, and numerical analysis. And while highly effective methods for forming and manipulating
expansions in terms of Chebyshev and Legendre polynomials are available, there is substantial room
for improvement in the analogous algorithms for more general classes of Jacobi polynomials.

Here, we describe a collection of algorithms for forming and manipulating expansions in Jacobi
polynomials. This includes methods for evaluating Jacobi polynomials, applying the forward and
inverse Jacobi transforms, and for calculating Gauss-Jacobi quadrature rules. Our algorithms are
based on the well-known observation that Jacobi’s differential equation admits a nonoscillatory
phase function. We combine this observation with a fast technique for computing nonoscillatory
phase functions and standard methods for exploiting the rank deficiency of matrices which represent
smooth functions to obtain our algorithms.

More specifically, given a pair of parameters a and b, both of which are the interval
`

−1
2 ,

1
2

˘

, and
a maximum degree of interest Nmax > 27, we first numerically construct nonoscillatory phase and

amplitude functions ψ(a,b)(t, ν) and M (a,b)(t, ν) which represent the Jacobi polynomials P
(a,b)
ν (x)

of degrees between 27 and Nmax. We evaluate the polynomials of lower degrees using the well-
known three-term recurrence relations; the lower bound of 27 was chosen in light of numerical
experiments indicating it is close to optimal. We restrict our attention to values of a and b in

Email addresses: bremer@math.ucdavis.edu (James Bremer), matyh@nus.edu.sg (Haizhao Yang)

the interval (−1/2, 1/2) because, in this regime, the solutions of Jacobi’s differential equation are
purely oscillatory and its phase function is particularly simple. When a and b are larger, Jacobi’s
equation has turning points and the corresponding phase function becomes more complicated. The
algorithms of this paper continue to work for values of a and b modestly larger than 1/2, but
they become less accurate as the parameters increase, and eventually fail. In a future work, we
will discuss variants of the methods described here which apply in the case of larger values of the
parameters (see the discussion in Section 7).

The relationship between P
(a,b)
ν and the nonoscillatory phase and amplitude functions is

P̃ (a,b)
ν (t) = M (a,b)(t, ν) cos

´

ψ(a,b)(t, ν)
¯

, (1)

where P̃
(a,b)
ν is defined via the formula

P̃ (a,b)
ν (t) = Ca,bν P (a,b)

ν pcos(t)q sin

ˆ

t

2

˙a+ 1
2

cos

ˆ

t

2

˙b+ 1
2

(2)

with

Ca,bν =

d

p2ν + a+ b+ 1q
Γ(1 + ν)Γ(1 + ν + a+ b)

Γ(1 + ν + a)Γ(1 + ν + b)
. (3)

The constant (3) ensures that the L2 p0, πq norm of P̃
(a,b)
ν is 1 when ν is an integer; indeed, the set{

P̃
(a,b)
j

}∞
j=0

is an orthonormal basis for L2 p0, πq. The change of variables x = cos(t) is introduced

because it makes the singularities in the phase and amplitude functions for Jacobi’s differential
equation more tractable. We represent the functions ψ(a,b) and M (a,b) via their values at the
nodes of a tensor product of piecewise Chebyshev grids. Owing to the smoothness of the phase
and amplitude functions, these representations are quite efficient and can be constructed rapidly.
Indeed, the asymptotic running time of our procedure for constructing the nonoscillatory phase
and amplitude functions is O

`

log2 pNmaxq
˘

.

Once the nonoscillatory phase and amplitude functions have been constructed, the function P
(a,b)
ν

can be evaluated at any point x ∈ (−1, 1) and for any 27 ≤ ν ≤ Nmax in time which is independent
of Nmax, ν and x via (1). One downside of our approach is that the error which occurs when
Formula (1) is used to evaluate a Jacobi polynomial numerically increases with the magnitude of
the phase function ψ(a,b) owing to the well-known difficulties in evaluating trigonometric functions
of large arguments. This is not surprising, and the resulting errors are in line with the condition

number of evaluation of the function P
(a,b)
ν . Moreover, this phenomenon is hardly limited to the

approach of this paper and can be observed, for instance, when asymptotic expansions are used to
evaluate Jacobi polynomials (see, for instance, [4] for an extensive discussion of this issue in the
case of asymptotic expansions for Legendre polynomials).

Aside from applying the Jacobi transform and evaluating Jacobi polynomials, nonoscillatory phase
functions are also highly useful for calculating the roots of special functions. From (1), we see that

the roots of P
(a,b)
ν occur when

ψ(a,b)(t, ν) =
π

2
+ nπ (4)

with n an integer. Here, we describe a method for rapidly computing Gauss-Jacobi quadrature
rules which exploits this fact. The n-point Gauss-Jacobi quadrature rule corresponding to the

2

parameters a and b is, of course, the unique quadrature rule of the form
∫ 1

−1
f(x)(1− x)a(1 + x)b dx ≈

n∑

j=1

f(xj)wj , (5)

which is exact when f is a polynomial of degree less than or equal to 2n − 1 (see, for instance,
Chapter 15 of [34] for a detailed discussion of Gaussian quadrature rules). Our algorithm can also
produce what we call the modified Gauss-Jacobi quadrature rule. That is, the n-point quadrature
rule of the form

∫ π

0
f(cos(t)) cos2a+1

ˆ

t

2

˙

sin2b+1

ˆ

t

2

˙

dt ≈
n∑

j=1

f(cos(tj)) cos2a+1

ˆ

t

2

˙

sin2b+1

ˆ

t

2

˙

wj (6)

which is exact whenever f is a polynomial of degree less than or equal to 2n − 1. The modified

Gauss-Jacobi quadrature rule integrates products of the functions P̃
(a,b)
ν of degrees between 0 and

n − 1. A variant of this algorithm which allows for the calculation of zeros of much more general
classes of special functions was previously published in [5]; however, the version described here is
specialized to the case of Gauss-Jacobi quadrature rules and is considerably more efficient.

We also describe a method for applying the Jacobi transform using the nonoscillatory phase and
amplitude functions. For our purposes, the nth order discrete forward Jacobi transform consists of
calculating the vector of values

¨

˚

˚

˚

˝

f(t1)
?
w1

f(t2)
?
w2

...
f(tn)

?
wn

˛

‹

‹

‹

‚

(7)

given the vector
¨

˚

˚

˚

˝

α1

α2
...
αn

˛

‹

‹

‹

‚

(8)

of the coefficients in the expansion

f(t) =

n−1∑

j=0

αjP̃
(a,b)
j (t); (9)

here, t1, . . . , tn, w1 . . . , wn are the nodes and weights of the n-point modified Gauss-Jacobi quadra-
ture rule corresponding to the parameters a and b. The properties of this quadrature rule and

the weighting by square roots in (7) ensure that the n × n matrix J (a,b)
n which takes (8) to (7) is

orthogonal. It follows from (1) that the (j, k) entry of J (a,b)
n is

M (a,b)(tj , k − 1) cos
´

ψ(a,b)(tj , k − 1)
¯

?
wj . (10)

Our method for applying J (a,b)
n , which is inspired by the algorithm of [6] for applying Fourier

integral transforms and a special case of that in [37] for general oscillatory integral transforms,

3

exploits the fact that the matrix whose (j, k) entry is

M (a,b)(tj , k − 1) exp
´

i
´

ψ(a,b)(tj , k − 1)− (k − 1)tj

¯¯

?
wj (11)

is low rank. Since J (a,b)
n is the real part of the Hadamard product of the matrix defined by (11)

and the n× n nonuniform FFT matrix whose (j, k) entry is

exp pi(k − 1)tjq , (12)

it can be applied through a small number of discrete nonuniform Fourier transforms. This can be
done quickly via any number of fast algorithms for the nonuniform Fourier transform (examples
of such algorithms include [18] and [31]). By “Hadamard product,” we mean the operation of
entrywise multiplication of two matrices. We will denote the Hadamard product of the matrices A
and B via A⊗B in this article.

We do not prove a rigorous bound on the rank of the matrix (11) here; instead, we offer the following
heuristic argument. For points t bounded away from the endpoints of the interval (0, π), we have
the following asymptotic approximation of the nonoscillatory phase function:

ψ(a,b)(t, ν) =

ˆ

ν +
a+ b+ 1

2

˙

t+ c+O
ˆ

1

ν2

˙

as ν →∞ (13)

with c a constant in the interval (0, 2π). We prove this in Section 2.5, below. From (13), we expect
that the function

ψ(a,b)(t, ν)− tν (14)

is of relatively small magnitude, and hence that the rank of the matrix (11) is low. This is borne
out by our numerical experiments (see Figure 5 in particular).

We choose to approximate ψ(a,b)(t, ν) via the linear function νt rather than with a more complicated
function (e.g., a nonoscillatory combination of Bessel functions) because this approximation leads
to a method for applying the Jacobi transform through repeated applications of the fast Fourier
transform, if the non-uniform Fourier transform in the Hadamard product just introduced is carried
out via the algorithm in [31]. It might be more efficient to apply the non-uniform FFT algorithm in
[18], depending on different computation platforms and compilers; but we do not aim at optimizing
our algorithm in this direction. Hence, our algorithm for applying the Jacobi transform requires r
applications of the fast Fourier transform, where r is the numerical rank of a matrix which is strongly
related to (11). This makes its asymptotic complexity O prn log(n)q. Again, we do not prove a
rigorous bound on r here. However, in the experiments of Section 6.3 we compare our algorithm for
applying the Jacobi transform with Slevinsky’s algorithm [33] for applying the Chebyshev-Jacobi
transform. The latter’s running time isO

`

n log2(n)/log(log(n))
˘

, and the behavior of our algorithm
is similar. This leads us to conjecture that

r = O
ˆ

log(n)

log(log(n))

˙

. (15)

Before our algorithm for applying the Jacobi transform can be used, a precomputation in addition
to the construction of the nonoscillatory phase and amplitude functions must be performed. Fortu-
nately, the running time of this precomputation procedure is quite small. Indeed, for most values
of n, it requires less time than a single application of the Jacobi-Chebyshev transform via [33].
Once the precomputation phase has been dispensed with, we our algorithm for the application of
the Jacobi transform is roughly ten times faster than the algorithm of [33].

4

The remainder of this article is structured as follows. Section 2 summarizes a number of mathe-
matical and numerical facts to be used in the rest of the paper. In Section 3, we detail the scheme
we use to construct the phase and amplitude functions. Section 4 describes our method for the
calculation of Gauss-Jacobi quadrature rules. In Section 5, we give our algorithm for applying the
forward and inverse Jacobi transforms. In Section 6, we describe the results of numerical experi-
ments conducted to assess the performance of the algorithms of this paper. Finally, we conclude in
Section 7 with a few brief remarks regarding this article and a discussion of directions for further
work.

2. Preliminaries

2.1. Jacobi’s differential equation and the solution of the second kind

The Jacobi function of the first kind is given by the formula

P (a,b)
ν (x) =

Γ(ν + a+ 1)

Γ(ν + 1)Γ(a+ 1)
2F1

ˆ

−ν, ν + a+ b+ 1; a+ 1;
1− x

2

˙

, (16)

where 2F1pa, b; c; zq denotes Gauss’ hypergeometric function (see, for instance, Chapter 2 of [12]).
We also define the Jacobi function of the second kind via

(17)Q(a,b)
ν = cot(aπ)P (a,b)

ν (x)−
2a+bΓ(ν + b+ 1)Γ(a)

πΓ(ν + b+ a+ 1)
(1− x)−a(1 + x)−b2F1

(
ν + 1,−ν − a− b; 1− a;

1− x
2

)
.

Formula (16) is valid for all values of the parameters a, b, and ν and all values of the argument x
of interest to us here. Formula (17), on the other hand, is invalid when a = 0 (and more generally

when a is an integer). However, the limit as a→ 0 of Q
(a,b)
ν exists and various series expansions for

it can be derived rather easily (using, for instance, the well-known results regarding hypergeometric

series which appear in Chapter 2 of [12]). Accordingly, we view (17) as defining Q
(a,b)
ν for all a, b

in our region of interest (−1/2, 1/2).

Both P
(a,b)
ν and Q

(a,b)
ν are solutions of Jacobi’s differential equation

(1− x2)ψ′′(x) + (b− a− (a+ b+ 2)x)ψ′(x) + ν(ν + a+ b+ 1)ψ(x) = 0 (18)

(see, for instance, Section 10.8 of [13]). We note that our choice of Qa,bν is nonstandard and differs
from the convention used in [34] and [13]. However, it is natural in light of Formulas (22) and (27),
(29) and (31), and especially (45), all of which appear below.

It can be easily verified that the functions P̃
(a,b)
ν and Q̃

(a,b)
ν defined via (2) and the formula

Q̃(a,b)
ν (t) = Ca,bν Q(a,b)

ν pcos(t)q sin

ˆ

t

2

˙a+ 1
2

cos

ˆ

t

2

˙b+ 1
2

(19)

satisfy the second order differential equation

y′′(t) + q(a,b)ν (t)y(t) = 0, (20)

5

where

(21)q(a,b)ν (t) = ν(a+ b+ ν + 1) +
1

2
csc2(t)(−(b− a) cos(t) + a+ b+ 1)

− 1

4
((a+ b+ 1) cot(t)− (b− a) csc(t))2.

We refer to Equation (20) as the modified Jacobi differential equation.

2.2. The asymptotic approximations of Baratella and Gatteschi

In [2], it is shown that there exist sequences of real-valued functions {Aj} and {Bj} such that for
each nonnegative integer m,

P̃ (a,b)
ν (t) = C(a,b)

ν

p−a
?

2

Γ(ν + a+ 1)

Γ(ν + 1)

¨

˝

m∑

j=0

Aj(t)

p2j
t
1
2Ja(pt) +

m−1∑

j=0

Bj(t)

p2j+1
t
3
2Ja+1(pt) + εm(t, p)

˛

‚, (22)

where Jµ denotes the Bessel function of the first kind of order µ, C
(a,b)
ν is defined by (3), p =

ν + (a+ b+ 1)/2, and

εm(t, p) =




ta+

5
2O

`

p−2m+a
˘

, 0 < t ≤ c
p

tO
´

p−2m−
3
2

¯

, c
p ≤ t ≤ π − δ

(23)

with c and δ fixed constants. The first few coefficients in (22) are given by A0(t) = 1,

B0(t) =
1

4t
g(t), (24)

and

A1(t) =
1

8
g′(t)− 1 + 2a

8t
g(t)− 1

32
(g(t))2 +

a

24

`

3b2 + a2 − 1
˘

, (25)

where

g(t) =

ˆ

1

4
− a2

˙ˆ

cot

ˆ

t

2

˙

− 2

t

˙

−
ˆ

1

4
− b2

˙

tan

ˆ

t

2

˙

. (26)

Explicit formulas for the higher order coefficients are not known, but formulas defining them are
given in [2]. The analogous expansion of the function of the second kind is

Q̃(a,b)
ν (t) ≈ C(a,b)

ν

p−a
?

2

Γ(ν + a+ 1)

Γ(ν + 1)

˜

m∑

s=0

As(t)

p2s
t
1
2Ya(pt) +

m−1∑

s=0

Bs(t)

p2s+1
t
3
2Ya+1(pt) + εm(t, p)

¸

. (27)

An alternate asymptotic expansion of P
(a,b)
ν whose form is similar to (22) appears in [14], and

several more general Liouville-Green type expansions for Jacobi polynomials can be found in [10].
The expansions of [10] involve a fairly complicated change of variables which complicates their use
in numerical algorithms.

6

2.3. Hahn’s trigonometric expansions

The asymptotic formula

P̃ (a,b)
ν (t) = C(a,b)

ν

22p

π
B(ν + a+ 1, ν + b+ 1)

M−1∑

m=0

fm(t)

2m p2p+ 1qm
+R(a,b)

ν,m (t) (28)

appears in a slightly different form in [19]. Here, (x)m is the Pochhammer symbol, B is the beta
function, p is once again equal to ν + (a+ b+ 1)/2, and

fm(t) =
m∑

l=0

`

1
2 + a

˘

l

`

1
2 − a

˘

l

`

1
2 + b

˘

m−l
`

1
2 − b

˘

m−l
Γ(l + 1)Γ(m− l + 1)

cos
`

1
2(2p+m)t− 1

2

`

a+ l + 1
2

˘

π
˘

sinl
`

t
2

˘

cosm−l
`

t
2

˘ . (29)

The remainder term R
(a,b)
ν,m is bounded by twice the magnitude of the first neglected term when

a and b are in the interval
`

−1
2 ,

1
2

˘

. The analogous approximation of the Jacobi function of the
second kind is

Q̃(a,b)
ν (t) ≈ C(a,b)

ν

22p

π
B(ν + a+ 1, ν + b+ 1)

M−1∑

m=0

gm(t)

2m p2p+ 1qm
, (30)

where

gm(t) =

m∑

l=0

`

1
2 + a

˘

l

`

1
2 − a

˘

l

`

1
2 + b

˘

m−l
`

1
2 − b

˘

m−l
Γ(l + 1)Γ(m− l + 1)

sin
`

1
2(2p+m)t− 1

2

`

a+ l + 1
2

˘

π
˘

sinl
`

t
2

˘

cosm−l
`

t
2

˘ . (31)

2.4. Some elementary facts regarding phase functions for second order differential equations

We say that ψ is a phase function for the second order differential equation

y′′(t) + q(t)y(t) = 0 for all σ1 ≤ t ≤ σ2 (32)

provided the functions

cos pψ(t)q
a

|ψ′(t)|
(33)

and
sin pψ(t)q
a

|ψ′(t)|
(34)

form a basis in its space of solutions. By repeatedly differentiating (33) and (34), it can be shown
that ψ is a phase function for (32) if and only if its derivative satisfies the nonlinear ordinary
differential equation

q(t)− (ψ′(t))2 − 1

2

ˆ

ψ′′′(t)

ψ′(t)

˙

+
3

4

ˆ

ψ′′(t)

ψ′(t)

˙2

= 0 for all σ1 ≤ t ≤ σ2. (35)

A pair u, v of real-valued, linearly independent solutions of (32) determine a phase function ψ up
to an integer multiple of 2π. Indeed, it can be easily seen that the function

ψ′(t) =
W

(u(t))2 + (v(t))2
, (36)

7

where W is the necessarily constant Wronskian of the pair {u, v}, satisfies (35). As a consequence,
if we define

ψ(t) = C +

∫ t

σ1

W

(u(s))2 + (v(s))2
ds (37)

with C an appropriately chosen constant, then

u(t) =
?
W

cos pψ(t)q
a

|ψ′(t)|
(38)

and

v(t) =
?
W

sin pψ(t)q
a

|ψ′(t)|
. (39)

The requirement that (38) and (39) hold clearly determines the value of mod(C, 2π).

If ψ is a phase function for (32), then we refer to the function

M(t) =

d

W

|ψ′(t)|
(40)

as the corresponding amplitude function. Though a straightforward computation it can be verified
that the the square N(t) = pM(t)q

2 of the amplitude function satisfies the third order linear
ordinary differential equation

N ′′′(t) + 4q(t)N ′(t) + 2q′(t)N(t) = 0 for all σ1 < t < σ2. (41)

2.5. The nonoscillatory phase function for Jacobi’s differential equation

We will denote by ψ(a,b)(t, ν) a phase function for the modified Jacobi differential equation (20)

which, for each ν, gives rise to the pair of solutions P̃
(a,b)
ν and Q̃

(a,b)
ν . We let M (a,b)(t, ν) denote the

corresponding amplitude function, so that

P̃ (a,b)
ν (t) = M (a,b)(t, ν) cos

´

ψ(a,b)(t, ν)
¯

(42)

and

Q̃(a,b)
ν (t) = M (a,b)(t, ν) sin

´

ψ(a,b)(t, ν)
¯

. (43)

We use the notations ψ(a,b)(t, ν) and M (a,b)(t, ν) rather than ψ
(a,b)
ν (t) and M

(a,b)
ν (t), which might

seem more natural, to emphasize that the representations of the phase and amplitude functions
we construct in this article allow for their evaluation for a range of values of ν and t, but only for
particular fixed values of a and b.

Obviously,
´

M (a,b)(t, ν)
¯2

=
´

P (a,b)
ν (t)

¯2
+
´

Q(a,b)
ν (t)

¯2
. (44)

By replacing the Jacobi functions in (44) with the first terms in the expansions Formulas (22) and
(27), we see that for all t in an interval of the form (δ, π − δ) with δ a small positive constant and

8

all a, b ∈ (−1/2, 1/2),

´

M (a,b)(t, ν)
¯2
∼

ˆ

C(a,b)
ν

p−a
?

2

Γ(ν + a+ 1)

Γ(ν + 1)

˙2

t
´

pJa(pt)q
2 + pYa(pt)q

2
¯

+O
ˆ

1

ν2

˙

as ν →∞
(45)

It is well known that the function

pJa(t)q
2 + pYa(t)q

2 (46)

is nonoscillatory. Indeed, it is completely monotone on the interval (0,∞), as can be shown using
Nicholson’s formula

pJa(t)q
2 + pYa(t)q

2 =
8

π2

∫ ∞

0
K0(2t sinh(s)) cosh(2as) ds for all t > 0. (47)

A derivation of (47) can be found in Section 13.73 of [36]; that (46) is completely monotone follows

easily from (47) (see, for instance, [29]). When higher order approximations of P̃
(a,b)
ν and Q̃

(a,b)
ν

are inserted into (44), the resulting terms are all nonoscillatory combinations of Bessel functions.

From this it is clear that M
(a,b)
ν is nonoscillatory, and Formula (45) then implies that ψ

(a,b)
ν is also

a nonoscillatory function.

It is well-known that

pJa(t)q
2 + pYa(t)q

2 ∼ 2

π

ˆ

1

t
+

4a2 − 1

8t2
+

3(9− 40a2 + 16a4)

128t5
+ · · ·

˙

as t→∞; (48)

see, for instance, Section 13.75 of [36]. From this, (45) and (3), we easily conclude that for t in
(δ, π − δ) and (a, b) ∈ (−1/2, 1/2),

(49)
(
M (a,b)(t, ν)

)2
∼ 2p−2a

π

Γ(1 + ν + a)Γ(1 + ν + a+ b)

Γ(1 + ν)Γ(1 + ν + b)
+O

(
1

ν2

)

as ν →∞. By inserting the asymptotic approximation

Γ(1 + ν + a)Γ(1 + ν + a+ b)

Γ(1 + ν)Γ(1 + ν + b)
∼ p2a as ν →∞ (50)

into (49), we obtain
´

M (a,b)(t, ν)
¯2
∼ 2

π
+O

ˆ

1

ν2

˙

as ν →∞. (51)

Once again, (51) only holds for t in the interior of the interval (0, π) and (a, b) ∈ (−1/2, 1/2).

Figure 1 contains plots of the function π
2

´

M
(a,b)
ν

¯2
for three sets of the parameters a, b and ν. A

straightforward, but somewhat tedious, computation shows that the Wronskian of the pair P̃
(a,b)
ν ,

Q̃
(a,b)
ν is

W (a,b)
ν =

2p

π
. (52)

From this, (51) and (40), we conclude that for t ∈ (δ, π − δ) and a, b ∈ (−1/2, 1/2),

ψ(a,b)(t, ν) ∼ pt+ c+O
ˆ

1

ν2

˙

as ν →∞ (53)

with c a constant. Without loss of generality, we can assume c is in the interval (0, 2π). This is
Formula (13).

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: On the left is a plot of the function π
2

´

M
(a,b)
ν

¯2

when a = 1
4
, b = 1

3
and ν = 1. In the middle is a plot of

the same function when a = 1
4
, b = 1

3
and ν = 10. On the right, is a plot of it when a = 1

4
, b = 1

3
and ν = 100.

2.6. Interpolative decompositions

We say a factorization

A = BR (54)

of an n×m matrix A is an interpolative decomposition if B consists of a collection of columns of
the matrix A. If (54) does not hold exactly, but instead

‖A−BR‖2≤ ε‖A‖2, (55)

then we say that (54) is an ε-accurate interpolative decomposition. In our implementation of the
algorithms of this paper, a variant of the algorithm of [7] is used in order to form interpolative
decompositions.

2.7. Piecewise Chebyshev interpolation

For our purposes, the k-point Chebyshev grid on the interval (σ1, σ2) is the set of points
{
σ2 − σ1

2
cos

ˆ

π

k − 1
(k − i)

˙

+
σ2 + σ1

2
: i = 1, . . . , k

}
. (56)

As is well known, given the values of a polynomial p of degree n−1 at these nodes, its value at any
point t in the interval [σ1, σ2] can be evaluated in a numerically stable fashion using the barcyentric
Chebyshev interpolation formula

p(t) =

k∏

j=1

wj
t− xj

p(xj)

N k∏

j=1

wj
t− xj

, (57)

where x1, . . . , xk are the nodes of the k-point Chebyshev grid on (σ1, σ2) and

wj =

{
1 1 < j < k
1
2 otherwise.

(58)

See, for instance, [35], for a detailed discussion of Chebyshev interpolation and the numerical
properties of Formula (57).

We say that a function p is a piecewise polynomial of degree k − 1 on the collection of intervals

pσ1, σ2q , pσ2, σ3q , . . . , pσm−1, σmq , (59)

10

where σ1 < σ2 < . . . < σm, provided its restriction to each (σj , σj+1) is a polynomial of degree less
than or equal to k − 1. We refer to the collection of points{

σj+1 − σj
2

cos

ˆ

π

k − 1
(k − i)

˙

+
σj+1 + σj

2
: j = 1, . . . ,m− 1, i = 1, . . . , k

}
(60)

as the k-point piecewise Chebyshev grid on the intervals (59). Because the last point of each interval
save (σm−1, σm) coincides with the first point on the succeeding interval, there are (k−1)(m−1)+1
such points. Given the values of a piecewise polynomial p of degree k − 1 at these nodes, its value
at any point t on the interval [σ1, σm] can be calculated by identifying the interval containing t and
applying an appropriate modification of Formula (57). Such a procedure requires at most O pm+ kq

operations, typically requires O plog(m) + kq when a binary search is used to identify the interval
containing t, and requires only O(k) operations in the fairly common case that the collection (59)
is of a form which allows the correct interval to be identified immediately.

We refer to the device of representing smooth functions via their values at the nodes (60) as the
piecewise Chebyshev discretization scheme of order k on (59), or sometimes just the piecewise
Chebyshev discretization scheme on (59) when the value of k is readily apparent. Given such a
scheme and an ordered collection of points

σ1 ≤ t1 ≤ t2 ≤ . . . < tN ≤ σm, (61)

we refer to the N × ((m− 1)(k − 1) + 1) matrix which maps the vector of values
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p(x1,1)
p(x2,1)

...
p(xk,1)
p(x2,2)

...
p(xk,2)

...
p(xk,m−1)
p(x2,m)

...
p(xn,m)

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (62)

where p is any piecewise polynomial of degree k − 1 on the interval (59) and

xi,j =
σj+1 − σj

2
cos

ˆ

π

k − 1
(k − i)

˙

+
σj+1 + σj

2
, (63)

to the vector of values
¨

˚

˚

˚

˝

p(t1)
p(t2)

...
p(tN)

˛

‹

‹

‹

‚

(64)

as the matrix interpolating piecewise polynomials of degree k − 1 on (59) to the nodes (61). This

11

matrix is block diagonal; in particular, it is of the form
¨

˚

˚

˚

˝

B1 0 0 0
0 B2 0 0

0 0
. . . 0

0 0 0 Bm−1

˛

‹

‹

‹

‚

(65)

with Bj corresponding to the interval (σj , σj+1). The dimensions of Bj are nj × k, where nj is the
number of points from (61) which lie in rσj , σj+1s. The entries of each block can be calculated from
(57), with the consequence that this matrix can be applied in O pnkq operations without explicitly
forming it.

2.8. Bivariate Chebyshev interpolation

Suppose that

x1, . . . , xM1 , (66)

where M1 = (m − 1)(k1 − 1) + 1, is the k1-point piecewise Chebyshev grid on the collection of
intervals

pσ1, σ2q , pσ2, σ3q , . . . , pσm1−1, σm1q , (67)

and that

y1, . . . , yM2 , (68)

where M2 = (m2 − 1)(k2 − 1) + 1, is the k2-point piecewise Chebyshev grid on the collection of
intervals

pζ1, ζ2q , pζ2, ζ3q , . . . , pζm2−1, ζm2q . (69)

Then we refer to the device of representing smooth bivariate functions f(x, y) defined on the
rectangle (σ1, σm1)× (ζ1, ζm2) via their values at the tensor product

{pxi, yjq : i = 1, . . . ,M1, j = 1, . . . ,M2} (70)

of the piecewise Chebyshev grids (66) and (68) as a bivariate Chebyshev discretization scheme.
Given the values of f at the discretization nodes (70), its value at any point (x, y) in the rect-
angle (σ1, σm1) × (ζ1, ζm2) can be approximated through repeated applications of the barcyentric
Chebyshev interpolation formula. The cost of such a procedure is O pk1k2q, once the rectangle
pσi, σi+1q× pζj , ζj+1q containing (x, y) has been located. The cost of locating the correct rectangle
is O pm1 +m2q in the worst case, O plog(m)1 + log(m2)q in typical cases, and O p1q when the par-
ticular forms of the collections (67) and (69) allow for the immediate identification of the correct
rectangle.

3. Computation of the Phase and Amplitude Functions

Here, we describe a method for calculating representations of the nonoscillatory phase and ampli-
tude functions ψ(a,b)(t, ν) and M (a,b)(t, ν). This procedure takes as input the parameters a and b
as well as an integer Nmax > 27. The representations of M (a,b) and ψ(a,b) allow for their evaluation
for all values of ν such that

27 ≤ ν ≤ Nmax (71)

12

and all arguments t such that

1

Nmax

≤ t ≤ π − 1

Nmax

. (72)

The smallest and largest zeros of P̃
(a,b)
ν on the interval (0, π) are greater than 1

ν and less than
π− 1

ν , respectively (see, for instance, Chapter 18 of [8] and its references). In particular, this means

that the range (71) suffices to evaluate P̃
(a,b)
ν at the values of t corresponding to the nodes of the

Nmax-point Gauss-Jacobi quadrature rule. If necessary, this range could be expanded or various
asymptotic expansion could be used to evaluate P̃ (a,b)(t, ν) for values of t outside of it.

The phase and amplitude functions are represented via their values at the nodes of a tensor product
of piecewise Chebyshev grids. To define them, we first let mν be the least integer such that

3mν ≥ Nmax (73)

and let mt be equal to twice the least integer l such that

π

2
2−l+1 ≤ 1

Nmax

. (74)

Next, we define βj for j = 1, . . . ,mν by

βj = max
{

3j+2, Nmax

}
, (75)

αi for i = 1, . . . ,mt/2 via

αi =
π

2
2i−mt/2 (76)

and αi for i = mt/2 + 1, . . . ,mt via

βi = π − π

2
2mt/2+1−i. (77)

We note that the points {βi} cluster near 0 and π, where the phase and amplitude functions are
singular. Now we let

τ1, . . . , τMt (78)

denote 16-point piecewise Chebyshev gird on the intervals

pα1, α2q , pα2, α3q , . . . , pαmt−1, αmtq . (79)

There are

Mt = 15(mt − 1) + 1 (80)

such points. In a similar fashion, we let

γ1, . . . , γMν (81)

denote the nodes of the 24-point piecewise Chebyshev grid on the intervals

pβ1, β2q , pβ2, β3q , . . . , pβmν−1, βmν q . (82)

There are

Mt = 23(mν − 1) + 1 (83)

such points.

For each node γ in the set (81), we solve the ordinary differential equation (41) with q taken to
be the coefficient (21) for Jacobi’s modified differential equation using a variant of the integral

13

equation method of [17]. We note, though, that any standard method capable of coping with stiff
problems should suffice. We determine a unique solution by specifying the values of

´

M (a,b)(t, γ)
¯2

(84)

and its first two derivatives at a point on the interval (72). These values are calculated using
an asymptotic expansion for (84) derived from (22) and (27) when γ is large, and using series

expansions for P
(a,b)
γ and Q

(a,b)
γ when γ is small. We refer the interested reader to our code (which

we have made publicly available) for details. Solving (41) gives us the values of the function for
each t in the set (78). To obtain the values of ψ(a,b)(t, γ) for each t in the set (78) , we first calculate
the values of

d

dt
ψ(a,b)(t, γ) (85)

via (40). Next, we obtain the values of the function ψ̃ defined via

ψ̃(t) =

∫ t

α1

d

ds
ψ(a,b)(s, γ) ds (86)

at the nodes (78) via spectral integration. There is an as yet unknown constant connecting ψ̃ with
ψ(a,b)(t, γ); that is,

ψ(a,b)(t, γ) = ψ̃(t) + C. (87)

To evaluate C, we first use a combination of asymptotic and series expansions to calculate P̃
(a,b)
ν

at the point α1. Since rψ(α1) = 0, it follows that

P̃ (a,b)
γ (α1) = M (a,b)(α1, γ) cos(C), (88)

and C can be calculated in the obvious fashion. Again, we refer the interested reader to our source

code for the details of the asymptotic expansions we use to evaluate P̃
(a,b)
ν (α1).

The ordinary differential equation (41) is solved for O plog pNmaxqq values of ν, and the phase and
amplitude functions are calculated at O plog pNmaxqq values of t each time it is solved. This makes
the total running time of the procedure just described

O
`

log2 pNmaxq
˘

. (89)

Once the values of ψ
(a,b)
ν and M

(a,b)
ν have been calculated at the tensor product of the piecewise

Chebyshev grids (78) and (81), they can be evaluated for any t and ν via repeated application of the
barycentric Chebyshev interpolation formula in a number of operations which is independent of ν
and t. The rectangle in the discretization scheme which contains the point (t, ν) can be determined

in O p1q operations owing to the special form of (79) and (82). The value of P̃
(a,b)
ν can then be

calculated via Formula (42), also in a number of operations which is independent of ν and t.

Remark 1. Our choice of the particular bivariate piecewise Chebyshev discretization scheme used
to represent the functions ψ(a,b) and M (a,b) was informed by extensive numerical experiments. How-
ever, this does not preclude the possibility that there are other similar schemes which provide better
levels of accuracy and efficiency. Improved mechanisms for the representation of phase functions
are currently being investigated by the authors.

14

4. Computation of Gauss-Jacobi Quadrature Rules

In this section, we describe our algorithm for the calculation of Gauss-Jacobi quadrature rules (5),
and for the modified Gauss-Jacobi quadrature rules (6). It takes as input the length n of the
desired quadrature rule as well as parameters a and b in the interval

`

−1
2 ,

1
2

˘

and returns the nodes
x1, . . . , xn and weights w1, . . . , wn of (5).

For these computations, we do not rely on the expansions of ψ(a,b) and M (a,b) produced using the
procedure of Section 3. Instead, as a first step, we calculate the values of ψ(a,b)(t, n) and M (a,b)(t, n)
for each t in the set (78) by solving the ordinary differential equation (41). The procedure is the
same as that used in the algorithm of the preceding section. Because the degree ν = n of the phase
function used by the algorithm of this section is fixed, we break from our notational convention

and use ψ
(a,b)
n to denote the relevant phase function; that is,

ψ(a,b)
n (t) = ψ(a,b) pt, nq . (90)

We next calculate the inverse function
´

ψ
(a,b)
n

¯−1
of the phase function ψ

(a,b)
n as follows. First, we

define ωi for i = 1, . . . ,mt via the formula

ωi = ψ(a,b)
n pαiq , (91)

where mt and α1, . . . , αmt are as in the preceding section. Next, we form the collection

ξ1, . . . , ξMt (92)

of points obtained by taking the union of 16-point Chebyshev grids on each of the intervals

pω1, ω2q , pω2, ω3q , . . . , pωmt−1, ωmtq . (93)

Using Newton’s method, we compute the value of the inverse function of ψ
(a,b)
n at each of the points

(92). More explicitly, we traverse the set (92) in descending order, and for each node ξj solve the
equation

ψ(a,b)
n (yj) = ξj (94)

for yj so as to determine the value of
´

ψ(a,b)
n

¯−1
(ξj). (95)

The values of the derivative of ψ
(a,b)
n are a by-product of the procedure used to construct ψ

(a,b)
n ,

and so the evaluation of the derivative of the phase function is straightforward. Once the values of
the inverse function at the nodes (92) are known, barycentric Chebyshev interpolation enables us
to evaluate ψ−1 at any point on the interval pω1, ωmtq. From (42), we see that the kth zero tk of

P̃
(a,b)
n is given by the formula

tk =
´

ψ(a,b)
n

¯−1 ´π

2
+ kπ

¯

. (96)

These are the nodes of the modified Gauss-Jacobi quadrature rule, and we use (96) to compute
them. The corresponding weights are given by the formula

wk =
π

d
dtψ

(a,b)
n (tk)

. (97)

15

The nodes of the Gauss-Jacobi quadrature rule are given by

xj = cos ptn−k+1q , (98)

and the corresponding weights are given by

wk =
π2a+b+1 sin

`

t
2

˘2a+1
cos

`

t
2

˘2b+1

d
dtψ

(a,b)
n (tn−k+1)

. (99)

Formula (99) can be obtained by combining (42) with Formula (15.3.1) in Chapter 15 of [34]. That
(97) gives the values of the weights for (5) is then obvious from a comparison of the form of that
rule and (6).

The cost of computing the phase function and its inverse is O plog(n)q, while the cost of computing
each node and weight pair is independent of n. Thus the algorithm of this section has an asymptotic
running time of O pnq.

Remark 2. The phase function ψ
(a,b)
n is a monotonically increasing function whose condition num-

ber of evaluation is small, whereas the Jacobi polynomial P
(a,b)
n it represents is highly oscillatory

with a large condition number of evaluation. As a consequence, many numerical computations,

including the numerical calculation of the zeros of P
(a,b)
n , benefit from a change to phase space. See

[5] for a more thorough discussion of this observation.

5. Application of the Jacobi Transform and its Inverse

In this section, we describe a procedure for applying the nth order Jacobi transform — which is

represented by the n×n matrix J (a,b)
n defined via (10) — to a vector x. Since J (a,b)

n is orthogonal,
the inverse Jacobi transform simply consists of applying its transpose. We omit a discussion of the
minor and obvious changes to the algorithm of this section required to do so.

A precomputation, which includes as a step the procedure for the construction of the nonoscillatory
phase and amplitude functions described Section 3, is necessary before our algorithm for applying
the forward Jacobi transform can be used. We first discuss the outputs of the precomputation
procedure and our method for using them to apply the Jacobi transform. Afterward, we describe
the precomputation procedure in detail.

The precomputation phase of this algorithm takes as input the order n of the transform and
parameters a and b in the interval

`

−1
2 ,

1
2

˘

. Among other things, it produces the nodes t1, . . . , tn and
weights w1, . . . , wn of the n-point modified Gauss-Jacobi quadrature rule, and a second collection
of points x1, . . . , xn such that for each j = 1, . . . , n, xj is the node from the equispaced grid

0, 2π · 1

n
, 2π · 2

n
, . . . , 2π · n− 1

n
(100)

which is closest to tj . In addition, the precomputation phase constructs a complex-valued n × r
matrix L, a complex-valued r × n matrix R and a real-valued n× 26 matrix V such that

J (a,b)
n ≈

`

Real pFn ⊗ (LR)q +
`

V 0
˘˘

W, (101)

where r is the numerical rank of a matrix we define shortly, Fn is the n × n matrix whose (j, k)
entry is

exp(ixj(k − 1)), (102)

16

W is the n× n matrix

W =

¨

˚

˚

˚

˝

?
w1 0 0 0
0

?
w2 0 0

0 0
. . . 0

0 0 0
?
wn

˛

‹

‹

‹

‚

, (103)

and ⊗ denotes the Hadamard product. The matrix Fn can be applied to a vector in O pn log(n)q

operations by executing r fast Fourier transforms. Moreover, if we use u1, . . . , ur to denote the n×1
matrices which comprise the columns of the matrix L and v1, . . . , vr to denote the 1 × n matrices
which comprise the rows of the matrix R, then

LR = u1v1 + . . .+ urvr (104)

and

Fn ⊗ pLRq = Dv1FnDu1 + · · ·+DvrFnDur , (105)

where Du denotes the n×n diagonal matrix with entries u on the diagonal. From (105), we see that
Fn⊗ pLRq can be applied in O prn log(n)q operations using the Fast Fourier transform. This is the
approach used in [31] to rapidly apply discrete nonuniform Fourier transforms. Since the matrices
`

V 0
˘

and W can each be applied to a vector in O pnq operations, the asymptotic running time
of this procedure for applying the forward Jacobi transform is O prn log(n)q.

We now describe the precomputation step. First, the procedure of Section 3 is used to construct
nonoscillatory phase and amplitude functions ψ(a,b) and M (a,b); the parameter Nmax is taken to be
n. In what follows, we let Mt, Mν , αj , βj , τj and γk be as in Section 3. Next, the procedure of
Section 4 is used to construct the nodes and weights of the modified Gauss-Jacobi quadrature rule
of order n. We now form an interpolative decomposition

ˆ

A(1)

A(2)

˙

≈
ˆ

B(1)

B(2)

˙

rR (106)

(see Section 2.6) of the matrix

ˆ

A(1)

A(2)

˙

, (107)

where A(1) is the Mt ×Mν matrix whose (j, k) entry is given by

A
(1)
jk = M (a,b)(τj , k − 1) exp

´

i
´

ψ(a,b)(τj , γk)− τjγk
¯¯

, (108)

and A(2) is the 16×Mν matrix whose entries are

A
(2)
jk = exp

ˆ

i σj
γk
Nmax

˙

(109)

with σ1 . . . , σ16 are the nodes of the 16-point Chebyshev grid on the interval (0, 2π). We use the
procedure of [7] with ε = 10−12 requested accuracy to do so. We view this procedure as choosing
a collection

γs1 < . . . < γsr (110)

of the nodes from the set (81), where r is the numerical rank of matrix (107) to precision ε, as
determined by the interpolative decomposition procedure, and constructing a device (the matrix

17

rR) for evaluating functions of the form

f(ν) = M (a,b)(t, ν) exp
´

i
´

ψ(a,b)(t, ν)− tν
¯¯

(111)

and

g(ν) = exp

ˆ

it
ν

Nmax

˙

, (112)

where t is any point in the interval (72), at the nodes (81) given their values at the nodes (110).
That t can take on any value in the interval (72) and not just the special values (78) is a consequence
of the fact that the piecewise bivariate Chebyshev discretization scheme described in the preceding
section suffices to represent these functions. We expect (107) to be low rank from the discussion
in the introduction and the estimates of Section 2.5. We factor the augmented matrix (107) rather
than A(1) because in later steps of the precomputation procedure, we use the matrix rR to interpolate
functions of the form (112) as well as those of the form (111).

In what follows, we denote by Ileft the n ×Mt matrix which interpolates piecewise polynomials of
degree 15 on the intervals (79) to their values at the points t1, . . . , tn. See Section 2.7 for a careful
definition of the matrix Ileft and a discussion of its properties. Similarly, we let Iright be the Mν ×n
matrix

Iright =
´

0 I
(1)
right

¯

, (113)

where I
(1)
right is the Mν×(n−27) matrix which interpolates piecewise polynomials of degree 23 on the

intervals (82) to their values at the points 27, 28, 29, . . . , n− 1 (recall that the phase and amplitude
functions represent the Jacobi polynomials of degrees greater than or equal to 27). We next form
the Mt × r matrix whose (j, k) entry is

M (a,b)(τj , γsk) exp pi pψ pτj , γskq− τjγskqq (114)

and multiply it on the left by Ileft so as to form the n× r matrix whose (j, k) entry is

M (a,b)(tj , γsk) exp pi pψ ptj , γskq− tjγskqq . (115)

For j = 1, . . . , n and k = 1, . . . , r, we scale the (j, k) entry of this matrix by

exp pi(tj − xj)γskq (116)

in order to form the n× r matrix L whose (j, k) entry is

Ljk = M (a,b)(tj , γsk) exp pi pψ ptj , γskq− xjγskqq . (117)

We multiply the r ×Mν matrix rR on the right by Iright to form the r × n matrix R. It is because
of the scaling by (116) that we factor the augmented matrix (107) rather than A(1). The values of
(116) can be correctly interpolated by the matrix rR because of the addition of A(2).

As the final step in our precomputation procedure, we use the well-known three-term recurrence
relations satisfied by the Jacobi polynomials to form the n× k matrix

V =

¨

˚

˚

˚

˚

˝

P̃
(a,b)
0 (t1) P̃

(a,b)
1 (t1) · · · P̃

(a,b)
26 (t1)

P̃
(a,b)
0 (t2) P̃

(a,b)
1 (t2) · · · P̃

(a,b)
26 (t2)

...
...

. . .
...

P̃
(a,b)
0 (tn) P̃

(a,b)
1 (tn) · · · P̃

(a,b)
26 (tn)

˛

‹

‹

‹

‹

‚

. (118)

18

The highest order term in the asymptotic running time of the precomputation algorithm is O(rn),
where r is the rank of (107), and it comes from the application of the interpolation matrices Iright
and Ileft. Based on our numerical experiments, we conjecture that

r = O
ˆ

log(n)

log log(n)

˙

, (119)

in which case the asymptotic running time of the procedure is

O
ˆ

n log2(n)

log log(n)

˙

. (120)

Remark 3. There are many mechanisms for accelerating the procedure used here for the calcula-
tion of interpolative decomposition (particularly, randomized algorithms [11] and methods based on
adaptive cross approximation). However, in our numerical experiments we found that the cost of
the construction of the phase and amplitude functions dominated the running time of our precom-
putation step for small n, and that the cost of interpolation did so for large n. As a consequence,
the optimization of our approach to forming interpolative decompositions is a low priority.

Remark 4. The rank of the low-rank approximation by interpolative decompositions is not opti-
mally small. A fast truncated SVD based on the interpolative decomposition by Chebyshev interpo-
lation can provide the optimal rank of the low-rank approximation in (101) and thereby speed up
the calculation in (105) by a small factor (see [26] for a comparison). However, we do not explore
this in this paper.

Remark 5. The procedure of this section can modified rather easily to apply several transforms
related to the Jacobi transform. For instance, the mapping which take the coefficients (8) in the
expansion (9) to values of f at the nodes of a Chebyshev quadrature can be applied using the
procedure of this section by simply modifying t1, . . . , tn. The Jacobi-Chebyshev transform can then
be computed from the resulting value using the fast Fourier transform.

6. Numerical Experiments

In this section, we describe numerical experiments conducted to evaluate the performance of the
algorithms of this paper. Our code was written in Fortran and compiled with the GNU Fortran
compiler version 4.8.4. It uses version 3.3.2 of the FFTW3 library [15] to apply the discrete Fourier
transform. We have made our code, including that for all of the experiments described here,
available on GitHub at the following address:

https://gitlab.com/FastOrthPolynomial/Jacobi.git

All calculations were carried out on a single core of workstation computer equipped with an Intel
Xeon E5-2697 processor running at 2.6 GHz and 512GB of RAM.

6.1. Numerical evaluation of Jacobi polynomials

In a first set of experiments, we measured the speed of the procedure of Section 3 for the construction
of nonoscillatory phase and amplitude functions, and the speed and accuracy with which Jacobi
polynomials can be evaluated using them.

19

We did so in part by comparing our approach to a reference method which combines the Liouville-
Green type expansions of Barratella and Gatteschi (see Section 2.2) with the trigonometric ex-
pansions of Hahn (see Section 2.3). Modulo minor implementation details, the reference method
we used is the same as that used in [21] to evaluate Jacobi polynomials and is quite similar to
the approach of [4] for the evaluation of Legendre polynomials. To be more specific, we used the

expansion (22) to evaluate P̃
(a,b)
ν for all t ≥ 0.2 and the trigonometric expansion (29) to evaluate

it when 0 < t < 0.2. The expansion (29) is much more expensive than (22); however, the use
of (22) is complicated by the fact that the higher order coefficients are not known explicitly. We
calculated 16th order Taylor expansion for the coefficients B1, A1, B2 and A2, but the use of these
approximations limited the range of t for we which we could apply (22).

In order to perform these comparisons, we fixed a = −1/4 and b = 1/3 and choose several values of
Nmax. For each such value, we carried out the procedure for the construction of the phase function

described in Section 3 and evaluated P̃
(a,b)
ν for 200 randomly chosen values of t in the interval (0, π)

and 200 randomly chosen values of ν in the interval (1, Nmax) using both our algorithm and the
reference method. Table 1 reports the results. For several different pairs of the parameters a, b, we
repeated these experiments, measuring the time required to construct the phase function and the
maximum observed absolute errors. Figure 6.1 displays the results. We note that the condition
number of evaluation of the Jacobi polynomials increases with order, with the consequence that
the obtained accuracy of both the approach of this paper and the reference method decrease as a
function of degree. The errors observed in Table 1 and Figure 6.1 are consistent with this fact.

The asymptotic complexity of the procedure of Section 3 is O
`

log2 pNmaxq
˘

; however, the running
times shown on the left-hand side of Figure 6.1 appear to grow more slowly than this. This suggests
that a lower order term with a large constant is present.

We also compared the method of this paper with the results obtained by using the well-known
three-term recurrence relations satisfied by solutions of Jacobi’s differential equation (which can

102 103 104 105 106 107 108

Nmax

10−3

10−2

10−1

100

ph
as

e
fu

nc
tio

n
co

ns
tr

uc
tio

n
tim

e
(s

)

a= 0.49, b = 0.35
a=-0.25, b = 0.49
a= 0.49, b = -0.40
a=-0.25, b = -0.40

102 103 104 105 106 107 108

Nmax

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

m
ax

im
um

ab
so

lu
te

er
ro

r

a= 0.49, b = 0.35
a=-0.25, b = 0.49
a= 0.49, b = -0.40
a=-0.25, b = -0.40

Figure 2: The plot on the left shows how the time required to construct the phase and amplitude functions varies
with Nmax for various values of the parameters a and b. The plot on the right shows the maximum absolute errors
which were observed when evaluating Jacobi polynomials as a function of Nmax for various values of the parameters
a and b.

20

Nmax Phase function Avg. eval time Avg. eval time Largest absolute Expansion size
construction time algorithm asymptotic error (MB)

of this paper expansions

100 1.15×10−02 2.82×10−07 3.46×10−05 1.31×10−12 1.90×10−01

128 5.77×10−03 7.82×10−07 2.56×10−05 8.89×10−13 1.90×10−01

256 9.46×10−03 5.81×10−07 2.47×10−05 9.86×10−13 3.19×10−01

512 1.03×10−02 5.33×10−07 2.44×10−05 1.50×10−12 3.54×10−01

1,024 1.48×10−02 5.81×10−07 2.42×10−05 2.34×10−12 5.19×10−01

2,048 1.60×10−02 5.90×10−07 2.49×10−05 5.48×10−12 5.66×10−01

4,096 2.15×10−02 5.70×10−07 2.30×10−05 1.39×10−11 7.66×10−01

8,192 2.75×10−02 5.69×10−07 2.34×10−05 1.71×10−11 9.89×10−01

16,384 2.92×10−02 5.66×10−07 2.36×10−05 2.71×10−11 1.06×10+00

32,768 3.60×10−02 1.03×10−06 2.31×10−05 9.68×10−11 1.31×10+00

65,536 4.37×10−02 5.36×10−07 2.30×10−05 2.31×10−10 1.60×10+00

131,072 4.59×10−02 5.65×10−07 2.32×10−05 4.64×10−10 1.69×10+00

262,144 5.45×10−02 5.66×10−07 2.41×10−05 6.96×10−10 2.01×10+00

524,288 5.69×10−02 6.03×10−07 2.24×10−05 1.58×10−09 2.11×10+00

1,048,576 6.67×10−02 5.68×10−07 2.42×10−05 1.88×10−09 2.46×10+00

2,097,152 8.07×10−02 5.86×10−07 2.46×10−05 6.20×10−09 2.84×10+00

4,194,304 7.91×10−02 5.64×10−07 2.40×10−05 9.51×10−09 2.97×10+00

8,388,608 9.00×10−02 8.71×10−07 2.37×10−05 1.76×10−08 3.38×10+00

16,777,216 1.01×10−01 5.86×10−07 2.61×10−05 3.65×10−08 3.81×10+00

33,554,432 1.11×10−01 5.80×10−07 2.35×10−05 7.77×10−08 3.97×10+00

67,108,864 1.17×10−01 5.99×10−07 2.36×10−05 2.01×10−07 4.43×10+00

134,217,728 1.36×10−01 6.25×10−07 2.42×10−05 3.74×10−07 4.93×10+00

Table 1: A comparison of the time required to evaluate Jacobi polynomials via the algorithm of this paper with the
time required to do so using certain asymptotic expansions. Here, the parameters in Jacobi’s differential equation
were taken to be a = −1/4 and b = 1/3. All times are in seconds.

be found in Section 10.8 of [13], among many other sources) to evaluate the Jacobi polynomials.
Obviously, such an approach is unsuitable as a mechanism for evaluating a single Jacobi polynomial
of large degree. However, up to a certain point, the recurrence relations are efficient and effective
and it is of interest to compare the approaches. Table 2 does so. In these experiments, a was taken
to be 1/4 and b was −1/3.

6.2. Calculation of Gauss-Jacobi quadrature rules

In this section, we describe experiments conducted to measure the speed and accuracy with which
the algorithm of Section 4 constructs Gauss-Jacobi quadrature rules. We used the Hale-Townsend
algorithm [21], which appears to be the current state-of-the-art method for the numerical calculation
of such rules, as a basis for comparison. It takes O pnq operations to construct an n-point Gauss-
Jacobi quadrature rule, and calculates the quadrature nodes with double precision absolute accuracy
and the quadrature weights with double precision relative accuracy. The Hale-Townsend algorithm
is faster and more accurate (albeit less general) than the Glaser-Liu-Rokhlin algorithm [16], which
can be also used to construct n-point Gauss-Jacobi quadrature rules in O(n) operations. We note
that the algorithm of [3] for the construction of Gauss-Legendre quadrature rules (and not more
general Gauss-Jacobi quadrature rules) is more efficient than the method of this paper.

21

Nmax Phase function Average evaluation time Average evaluation time Largest absolute
construction time algorithm of this paper recurrence relations error

32 2.63×10−03 4.37×10−07 1.74×10−06 3.34×10−13

64 2.56×10−03 5.04×10−07 2.33×10−06 6.58×10−13

128 5.65×10−03 7.73×10−07 3.72×10−06 1.02×10−12

256 9.84×10−03 5.49×10−07 6.16×10−06 1.43×10−12

512 1.02×10−02 5.60×10−07 1.15×10−05 1.69×10−12

1,024 1.48×10−02 5.82×10−07 2.05×10−05 8.31×10−12

2,048 1.59×10−02 5.79×10−07 3.76×10−05 1.58×10−11

4,096 2.12×10−02 5.63×10−07 7.58×10−05 3.83×10−11

8,192 2.73×10−02 5.64×10−07 1.51×10−04 1.84×10−10

16,384 2.90×10−02 5.68×10−07 2.94×10−04 1.98×10−10

32,768 3.58×10−02 1.03×10−06 5.96×10−04 7.62×10−11

Table 2: A comparison of the time required to evaluate Jacobi polynomials via the algorithm of this paper with
the time required to do so using the well-known three-term recurrence relations. Here, the parameters in Jacobi’s
differential equation were taken to be a = 1/4 and b = −1/3. All times are in seconds.

102 103 104 105 106 107 108

n

10−3

10−2

10−1

100

101

102

103

104

ex
ec

ut
io

n
tim

e
(s

)

Algorithm of this paper
Hale-Townsend algorithm

102 103 104 105 106 107 108

n

10−4

10−3

10−2

10−1

100

101

102

103

104

ex
ec

ut
io

n
tim

e
(s

)

Algorithm of this paper
Hale-Townsend algorithm

Figure 3: A comparison of the running time of the algorithm of Section 4 for the calculation of Gauss-Jacobi
quadrature rules with the algorithm of Hale-Townsend [21]. In the experiments whose results are shown on the left,
the parameters were taken to be a = 0.25 and b = 0.40 while in the experiments corresponding to the plot on the
right, the parameters were a = −0.49 and b = 0.25.

For a = 0 and b = −4/10 and various values of n, we constructed the n-point Gauss-Jacobi
quadrature rule using both the algorithm of Section 4 and the Julia implementation [20] of the
Hale-Townsend algorithm made available by the authors of [21]. For each chosen value of n,
we measured the relative difference in 100 randomly selected weights. Unfortunately, in some
cases [20] loses a small amount of accuracy when evaluating quadrature weights corresponding to
quadrature nodes near the points ±1. Accordingly, when choosing random nodes, we omitted those
corresponding to the 20 quadrature nodes closest to each of the points ±1. We note that the loss
of accuracy in [20] is merely a problem with that particular implementation of the Hale-Townsend
algorithm and not with the underlying scheme. Indeed, the MATLAB implementation of the Hale-
Townsend algorithm included with the Chebfun package [9] does not suffer from this defect. We

22

did not compare against the MATLAB version of the code because it is somewhat slower than
the Julia implementation. Table 3 reports the results. We began our comparison with n = 101
because when n ≤ 100, the Hale-Townsend code combines the well-known three-term recurrence
relations satisfied by solutions of Jacobi’s differential equation and Newton’s method to construct
the n-point Gauss-Jacobi quadrature rule. This is also the strategy we recommend for constructing
Gauss-Jacobi rules when n is small.

For different pairs of the parameters a and b and various values of n, we used [20] and the algorithm
of this paper to produce n-point Gauss-Jacobi quadrature rules and compared the running times
of these two algorithms. Figure 3 displays the results.

n Running time of the Running time of Ratio Maximum relative
algorithm of Section 4 the algorithm of [21] error in weights

101 4.45×10−04 9.62×10−03 2.15×10+01 4.47×10−15

128 4.00×10−04 9.26×10−03 2.31×10+01 4.78×10−15

256 4.54×10−04 1.15×10−02 2.54×10+01 5.76×10−15

512 5.34×10−04 2.14×10−02 4.00×10+01 7.04×10−15

1,024 6.64×10−04 2.27×10−02 3.41×10+01 6.26×10−15

2,048 8.86×10−04 3.00×10−02 3.39×10+01 6.99×10−15

4,096 1.31×10−03 5.28×10−02 4.01×10+01 7.45×10−15

8,192 2.15×10−03 8.76×10−02 4.06×10+01 7.99×10−15

16,384 3.80×10−03 2.68×10−01 7.07×10+01 1.07×10−14

32,768 7.03×10−03 4.45×10−01 6.33×10+01 8.29×10−15

65,536 1.35×10−02 7.91×10−01 5.85×10+01 9.23×10−15

131,072 2.64×10−02 1.61×10+00 6.10×10+01 1.04×10−14

262,144 5.22×10−02 4.14×10+00 7.92×10+01 8.44×10−15

524,288 1.03×10−01 9.06×10+00 8.74×10+01 1.09×10−14

1,048,576 2.06×10−01 1.80×10+01 8.73×10+01 1.29×10−14

2,097,152 4.11×10−01 4.26×10+01 1.03×10+02 1.26×10−14

4,194,304 8.24×10−01 9.27×10+01 1.12×10+02 1.16×10−14

8,388,608 1.65×10+00 1.95×10+02 1.17×10+02 1.36×10−14

16,777,216 3.30×10+00 3.86×10+02 1.16×10+02 1.43×10−14

33,554,432 6.59×10+00 7.33×10+02 1.11×10+02 1.43×10−14

67,108,864 1.31×10+01 1.42×10+03 1.08×10+02 1.48×10−14

100,000,000 1.96×10+01 2.10×10+03 1.07×10+02 1.77×10−14

Table 3: The results of an experiment comparing the algorithm of [21] for the numerical calculation of Gauss-Jacobi
quadrature rules with that of Section 4. In these experiments, the parameters were taken to be a = 0 and b = −4/10.
All times are in seconds.

6.3. The Jacobi transform

In these experiments, we measured the speed and accuracy of the algorithm of Section 5 for the
application of the Jacobi transform and its inverse.

We did so in part by comparison with the algorithm of Slevinsky [33] for applying the Chebyshev-
Jacobi and Jacobi-Chebyshev transforms. The Chebyshev-Jacobi transform is the map which takes
the coefficients of the Chebyshev expansion of a function to the coefficients in its Jacobi expan-
sion and the Jacobi-Chebyshev transform is the inverse of this map. Although these are not the

23

transforms we apply, the Jacobi transform can be implemented easily by combining the method of
[33] with the nonuniform fast Fourier transform (see, for instance, [23] and [22] for an approach of
this type for applying the Legendre transform and its inverse). Other methods for applying the
Jacobi transform, some of which have lower asymptotic complexity than the algorithm of [33] and
the approach of this paper, are available. Butterfly algorithms such as [27, 28, 30] allow for the
application of the Jacobi transform and various related mappings in O pn log(n)q operations; how-
ever, existing methods are either numerically unstable or they require expensive precomputation
phases with higher asymptotic complexity. The Alpert-Rokhlin method [1] uses a multipole-like ap-
proach to apply the Chebyshev-Legendre and Legendre-Chebyshev transforms in O pnq operations.
The Legendre transform can be computed in O pn log(n)q operations by combining this algorithm
with the fast Fourier transform. This approach is extended in [25] in order to compute expansions
in Gegenbauer polynomials in O(n log(n)) operations. It seems likely that these methods can be
extended to compute expansions in more general classes of Jacobi polynomials; however, to the
authors’ knowledge no such algorithm has been published and algorithms from this class require
expensive precomputations. A further discussion of methods for the application of the Jacobi
transform and related mappings can be found in [33].

101 102 103 104 105 106 107 108

n

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

ex
ec

ut
io

n
tim

e
(s

)

Forward Jacobi transform
Inverse Jacobi transform
Slevinsky Jacobi-to-Chebyshev
Slevinsky Chebyshev-to-Jacobi

101 102 103 104 105 106 107 108

n

10−4

10−3

10−2

10−1

100

101

102

103

104

105

ex
ec

ut
io

n
tim

e
(s

)

Precomputation time
Slevinsky Jacobi-to-Chebyshev
Slevinsky Chebyshev-to-Jacobi

Figure 4: On the left is a comparison of the time required to apply the Chebyshev-Jacobi transform and its inverse
using the algorithm of [33] with the time required to apply the forward and inverse Jacobi transforms via the algorithm
of Section 5. On the right is a comparison of the cost of the precomputations for the procedure of Section 5 with the
time required to apply the Jacobi-Chebyshev map and its inverse via the algorithm of [33]. In these experiments, a
was taken to be −1/4 and b was 0.

Figure 4 and Table 4 report the results of our comparisons with the Julia implementation [32]
of Slevinsky’s algorithm. The graph on the left side of Figure 4 compares the time taken by
the algorithm of Section 5 to apply the Jacobi transform and its inverse with the time required
to apply the Chebyshev-Jacobi mapping and its inverse via [33], while the graph on the right
compares the time required by our precomputation procedure with the time required to apply the
Chebyshev-Jacobi mapping and it inverse with Slevinsky’s algorithm. We observe that cost of
our algorithm, including the precomputation stage, is less than that of [33] at relatively modest
orders. Moreover, Figure 4 strongly suggests that the asymptotic running time of our algorithm
for the application of the Jacobi transform is similar to the O

`

n log2 pnq /log plog pnqq
˘

complexity
of Slevinsky’s algorithm.

24

n Forward Jacobi Chebyshev-Jacobi Ratio
transform time transform time

algorithm of Section 5 algorithm of [33]

10 6.78×10−07 1.96×10−04 2.88×10+02

16 5.10×10−07 1.78×10−04 3.49×10+02

32 2.21×10−05 1.99×10−04 9.00×10+00

64 3.08×10−05 3.86×10−04 1.25×10+01

128 2.74×10−05 5.65×10−04 2.05×10+01

256 4.52×10−05 8.33×10−04 1.84×10+01

512 8.46×10−05 2.77×10−03 3.27×10+01

1,024 1.56×10−04 5.71×10−03 3.64×10+01

2,048 3.44×10−04 1.53×10−02 4.46×10+01

4,096 9.41×10−04 2.75×10−02 2.92×10+01

8,192 2.35×10−03 8.75×10−02 3.70×10+01

16,384 6.08×10−03 2.12×10−01 3.48×10+01

32,768 1.43×10−02 5.08×10−01 3.55×10+01

65,536 2.92×10−02 9.91×10−01 3.39×10+01

131,072 7.36×10−02 3.25×10+00 4.42×10+01

262,144 1.35×10−01 4.47×10+00 3.30×10+01

524,288 4.50×10−01 1.54×10+01 3.43×10+01

1,048,576 1.05×10+00 2.28×10+01 2.15×10+01

2,097,152 2.72×10+00 6.70×10+01 2.45×10+01

4,194,304 8.55×10+00 1.44×10+02 1.69×10+01

8,388,608 1.74×10+01 3.33×10+02 1.91×10+01

16,777,216 3.67×10+01 5.80×10+02 1.57×10+01

33,554,432 7.92×10+01 1.61×10+03 2.03×10+01

67,108,864 1.66×10+02 3.03×10+03 1.81×10+01

100,000,000 1.52×10+02 5.25×10+03 3.43×10+01

Table 4: A comparison of the time required to apply the Chebyshev-Jacobi transform using the algorithm of [33]
with the time required to apply the forward Jacobi transform via the algorithm of Section 5. Here, a was taken to
be 1/4 and b was −4/10. All times are in seconds.

Owing to the loss of accuracy which arises when the Formula (2) is used to evaluate Jacobi poly-
nomials of large degrees, we expect the error in the Jacobi transform of Section 5 to increase as the
order of the transform increases. This is indeed the case, at least when it is applied to functions
whose Jacobi coefficients do not decay or decay slowly. However, when the transform is applied
to smooth functions, whose Jacobi coefficients decay rapidly, the errors grow more slowly than in
the general case. This is the same as the behavior of the algorithms [33] and [23]. We carried out
a further set of experiments to illustrate this effect. In particular, we applied the forward Jacobi
transform followed by the inverse Jacobi transform to vectors which decay at various rates. We
constructed test vectors by choosing their entries from a Gaussian distribution and then scaling
them so as to achieve a desired rate of decay. Figure 5 reports the results. It also contains a plot
of the rank of the matrix (107) as a function of n for various pairs of the parameters a and b.

We also compared the time required to apply the forward Jacobi transform via the algorithm of

Section 5 with the time required to do so by evaluating the matrix J (a,b)
n using the well-known

three-term recurrence relations and then applying it directly (we refer to this as the “brute force

25

102 103 104 105 106 107 108

N

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

m
ax

im
um

ab
so

lu
te

er
ro

r

O (1)

O
(
n−1/2

)

O
(
n−1
)

O
(
n−2
)

102 103 104 105 106 107 108

N

101

102

nu
m

er
ic

al
ra

nk

a= 0.49, b= 0.20
a=-0.25, b= 0.00
a=-0.40, b=-0.40
a= 0.25, b=-0.20

Figure 5: On the left are plots of the largest absolute errors which occurs when the composition of the inverse and
forward Jacobi transforms of Section 5 are applied to vectors whose coefficients decay at varying rates. For these
experiments, a = −1/4 and b = 0. On the right are plots of the rank of the matrix (107) as a function of Nmax for
various values of the parameters a and b.

102 103 104 105

N

10−3

10−2

10−1

100

101

102

103

to
ta

lt
im

e
(s

)

Fast algorithm total time
Brute force total time

102 103 104 105

N

10−5

10−4

10−3

10−2

10−1

100

101

to
ta

lt
im

e
(s

)

Fast algorithm apply time
Brute force apply time

Figure 6: A comparison of the time take to apply the Forward Jacobi transform via “brute force” with the time
required to do so via the algorithm of Section 5. On the left is a plot of the total time taken. For the algorithm of
Section 5 this includes the time taken by the precomputation phase, while for “brute force” technique this includes
the time required to evaluate the entries of the matrix J (a,b)

n via three-term recurrence relations. On the right is a
comparison of the application times only. Here, the parameters are a = 1/4 and b = −1/3.

technique”). This is the methodology we recommend for transforms of small orders. In these
experiments, the parameters a and b were taken to be a = 1/4 and b = −1/3. Figure 6 shows the
results.

7. Conclusion and Further Work

We have described a suite of fast algorithms for forming and manipulating expansions in Jacobi
polynomials. They are based on the well-known fact that Jacobi’s differential equation admits

26

a nonoscillatory phase function. Our algorithms use numerical methods, rather than asymptotic
expansions, to evaluate the phase function and other functions related to it. We do so in part
because existing asymptotic expansions for the phase function do not suffice for our purposes (they
either not sufficiently accurate or they are not numerically viable), but also because such techniques
can be easily applied to any family of special functions satisfying a second order differential equation
with nonoscillatory coefficients. We will report on the application of our methods to other families
of special functions at a later date.

It would be of some interest to accelerate the procedure of Section 3 for the construction of the
nonoscillatory phase and amplitude functions. There are a number obvious mechanisms for doing
so, but perhaps the most promising is the observation that the ranks of matrices with entries

ψ(a,b)(tj , νk) (121)

and

M (a,b)(tj , νk) (122)

are quite low — indeed, in the experiments of this paper they were never observed to be larger
than 40. This means that, at least in principle, the nonoscillatory phase and amplitude can be
represented via 40 × 40 matrices, and that a carefully designed spectral scheme which takes this
into account could compute the 40 required solutions of the ordinary differential equation (41)
extremely efficiently.

The authors are investigating such an approach to the construction of ψ(a,b) and M (a,b).

As the parameters a and b increase beyond 1
2 , our algorithms become less accurate, and they

ultimately fail. This happens because for values of the parameters a and b greater than 1
2 , the

Jacobi polynomials have turning points and the crude approximation (14) becomes inadequate. An
obvious remedy is to use a more sophisticated approximations for ψ(a,b) and M (a,b). The authors
will report on extensions of this work which make use of such an approach at a later date.

8. References

[1] Alpert, B. K., and Rokhlin, V. A fast algorithm for the evaluation of Legendre expansions.
SIAM Journal on Scientific and Statistical Computing 12, 1 (1991), 158–179.

[2] Baratella, P., and Gatteschi, L. The bounds for the error term of an asymptotic ap-
proximation of Jacobi polynomials. In Orthogonal Polynomials and their Applications, Lecture
Notes in Mathematics 1329. 1988, pp. 203–221.

[3] Bogaert, I. Iteration-free computation of Gauss-Legendre quadrature nodes and weights.
SIAM Journal on Scientific Computing 36 (2014), A1008–A1026.

[4] Bogaert, I., Michiels, B., and Fostier, J. O(1) computation of Legendre polynomials
and Gauss-Legendre nodes and weights for parallel computing. SIAM Journal on Scientific
Computing 34 (2012), C83–C101.

[5] Bremer, J. On the numerical calculation of the roots of special functions satisfying second
order ordinary differential equations. SIAM Journal on Scientific Computing 39 (2017), A55–
A82.

27

[6] Cands, E., Demanet, L., and Ying, L. Fast computation of fourier integral operators.
SIAM Journal on Scientific Computing 29, 6 (2007), 2464–2493.

[7] Cheng, H., Gimbutas, Z., Martinsson, P., and Rokhlin, V. On the compression of low
rank matrices. SIAM Journal on Scientific Computing 26 (2005), 1389–1404.

[8] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.13 of 2016-
09-16. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[9] Driscoll, T. A., Hale, N., and Trefethen, L. N. Chebfun Guide. Pafnuty Publications,
Oxford, 2014.

[10] Dunster, T. M. Asymptotic approximations for the Jacobi and ultraspherical polynomials,
and related functions. Methods and Applications of Analysis 6 (1999), 281–316.

[11] Engquist, B., and Ying, L. A fast directional algorithm for high frequency acoustic scat-
tering in two dimensions. Commun. Math. Sci. 7, 2 (2009), 327–345.

[12] Erdélyi, A., et al. Higher Transcendental Functions, vol. I. McGraw-Hill, 1953.

[13] Erdélyi, A., et al. Higher Transcendental Functions, vol. II. McGraw-Hill, 1953.

[14] Frenzen, C., and Wong, R. A uniform asymptotic expansion of the Jacobi polynomials
with error bounds. Canadian Journal of Mathematics 37 (1985), 979–1007.

[15] Frigo, M., and Johnson, S. G. The design and implementation of FFTW3. Proceedings
of the IEEE 93, 2 (2005), 216–231. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[16] Glaser, A., Liu, X., and Rokhlin, V. A fast algorithm for the calculation of the roots of
special functions. SIAM Journal on Scientific Computing 29 (2007), 1420–1438.

[17] Greengard, L. Spectral integration and two-point boundary value problems. SIAM Journal
of Numerical Analysis 28 (1991), 1071–1080.

[18] Greengard, L., and Lee, J.-Y. Accelerating the nonuniform fast fourier transform. SIAM
Review 46, 3 (2004), 443–454.

[19] Hahn, E. Asymptotik bei Jacobi-polynomen und Jacobi-funktionen. Mathematische
Zeitschrift 171 (1980), 201–226.

[20] Hale, N., and Townsend, A. Fast Gauss Quadrature library. http://github.com/

ajt60gaibb/FastGaussQuadrature.jl.

[21] Hale, N., and Townsend, A. Fast and accurate computation of Gauss-Legendre and Gauss-
Jacobi quadrature nodes and weights. SIAM Journal on Scientific Computing 35 (2013),
A652–A674.

[22] Hale, N., and Townsend, A. A fast, simple and stable Chebyshev-Legendre transform
using an asymptotic formula. SIAM Journal on Scientific Computing 36 (2014), A148–A167.

28

[23] Hale, N., and Townsend, A. A fast FFT-based discrete Legendre transform. IMA Journal
of Numerical Analysis 36 (2016), 1670–1684.

[24] Halko, N., Martinsson, P. G., and Tropp, J. A. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review
53 (2011), 217–288.

[25] Keiner, J. Computing with expansions in Gegenbauer polynomials. SIAM Journal on Sci-
entific Computing 31 (2009), 2151–2171.

[26] Li, Y., and Yang, H. Interpolative butterfly factorization. SIAM Journal on Scientific
Computing 39, 2 (2017), A503–A531.

[27] Li, Y., Yang, H., Martin, E., Ho, K. L., and Ying, L. Butterfly factorization. SIAM
Journal on Multiscale Modeling and Simulation 13 (2015), 714–732.

[28] Li, Y., Yang, H., and Ying, L. Multidimensional butterfly factorization. Applied and
Computational Harmonic Analysis 44, 3 (2018), 737 – 758.

[29] Merkle, M. Completely monotone functions: a digest. In Analytic Number Theory, Approx-
imation Theory, and Special Functions. Springer, New York, NY, 2014.

[30] ONeil, M., Woolfe, F., and Rokhlin, V. An algorithm for the rapid evaluation of special
function transforms. Applied and Computational Harmonic Analysis 28 (2010), 203–226.

[31] Ruiz-Antolin, D., and Townsend, A. A nonuniform fast Fourier transform based on low
rank approximation. SIAM Journal on Scientific Computing 40 (2018), A529–A547.

[32] Slevinsky, M. Fast Transforms library. https://github.com/MikaelSlevinsky/

FastTransforms.jl.

[33] Slevinsky, R. On the use of Hahn’s asymptotic formula and stabilized recurrence for a fast,
simple and stable Chebyshev-Jacobi transform. IMA Journal of Numerical Analysis 38 (2017),
102–124.

[34] Szegö, G. Orthogonal Polynomials. American Mathematical Society, Providence, Rhode
Island, 1959.

[35] Trefethen, N. Approximation Theory and Approximation Practice. Society for Industrial
and Applied Mathematics, 2013.

[36] Watson, G. N. A Treatise on the Theory of Bessel Functions, second ed. Cambridge Uni-
versity Press, New York, 1995.

[37] Yang, H. A unified framework for oscillatory integral transform: When to use NUFFT or
butterfly factorization? preprint (2018).

29

