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1 Toric varieties

Let A =2 Z" be a free abelian group and let k[A] be its group algebra. Any (split) torus T is of the
form Spec k[A]. We may recover A as the weight lattice Homgyp (T, G,,). An action of T' on an
affine variety Spec R is equivalent to the data of a A-grading on the k-algebra R. A variety X is
called toric if there is a torus acting on X with a dense open orbit.

Let’s see how to construct affine toric varieties. Let M be a submonoid of A which is finitely
generated. The monoid algebra k[M] is then a finitely generated subalgebra of k[A], and Spec k[M]
is an affine toric variety. The T-action is determined by the canonical A-grading on M. If ZM C A
denotes the subgroup of A generated by M, then Spec k[ZM] < Spec k[M] is an open subvariety
isomorphic to a torus, which is an orbit of the T-action and the image of the map T — Spec k[M].
(We can identify this map with the action of T on the image of the identity.) It turns out that
every affine toric variety X is of this form.

Example 1.1.

Let A = Z and let M be the additive submonoid generated by 2 and 3. Then T = Spec k[A] =
Spec k[t,t~1] and Spec k[M] = Spec k[t?,t3]. This toric variety is isomorphic the cuspidal curve
Spec klz, 4]/ (42 — 2°) C A”.

Let A = Z? and let M be the additive submonoid generated by (1,0) and (0,1). Then
T = Spec k[z*!, y*!] = G2, and Spec k|M] = Spec k[z,y] = A2.

Of particular importance for us are the affine toric varieties which are normal varieties. These
may be characterized as the Spec k[M] such that M is a saturated submonoid of ZM: if am € M
for some a € N and m € ZM, then m € M. We care about these because normal toric varieties
can all be glued together from normal affine toric varieties in a nice combinatorial way. The idea
will be to note that saturated submonoids of A are determined by their cones: the convex subset of
Q ® A consisting of non-negative linear combinations of the elements of M. If 0 = cone(M), then
o N A is the minimal saturated submonoid of ZM containing M. We will find it more convenient
to work with the dual cone: if o is a cone in Q ® A then its dual cone is

o = {f € Hom(A,Q) | VA € o, (f,A) >0} C Hom(A, Q).

Similarly, if we have a cone 0 C Hom(A, Q), we can define 0¥ C A®Q. We write X, = Spec k[ANc"]
for the associated normal affine toric variety. If a cone ¢’ is contained in o, then there is an induced
map X, — X,. If ¢/ is a face of o, then this map is an open immersion. In other words, we can



think of the faces of o as open affine toric subvarieties of X,. The analogy extends further: if we
have two cones 01,02 C Hom(A,Q), and ¢/ = 01 N oy is a face of both o1 and o2, then there is a
toric variety X{, »,) which is glued together from a copy of X,, and X,,, glued along X, . More
generally, if ¥ is any fan in Hom(A, Q) (a collection of cones intersecting along their faces), then
there is a toric variety Xs. Remarkably, every normal toric variety arises from this construction,
by the following result.

Theorem 1.2: (Sumihiro).

If X is a normal variety with an action of a torus 7', then X has an open cover by T-stable
affine subvarieties.

Example 1.3.

Set A =Z and let 01 = Q>0 and 02 = Q< be cones in Hom(A, Q) = Q. Then 0y = Q>¢ and
oy = Q< give rise to toric varieties X,, = Speck|t] and X,, = Spec k[t 1], respectively. The
intersection o1 N oy = {0} has dual cone (01 No2)" = Q. Hence the toric variety X(,, o,} is
given by gluing X,,, and X,, along their mutual open subvariety X,,no, = Speck[t,t~1]. We
conclude that X, ,,1 = P

Example 1.4.

Consider P?, with homogeneous coordinates [z : 21 : x3] and field of rational functions
k(z,y), where z = i—;,y = i—; We can describe P? as a toric variety, with open torus
T = Spec k[z*!,y*!]. There are three maximal open affine T-stable subsets:
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U, = Speck[z,y], Uy = Speck[z™!, 271y, Us = Speck[zy™',y~1].

We depict the lattice A = Z2 on the left below, with the subsets associated to the three open
subvarieties. On the right we show the fan ¥ in the dual space Hom(A, Q).




We note that each of Uy, Us, and Uz contain a unique point fixed by T'. More generally,
for each o € ¥, the open affine toric variety X, contains a unique closed T-orbit.

We can deduce geometric properties of Xy from the combinatorial properties of the fan . For
instance, Xy is smooth if and only if every X, is smooth, and X, is smooth if and only if the cone
o is simplicial and unimodular. Furthermore, the variety Xy is proper over Speck if and only if
¥ is a complete fan (meaning the union of its cones is all of Hom(A,Q)). We can also describe
(toric) line bundles in a combinatorial way, and hence detect the existence of ample line bundles
combinatorially, which tells us when Xy, is quasi-projective. If X, is proper, then toric line bundles
correspond to polytopes which are the convex hulls of points in A, with normal fan coarsening
3, up to translation. More generally, on any normal toric variety Xx, the Cartier divisors whose
underlying Weil divisor is T-invariant correspond to piecewise-linear functions on ¥ (linear on each
cone), such that each linear subfunction is determined by an element of A. Two such Cartier divisors
are linearly equivalent iff they differ by a global linear function.

2 Spherical varieties

Spherical varieties generalize (normal) toric varieties. Fix a reductive group G and a Borel subgroup
B.

Definition 2.1.

A spherical variety is a normal (irreducible) variety X with an action of G such that B has
an orbit which is an open subvariety of X.

Example 2.2.
Some familiar spaces are spherical varieties:
e Toric varieties
e Flag varieties/Grassmannians: spaces of the form G/P for some parabolic subgroup P

e Symmetric spaces: spaces of the form G/H where H is the fixed points of an involution
on G

e Horospherical varieties: spaces of the form G/H where H contains the unipotent radical
of a Borel subgroup

As the examples indicate, it is already interesting to examine the spherical varieties which are
homogeneous, that is, of the form G/H for some subgroup H of G. If X is any spherical variety with
open Borel orbit X , then GX will be a homogeneous spherical variety. For tori (for which B = G),
any homogeneous spherical varieties are also tori. For arbitrary G, we may give a similar explicit
description of X as the product of a torus and an affine space. Specifically, there is a maximal
subgroup stabilizing X (necessarily parabolic, since it will contain B) denoted P(X), the parabolic
stabilizer of X. Then the unipotent radical U(X) of P(X) acts freely on X, and given a point in
X and a Levi splitting of P(X), there is an isomorphism X > Ay x U(X), where Ax is a torus
quotient of P(X) (determined by X).



Example 2.3.

Let us examine the homogeneous spherical varieties for G = PGLy. A subgroup H of G defines
a spherical variety if and only if HB is open in PGLy if and only if H has an open orbit in
PGLy/B = P'. When H is a finite subgroup this will certainly not be the case, but if H has
positive dimension then this turns out to be true (since otherwise the connected component of
H is contained in all conjugates of B, but this intersection is trivial).

Up to conjugation, the positive-dimensional subgroups of PGLs are the following:

(G) PGLg, in which case G/H is a point,
(T) G, the pointwise stabilizer of two points in P!, so G/H = P! x P1\ A,

(N) The normalizer Ng(G,,) & POy 2 Z/2 x G, the stabilizer of a set of two points in P!,
so that G/H = (P! x P\ A)/(Z/2),

(U) S-U, where S is a subgroup of the group of diagonal matrices G,,, and U = G, is the

elements of the form Ll) ﬂ . When H = U, the quotient G/H is a G,,-bundle over P!.

We say that G/H is horospherical if H contains the unipotent radical of some Borel; types (G)
and (U) shown here are horospherical. )
The parabolic stabilizers and descriptions of X in these four cases are

(G) P(X)=PGLy; X =,

(T) P(X)=B; X = B~ G,, x Al

(N) P(X)=B; X = B=G,, x Al,

(U) P(X)=B; X =B/S ~G,,/S x AL.

As a non-example, consider GL,, /T. Since T' does not have an open orbit on the variety
GL,, /B of complete flags in n-space for n > 2 (consider dimensions), there is no open B-orbit
on GL, /T in this case, so this is not a spherical variety.

If X has a G action, then the rings of regular functions and of rational functions both admit an
action of G by pre-composition. If G is reductive, then these rings decompose as G-modules into a
direct sum of irreducible representations. Note that for a torus T' = Spec k[A], the irreducible T-
modules are parametrized by weights in A, and k[A] decomposes into one-dimensional weight spaces,
with exactly one irreducible appearing for each weight. We say a G-module is multiplicity-free if
each irrep appears at most once in the decomposition.

a B
Theorem 2.4: Equivalent formulations of spherical varieties; [Gandini, Theorem
2.8].

The following are equivalent, for a normal irreducible variety X acted on by G:

e X is spherical




e Any B-invariant rational function on X is constant
e X has finitely many B-orbits

e If X is quasi-projective: for every G-linearized line bundle £ on X, the global sections
of £ is a multiplicity-free G-module

e If X is quasi-affine: the coordinate ring k[X] is a multiplicity-free G-module
If X = G/H is homogeneous, then these are further equivalent to:

e Every equivariant completion of G/H contains only finitely many orbits

e The H-action on any irreducible G-module is multiplicity-free for characters of H.

The smooth affine spherical varieties have a particularly nice description:

,
Theorem 2.5: [Knop—Steirteghem, Cor 2.2].

If X is a smooth affine spherical variety, then X = G x® V for some reductive subgroup
H of G with G/H spherical and V is a module for H which is itself a spherical variety. In
particular, if G/H is smooth and affine, then H is reductive.
Furthermore a smooth affine homogeneous spherical variety is determined by its weight
monoid AE/H inside Ag/ -
A J

The analog of the decomposition of normal toric varieties into open affine toric subvarieties is
the following:

Theorem 2.6.

Let X be a spherical variety and « € X (k). Then there is an open affine B-stable subset
intersecting the G-orbit through x.

3 Colored fans

Here we give a combinatorial description of spherical varieties containing G JH. If X is a spherical
variety, then we fix g € X (k) generating the open B-orbit X. If H is the stabilizer of zp, then
Gzo = G/H is spherical.

For a representation V of a group K, we write V(%) for the subset of nonzero vectors on which
K acts via a character. Let T = Speck[A] be a maximal torus of B. Recall that the choice of
T C B C G determines a set of dominant weights AT C A.

Definition 3.1.
The weight lattice of X is

Ax = {\ € A | X is the weight of a function in k(X)®)}.



This coincides with the weights of the torus Ax. The weight monoid of X is
A% = {\ € AT | X is the weight of a function in k[X]®)}.

We write Qx = Hom(Ax, Q).

There is an exact sequence
0— kX = k(X)P) 5 Ax —0.

Normality of X implies that A; is a saturated submonoid of Ay, hence is determined by its dual
cone. Notice that Ay is a birational invariant, so if the G-orbit of the open Borel orbit is G/H,
then AX = AG/H

Definition 3.2.

We write
D(X) = {B-stable prime divisors of X}

A(X) ={D € D(X) | D is not G-stable}.
The elements of A(X) are called the colors of X.

The elements of D(X) are exactly the irreducible components of X \ X. The elements of
A(X) are exactly those D € D(X) such that DN G/H # @. As a result, the restriction map
A(X) — A(G/H) is a bijection. For each D € D(X) we get an element px (D) € Hom(Ax,Z) via

(px(D),\) = vp(fr),

where fy € k(X)P) has weight A\ and where vp(fy) is the order of vanishing of f along D (well-
defined by normality). More generally, we can define px(v) € Qx for any valuation v : k(X) —
QU {oo} invariant under the action of G. Let V(X) denote the set of all G-invariant valuations on
k(X).

Theorem 3.3.

The map px : V(X) — Qx is injective; its image is a cone in Qx.

Remark 3.4. A homogeneous spherical variety is horospherical iff V(X) = Qx.

Example 3.5.

Consider G = PGLy and H = T = G, = Speck[A] the maximal torus. Then G/H is
isomorphic to P* x P\ A. Since the associated parabolic P(G/H) = B, and the dimension
of G/H is two, we find that X G, x Al. The torus G,, acts freely on X so Ax =T and
Ax = A. We compute

k[PGL2/T] = k[PGL2)” = €D Vin,-m @ (V5 )T = €D Vin—m»

m>0 m>0

SO A}; = AT, the set of dominant weights for PGLy. (Here V,, _,,, denotes the irreducible



GL; representation of highest weight (m, —m); these exhaust the irreps of PGL, are self-dual,
and each have a one dimensional subspace of T-invariants.) It will be convenient to have
an explicit highest weight vector for one of the nontrivial representations. We can take the

cd .

—4—; this gives a regular function on PGLy /T which is

function sending a matrix {CCL Z} to

a B-eigenvector of weight (1, —1).
The colors of G/H are its B-stable prime divisors. There are just three B-orbits on X. If
p € P! is the unique point fixed by B, then the orbits are

Dy = (P' —{p}) x {p}, D2:={p} x (' —{p}), (P'—{p})x (P'—{p})

The first two are divisors and the last is the open orbit. Neither divisor is G-stable. So our

colors are
A(G/H) = {D1, D2}

Since X is not horospherical, V(X) is not all of Qx. Furthermore it is nonzero, since there

is a G-invariant valuation v from the divisor P! <5 P! x P! (noting that k(P! x P!) = k(X)).
Let us pair v with our highest weight function above. We want to find the order of the pole
of Z 2 — —£— as the homogeneous coordinate [a : ¢] approaches [b : d], which we find to
be 1. Hence v(f) = —1. Since V(X) must be a ray in this case, ¥ must generate V(X), so we
conclude that
V(X)={f:A—=Q] f(AT) <0}.
Finally, we compute the vectors px (D) and px(Dz). In this case we want to compute

the order of vanishing of f = — dc_dbc on the divisors Dy and Dy. We compute vp, (f) = 1 and

VDz(f) =1

Call a spherical embedding G/H < X a simple embedding if it has a unique closed orbit Y.
Write Dy (X) for the B-stable divisors D € D(X) such that Y C X. We can associate a set of
colors to Y C X by

Ay (X)={DNG/H € D(G/H) | D € Dy (X) which is not G-stable}.
We can also associate a cone Cy (X) in Q(G/H), which is generated by

{px(D) | D e Dy(X) is G—stable} pr(Ay(X)).

-
Theorem 3.6.

Simple embeddings up to isomorphism are in bijection with (strictly convex) colored cones: a
cone C C Q(G/H) and a subset F C A(G/H) satisfying:

e C is a convex cone generated by p(F) and finitely many elements of V(G/H),
e The interior C° has nonempty intersection with V(G/H), and

e (C is strictly convex, and 0 & p(F).




See Gandini’s survey for many more examples. We can also classify the embeddings with multiple
closed orbits.

-
Theorem 3.7.

Embeddings of G/H — X up to isomorphism are in bijection with (strictly convex) colored
fans: a nonempty set § of strictly convex colored cones such that:

e Every face of a colored cone in § belongs to §, and

e For all v € V(G/H) there is at most one colored cone (C,F) € § such that v € C°.

o v

We can write Xz for the corresponding spherical variety. Then X3 is complete if and only if
the union of all of the cones contains V(G/H). The embedding is called toroidal if the set of colors
is empty. Every spherical homogeneous space admits a complete toroidal embedding.

Example 3.8.

Return to G = PGLy acting on G/H = P! x P1\ A.
The spherical variety X = P! x P! gives a simple embedding of G/H, with unique closed

orbit ¥ = P1 <& P! x P!. Hence there should be a colored cone associated to X. Tts colors
should be the B-invariant prime divisors containing Y and intersecting G/H, of which there
are none. So Ay (X) = &. The cone Cy (X) is generated by px applied to the G-stable prime
divisors containing Y’; the unique such is Y itself. Hence the cone is generated by px (Y"), which
we have previously computed to be the unique generator of V(G/H).

Note that this is the only possible (strictly convex) colored cone for G/H! Since both
possible colors for G/H generate the cone which is the negation of V(G/H), there is no way to
build a strictly convex cone containing any points of V(G/H) in its interior, unless we use no
colors. If we do use no colors, the unique cone containing points of V(G/H) in its interior is
V(G/H) itself. Hence there is exactly one nonzero (strictly convex) colored cone, and therefore
exactly one nontrivial colored fan for G/H. So the only spherical embeddings of G/H are the
trivial one, and G/H — P! x P

Write A = AG/H and Q = QG/H

Definition 3.9.

The spherical roots of G/H, denoted X,y are the primitive elements in A generating an
extremal ray of —VV.

The little Weyl group of G/H is the Weyl group W¢, g of the root system generated by
Y m; equivalently, the subgroup of GL(Q) generated by reflections about the codimension 1
faces of V.

-
Theorem 3.10.
The cone V(G/H) is a fundamental domain for the action of the little Weyl group on Q




L (except in characteristic 2). J

Definition 3.11.

If it exists, then the wonderful embedding of G/H is the unique complete, simple, toroidal,
smooth embedding G/H — X.

f Theorem 3.12.
G/H admits a wonderful embedding iff ¥ is a basis of A.
.

Example 3.13.

The embedding PGL3y/G,, = P! x P! studied in earlier examples is a wonderful embedding.
The spherical roots are the unique basis for A.

4 Gaitsgory—Nadler theorem on G(O) orbits

Gaitsgory and Nadler give a description of V(G/H) generalizing the description of fundamental
coweights via orbits on the affine Grassmannian (a key input to the geometric Satake equivalence).
Let O = CJ[z]] and K = C((x)). If T = Speck[A] is a torus, then the T(K) points include those
coming from coweights G,, — T. Hence we can identify the coweight lattice AY = Hom(A,Z) as a
subset of T(K). In fact each T'(O) orbit in T(K) contains a unique such coweight. More generally,
the coweights of the associated Cartan Ag /g are a subset of (G/H)(K) and we have:

-
Theorem 4.1.

If G is reductive and H is a subgroup, then the following are equivalent:
e G/H is a spherical variety
e H(K) acts on the affine Grassmannian Grg with countably many orbits

e G(0) acts on (G/H)(K) with countably many orbits.

-
Theorem 4.2: [Gaitsgory—Nadler, Thm 3.3.1].

Each element of (G/H)(K) contains a unique element of V(G/H) N AY in the G(O) orbit
through it, and every such element is realized.

o v

In other words, we can identify the G(O) orbits in (G/H)(K) with (the integral points of) the
cone V(G/H) C Q.



Example 4.3.

Consider the group G x G with H the diagonal embedding of G. This is a symmetric space,
since G is the fixed points of the evident Z/2 action. In this case the Gaitsgory—Nadler theorem
says that

(G(0) x GO)\(G(K) x G(K))/G(K) = G(O)\G(K)/G(O) = A,

which is a key input to the geometric (and classical) Satake equivalence.
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