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1 Toric varieties

Let Λ ∼= Zn be a free abelian group and let k[Λ] be its group algebra. Any (split) torus T is of the
form Spec k[Λ]. We may recover Λ as the weight lattice HomGrp(T,Gm). An action of T on an
affine variety SpecR is equivalent to the data of a Λ-grading on the k-algebra R. A variety X is
called toric if there is a torus acting on X with a dense open orbit.

Let’s see how to construct affine toric varieties. Let M be a submonoid of Λ which is finitely
generated. The monoid algebra k[M ] is then a finitely generated subalgebra of k[Λ], and Spec k[M ]
is an affine toric variety. The T -action is determined by the canonical Λ-grading on M . If ZM ⊆ Λ
denotes the subgroup of Λ generated by M , then Spec k[ZM ] ↪→ Spec k[M ] is an open subvariety
isomorphic to a torus, which is an orbit of the T -action and the image of the map T → Spec k[M ].
(We can identify this map with the action of T on the image of the identity.) It turns out that
every affine toric variety X is of this form.

Example 1.1.

Let Λ = Z and let M be the additive submonoid generated by 2 and 3. Then T = Spec k[Λ] =
Spec k[t, t−1] and Spec k[M ] = Spec k[t2, t3]. This toric variety is isomorphic the cuspidal curve
Spec k[x, y]/(y2 − x3) ⊆ A2.

Let Λ = Z2 and let M be the additive submonoid generated by (1, 0) and (0, 1). Then
T = Spec k[x±1, y±1] = G2

m and Spec k[M ] = Spec k[x, y] = A2.

Of particular importance for us are the affine toric varieties which are normal varieties. These
may be characterized as the Spec k[M ] such that M is a saturated submonoid of ZM : if am ∈ M
for some a ∈ N and m ∈ ZM , then m ∈ M . We care about these because normal toric varieties
can all be glued together from normal affine toric varieties in a nice combinatorial way. The idea
will be to note that saturated submonoids of Λ are determined by their cones: the convex subset of
Q⊗ Λ consisting of non-negative linear combinations of the elements of M . If σ = cone(M), then
σ ∩ Λ is the minimal saturated submonoid of ZM containing M . We will find it more convenient
to work with the dual cone: if σ is a cone in Q⊗ Λ then its dual cone is

σ∨ := {f ∈ Hom(Λ,Q) | ∀λ ∈ σ, ⟨f, λ⟩ ≥ 0} ⊆ Hom(Λ,Q).

Similarly, if we have a cone σ ⊆ Hom(Λ,Q), we can define σ∨ ⊆ Λ⊗Q. We writeXσ = Spec k[Λ∩σ∨]
for the associated normal affine toric variety. If a cone σ′ is contained in σ, then there is an induced
map Xσ′ → Xσ. If σ′ is a face of σ, then this map is an open immersion. In other words, we can
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think of the faces of σ as open affine toric subvarieties of Xσ. The analogy extends further: if we
have two cones σ1, σ2 ⊆ Hom(Λ,Q), and σ′ = σ1 ∩ σ2 is a face of both σ1 and σ2, then there is a
toric variety X{σ1,σ2} which is glued together from a copy of Xσ1

and Xσ2
, glued along Xσ′ . More

generally, if Σ is any fan in Hom(Λ,Q) (a collection of cones intersecting along their faces), then
there is a toric variety XΣ. Remarkably, every normal toric variety arises from this construction,
by the following result.

Theorem 1.2: (Sumihiro).

If X is a normal variety with an action of a torus T , then X has an open cover by T -stable
affine subvarieties.

Example 1.3.

Set Λ = Z and let σ1 = Q≥0 and σ2 = Q≤0 be cones in Hom(Λ,Q) ∼= Q. Then σ∨
1 = Q≥0 and

σ∨
2 = Q≤0 give rise to toric varieties Xσ1 = Spec k[t] and Xσ2 = Spec k[t−1], respectively. The

intersection σ1 ∩ σ2 = {0} has dual cone (σ1 ∩ σ2)
∨ = Q. Hence the toric variety X{σ1,σ2} is

given by gluing Xσ1
and Xσ2

along their mutual open subvariety Xσ1∩σ2
= Spec k[t, t−1]. We

conclude that X{σ1,σ2}
∼= P1.

Example 1.4.

Consider P2, with homogeneous coordinates [x0 : x1 : x2] and field of rational functions
k(x, y), where x = x1

x0
, y = x2

x0
. We can describe P2 as a toric variety, with open torus

T = Spec k[x±1, y±1]. There are three maximal open affine T -stable subsets:

U1 = Spec k[x, y], U2 = Spec k[x−1, x−1y], U3 = Spec k[xy−1, y−1].

We depict the lattice Λ = Z2 on the left below, with the subsets associated to the three open
subvarieties. On the right we show the fan Σ in the dual space Hom(Λ,Q).

σ1

σ2

σ3

σ∨
1

σ∨
2

σ∨
3
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We note that each of U1, U2, and U3 contain a unique point fixed by T . More generally,
for each σ ∈ Σ, the open affine toric variety Xσ contains a unique closed T -orbit.

We can deduce geometric properties of XΣ from the combinatorial properties of the fan Σ. For
instance, XΣ is smooth if and only if every Xσ is smooth, and Xσ is smooth if and only if the cone
σ is simplicial and unimodular. Furthermore, the variety XΣ is proper over Spec k if and only if
Σ is a complete fan (meaning the union of its cones is all of Hom(Λ,Q)). We can also describe
(toric) line bundles in a combinatorial way, and hence detect the existence of ample line bundles
combinatorially, which tells us when XΣ is quasi-projective. If XΣ is proper, then toric line bundles
correspond to polytopes which are the convex hulls of points in Λ, with normal fan coarsening
Σ, up to translation. More generally, on any normal toric variety XΣ, the Cartier divisors whose
underlying Weil divisor is T -invariant correspond to piecewise-linear functions on Σ (linear on each
cone), such that each linear subfunction is determined by an element of Λ. Two such Cartier divisors
are linearly equivalent iff they differ by a global linear function.

2 Spherical varieties

Spherical varieties generalize (normal) toric varieties. Fix a reductive group G and a Borel subgroup
B.

Definition 2.1.

A spherical variety is a normal (irreducible) variety X with an action of G such that B has
an orbit which is an open subvariety of X.

Example 2.2.

Some familiar spaces are spherical varieties:

• Toric varieties

• Flag varieties/Grassmannians: spaces of the form G/P for some parabolic subgroup P

• Symmetric spaces: spaces of the form G/H where H is the fixed points of an involution
on G

• Horospherical varieties: spaces of the form G/H where H contains the unipotent radical
of a Borel subgroup

As the examples indicate, it is already interesting to examine the spherical varieties which are
homogeneous, that is, of the form G/H for some subgroup H of G. If X is any spherical variety with
open Borel orbit X̊, then GX̊ will be a homogeneous spherical variety. For tori (for which B = G),
any homogeneous spherical varieties are also tori. For arbitrary G, we may give a similar explicit
description of X̊ as the product of a torus and an affine space. Specifically, there is a maximal
subgroup stabilizing X̊ (necessarily parabolic, since it will contain B) denoted P (X), the parabolic
stabilizer of X. Then the unipotent radical U(X) of P (X) acts freely on X̊, and given a point in
X̊ and a Levi splitting of P (X), there is an isomorphism X̊ ∼= AX × U(X), where AX is a torus
quotient of P (X) (determined by X).
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Example 2.3.

Let us examine the homogeneous spherical varieties for G = PGL2. A subgroup H of G defines
a spherical variety if and only if HB is open in PGL2 if and only if H has an open orbit in
PGL2/B = P1. When H is a finite subgroup this will certainly not be the case, but if H has
positive dimension then this turns out to be true (since otherwise the connected component of
H is contained in all conjugates of B, but this intersection is trivial).

Up to conjugation, the positive-dimensional subgroups of PGL2 are the following:

(G) PGL2, in which case G/H is a point,

(T) Gm, the pointwise stabilizer of two points in P1, so G/H ∼= P1 × P1 \∆,

(N) The normalizer NG(Gm) ∼= PO2
∼= Z/2⋉Gm, the stabilizer of a set of two points in P1,

so that G/H ∼= (P1 × P1 \∆)/(Z/2),

(U) S · U , where S is a subgroup of the group of diagonal matrices Gm, and U ∼= Ga is the

elements of the form

[
1 a
0 1

]
. When H = U , the quotient G/H is a Gm-bundle over P1.

We say that G/H is horospherical if H contains the unipotent radical of some Borel; types (G)
and (U) shown here are horospherical.

The parabolic stabilizers and descriptions of X̊ in these four cases are

(G) P (X) = PGL2; X̊ = ∗,

(T) P (X) = B; X̊ = B ∼= Gm × A1,

(N) P (X) = B; X̊ = B ∼= Gm × A1,

(U) P (X) = B; X̊ = B/S ∼= Gm/S × A1.

As a non-example, consider GLn /T . Since T does not have an open orbit on the variety
GLn /B of complete flags in n-space for n > 2 (consider dimensions), there is no open B-orbit
on GLn /T in this case, so this is not a spherical variety.

If X has a G action, then the rings of regular functions and of rational functions both admit an
action of G by pre-composition. If G is reductive, then these rings decompose as G-modules into a
direct sum of irreducible representations. Note that for a torus T = Spec k[Λ], the irreducible T -
modules are parametrized by weights in Λ, and k[Λ] decomposes into one-dimensional weight spaces,
with exactly one irreducible appearing for each weight. We say a G-module is multiplicity-free if
each irrep appears at most once in the decomposition.

Theorem 2.4: Equivalent formulations of spherical varieties; [Gandini, Theorem
2.8].

The following are equivalent, for a normal irreducible variety X acted on by G:

• X is spherical
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• Any B-invariant rational function on X is constant

• X has finitely many B-orbits

• If X is quasi-projective: for every G-linearized line bundle L on X, the global sections
of L is a multiplicity-free G-module

• If X is quasi-affine: the coordinate ring k[X] is a multiplicity-free G-module

If X = G/H is homogeneous, then these are further equivalent to:

• Every equivariant completion of G/H contains only finitely many orbits

• The H-action on any irreducible G-module is multiplicity-free for characters of H.

The smooth affine spherical varieties have a particularly nice description:

Theorem 2.5: [Knop–Steirteghem, Cor 2.2].

If X is a smooth affine spherical variety, then X = G ×H V for some reductive subgroup
H of G with G/H spherical and V is a module for H which is itself a spherical variety. In
particular, if G/H is smooth and affine, then H is reductive.

Furthermore a smooth affine homogeneous spherical variety is determined by its weight
monoid Λ+

G/H inside ΛG/H .

The analog of the decomposition of normal toric varieties into open affine toric subvarieties is
the following:

Theorem 2.6.

Let X be a spherical variety and x ∈ X(k). Then there is an open affine B-stable subset
intersecting the G-orbit through x.

3 Colored fans

Here we give a combinatorial description of spherical varieties containing G/H. If X is a spherical
variety, then we fix x0 ∈ X(k) generating the open B-orbit X̊. If H is the stabilizer of x0, then
Gx0

∼= G/H is spherical.
For a representation V of a group K, we write V (K) for the subset of nonzero vectors on which

K acts via a character. Let T = Spec k[Λ] be a maximal torus of B. Recall that the choice of
T ⊆ B ⊆ G determines a set of dominant weights Λ+ ⊆ Λ.

Definition 3.1.

The weight lattice of X is

ΛX = {λ ∈ Λ | λ is the weight of a function in k(X)(B)}.
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This coincides with the weights of the torus AX . The weight monoid of X is

Λ+
X = {λ ∈ Λ+ | λ is the weight of a function in k[X](B)}.

We write QX = Hom(ΛX ,Q).

There is an exact sequence

0 → k× → k(X)(B) → ΛX → 0.

Normality of X implies that Λ+
X is a saturated submonoid of ΛX , hence is determined by its dual

cone. Notice that ΛX is a birational invariant, so if the G-orbit of the open Borel orbit is G/H,
then ΛX = ΛG/H .

Definition 3.2.

We write
D(X) = {B-stable prime divisors of X}

∆(X) = {D ∈ D(X) | D is not G-stable}.

The elements of ∆(X) are called the colors of X.

The elements of D(X) are exactly the irreducible components of X \ X̊. The elements of
∆(X) are exactly those D ∈ D(X) such that D ∩ G/H ̸= ∅. As a result, the restriction map
∆(X) → ∆(G/H) is a bijection. For each D ∈ D(X) we get an element ρX(D) ∈ Hom(ΛX ,Z) via

⟨ρX(D), λ⟩ = νD(fλ),

where fλ ∈ k(X)(B) has weight λ and where νD(fλ) is the order of vanishing of f along D (well-
defined by normality). More generally, we can define ρX(ν) ∈ QX for any valuation ν : k(X) →
Q∪ {∞} invariant under the action of G. Let V(X) denote the set of all G-invariant valuations on
k(X).

Theorem 3.3.

The map ρX : V(X) → QX is injective; its image is a cone in QX .

Remark 3.4. A homogeneous spherical variety is horospherical iff V(X) = QX .

Example 3.5.

Consider G = PGL2 and H = T = Gm = Spec k[Λ] the maximal torus. Then G/H is
isomorphic to P1 × P1 \ ∆. Since the associated parabolic P (G/H) = B, and the dimension
of G/H is two, we find that X̊ ∼= Gm × A1. The torus Gm acts freely on X̊, so AX = T and
ΛX = Λ. We compute

k[PGL2/T ] = k[PGL2]
T =

⊕
m≥0

Vm,−m ⊗ (V ∗
m,−m)T =

⊕
m≥0

Vm,−m,

so Λ+
X = Λ+, the set of dominant weights for PGL2. (Here Vm,−m denotes the irreducible
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GL2 representation of highest weight (m,−m); these exhaust the irreps of PGL2, are self-dual,
and each have a one dimensional subspace of T -invariants.) It will be convenient to have
an explicit highest weight vector for one of the nontrivial representations. We can take the

function sending a matrix

[
a b
c d

]
to cd

ad−bc ; this gives a regular function on PGL2/T which is

a B-eigenvector of weight (1,−1).
The colors of G/H are its B-stable prime divisors. There are just three B-orbits on X. If

p ∈ P1 is the unique point fixed by B, then the orbits are

D1 := (P1 − {p})× {p}, D2 := {p} × (P1 − {p}), (P1 − {p})× (P1 − {p}).

The first two are divisors and the last is the open orbit. Neither divisor is G-stable. So our
colors are

∆(G/H) = {D1, D2}.

Since X is not horospherical, V(X) is not all of QX . Furthermore it is nonzero, since there

is a G-invariant valuation ν from the divisor P1 ∆
↪−→ P1 × P1 (noting that k(P1 × P1) = k(X)).

Let us pair ν with our highest weight function above. We want to find the order of the pole

of

[
a b
c d

]
7→ cd

ad−bc as the homogeneous coordinate [a : c] approaches [b : d], which we find to

be 1. Hence ν(f) = −1. Since V(X) must be a ray in this case, ν must generate V(X), so we
conclude that

V(X) = {f : Λ → Q | f(Λ+) ≤ 0}.

Finally, we compute the vectors ρX(D1) and ρX(D2). In this case we want to compute
the order of vanishing of f = cd

ad−bc on the divisors D1 and D2. We compute νD1
(f) = 1 and

νD2
(f) = 1.

Call a spherical embedding G/H ↪→ X a simple embedding if it has a unique closed orbit Y .
Write DY (X) for the B-stable divisors D ∈ D(X) such that Y ⊆ X. We can associate a set of
colors to Y ⊆ X by

∆Y (X) = {D ∩G/H ∈ D(G/H) | D ∈ DY (X) which is not G-stable}.

We can also associate a cone CY (X) in Q(G/H), which is generated by

{ρX(D) | D ∈ DY (X) is G-stable} ∪ ρX(∆Y (X)).

Theorem 3.6.

Simple embeddings up to isomorphism are in bijection with (strictly convex) colored cones: a
cone C ⊆ Q(G/H) and a subset F ⊆ ∆(G/H) satisfying:

• C is a convex cone generated by ρ(F) and finitely many elements of V(G/H),

• The interior C◦ has nonempty intersection with V(G/H), and

• C is strictly convex, and 0 ̸∈ ρ(F).
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See Gandini’s survey for many more examples. We can also classify the embeddings with multiple
closed orbits.

Theorem 3.7.

Embeddings of G/H ↪→ X up to isomorphism are in bijection with (strictly convex) colored
fans: a nonempty set F of strictly convex colored cones such that:

• Every face of a colored cone in F belongs to F, and

• For all ν ∈ V(G/H) there is at most one colored cone (C,F) ∈ F such that ν ∈ C◦.

We can write XF for the corresponding spherical variety. Then XF is complete if and only if
the union of all of the cones contains V(G/H). The embedding is called toroidal if the set of colors
is empty. Every spherical homogeneous space admits a complete toroidal embedding.

Example 3.8.

Return to G = PGL2 acting on G/H ∼= P1 × P1 \∆.
The spherical variety X = P1 × P1 gives a simple embedding of G/H, with unique closed

orbit Y = P1 ∆
↪−→ P1 × P1. Hence there should be a colored cone associated to X. Its colors

should be the B-invariant prime divisors containing Y and intersecting G/H, of which there
are none. So ∆Y (X) = ∅. The cone CY (X) is generated by ρX applied to the G-stable prime
divisors containing Y ; the unique such is Y itself. Hence the cone is generated by ρX(Y ), which
we have previously computed to be the unique generator of V(G/H).

Note that this is the only possible (strictly convex) colored cone for G/H! Since both
possible colors for G/H generate the cone which is the negation of V(G/H), there is no way to
build a strictly convex cone containing any points of V(G/H) in its interior, unless we use no
colors. If we do use no colors, the unique cone containing points of V(G/H) in its interior is
V(G/H) itself. Hence there is exactly one nonzero (strictly convex) colored cone, and therefore
exactly one nontrivial colored fan for G/H. So the only spherical embeddings of G/H are the
trivial one, and G/H ↪→ P1 × P1.

Write Λ = ΛG/H and Q = QG/H .

Definition 3.9.

The spherical roots of G/H, denoted ΣG/H are the primitive elements in Λ generating an
extremal ray of −V∨.

The little Weyl group of G/H is the Weyl group WG/H of the root system generated by
ΣG/H ; equivalently, the subgroup of GL(Q) generated by reflections about the codimension 1
faces of V.

Theorem 3.10.

The cone V(G/H) is a fundamental domain for the action of the little Weyl group on Q
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(except in characteristic 2).

Definition 3.11.

If it exists, then the wonderful embedding of G/H is the unique complete, simple, toroidal,
smooth embedding G/H ↪→ X.

Theorem 3.12.

G/H admits a wonderful embedding iff Σ is a basis of Λ.

Example 3.13.

The embedding PGL2/Gm ↪→ P1 × P1 studied in earlier examples is a wonderful embedding.
The spherical roots are the unique basis for Λ.

4 Gaitsgory–Nadler theorem on G(O) orbits

Gaitsgory and Nadler give a description of V(G/H) generalizing the description of fundamental
coweights via orbits on the affine Grassmannian (a key input to the geometric Satake equivalence).
Let O = C[[x]] and K = C((x)). If T = Spec k[Λ] is a torus, then the T (K) points include those
coming from coweights Gm → T . Hence we can identify the coweight lattice Λ∨ = Hom(Λ,Z) as a
subset of T (K). In fact each T (O) orbit in T (K) contains a unique such coweight. More generally,
the coweights of the associated Cartan AG/H are a subset of (G/H)(K) and we have:

Theorem 4.1.

If G is reductive and H is a subgroup, then the following are equivalent:

• G/H is a spherical variety

• H(K) acts on the affine Grassmannian GrG with countably many orbits

• G(O) acts on (G/H)(K) with countably many orbits.

Theorem 4.2: [Gaitsgory–Nadler, Thm 3.3.1].

Each element of (G/H)(K) contains a unique element of V(G/H) ∩ Λ∨ in the G(O) orbit
through it, and every such element is realized.

In other words, we can identify the G(O) orbits in (G/H)(K) with (the integral points of) the
cone V(G/H) ⊆ Q.
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Example 4.3.

Consider the group G × G with H the diagonal embedding of G. This is a symmetric space,
since G is the fixed points of the evident Z/2 action. In this case the Gaitsgory–Nadler theorem
says that

(G(O)×G(O))\(G(K)×G(K))/G(K) = G(O)\G(K)/G(O) ∼= Λ+
G,

which is a key input to the geometric (and classical) Satake equivalence.
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