

# Spherical Varieties

Grant T. Barkley

September 19, 2023

## 1 Toric varieties

Let  $\Lambda \cong \mathbb{Z}^n$  be a free abelian group and let  $k[\Lambda]$  be its group algebra. Any (split) torus  $T$  is of the form  $\text{Spec } k[\Lambda]$ . We may recover  $\Lambda$  as the weight lattice  $\text{Hom}_{\mathbf{Grp}}(T, \mathbb{G}_m)$ . An action of  $T$  on an affine variety  $\text{Spec } R$  is equivalent to the data of a  $\Lambda$ -grading on the  $k$ -algebra  $R$ . A variety  $X$  is called *toric* if there is a torus acting on  $X$  with a dense open orbit.

Let's see how to construct affine toric varieties. Let  $M$  be a submonoid of  $\Lambda$  which is finitely generated. The monoid algebra  $k[M]$  is then a finitely generated subalgebra of  $k[\Lambda]$ , and  $\text{Spec } k[M]$  is an affine toric variety. The  $T$ -action is determined by the canonical  $\Lambda$ -grading on  $M$ . If  $\mathbb{Z}M \subseteq \Lambda$  denotes the subgroup of  $\Lambda$  generated by  $M$ , then  $\text{Spec } k[\mathbb{Z}M] \hookrightarrow \text{Spec } k[M]$  is an open subvariety isomorphic to a torus, which is an orbit of the  $T$ -action and the image of the map  $T \rightarrow \text{Spec } k[M]$ . (We can identify this map with the action of  $T$  on the image of the identity.) It turns out that every affine toric variety  $X$  is of this form.

### Example 1.1.

Let  $\Lambda = \mathbb{Z}$  and let  $M$  be the additive submonoid generated by 2 and 3. Then  $T = \text{Spec } k[\Lambda] = \text{Spec } k[t, t^{-1}]$  and  $\text{Spec } k[M] = \text{Spec } k[t^2, t^3]$ . This toric variety is isomorphic to the cuspidal curve  $\text{Spec } k[x, y]/(y^2 - x^3) \subseteq \mathbb{A}^2$ .

Let  $\Lambda = \mathbb{Z}^2$  and let  $M$  be the additive submonoid generated by  $(1, 0)$  and  $(0, 1)$ . Then  $T = \text{Spec } k[x^{\pm 1}, y^{\pm 1}] = \mathbb{G}_m^2$  and  $\text{Spec } k[M] = \text{Spec } k[x, y] = \mathbb{A}^2$ .

Of particular importance for us are the affine toric varieties which are normal varieties. These may be characterized as the  $\text{Spec } k[M]$  such that  $M$  is a *saturated* submonoid of  $\mathbb{Z}M$ : if  $am \in M$  for some  $a \in \mathbb{N}$  and  $m \in \mathbb{Z}M$ , then  $m \in M$ . We care about these because normal toric varieties can all be glued together from normal affine toric varieties in a nice combinatorial way. The idea will be to note that saturated submonoids of  $\Lambda$  are determined by their *cones*: the convex subset of  $\mathbb{Q} \otimes \Lambda$  consisting of non-negative linear combinations of the elements of  $M$ . If  $\sigma = \text{cone}(M)$ , then  $\sigma \cap \Lambda$  is the minimal saturated submonoid of  $\mathbb{Z}M$  containing  $M$ . We will find it more convenient to work with the *dual cone*: if  $\sigma$  is a cone in  $\mathbb{Q} \otimes \Lambda$  then its dual cone is

$$\sigma^\vee := \{f \in \text{Hom}(\Lambda, \mathbb{Q}) \mid \forall \lambda \in \sigma, \langle f, \lambda \rangle \geq 0\} \subseteq \text{Hom}(\Lambda, \mathbb{Q}).$$

Similarly, if we have a cone  $\sigma \subseteq \text{Hom}(\Lambda, \mathbb{Q})$ , we can define  $\sigma^\vee \subseteq \Lambda \otimes \mathbb{Q}$ . We write  $X_\sigma = \text{Spec } k[\Lambda \cap \sigma^\vee]$  for the associated normal affine toric variety. If a cone  $\sigma'$  is contained in  $\sigma$ , then there is an induced map  $X_{\sigma'} \rightarrow X_\sigma$ . If  $\sigma'$  is a face of  $\sigma$ , then this map is an open immersion. In other words, we can

think of the faces of  $\sigma$  as open affine toric subvarieties of  $X_\sigma$ . The analogy extends further: if we have two cones  $\sigma_1, \sigma_2 \subseteq \text{Hom}(\Lambda, \mathbb{Q})$ , and  $\sigma' = \sigma_1 \cap \sigma_2$  is a face of both  $\sigma_1$  and  $\sigma_2$ , then there is a toric variety  $X_{\{\sigma_1, \sigma_2\}}$  which is glued together from a copy of  $X_{\sigma_1}$  and  $X_{\sigma_2}$ , glued along  $X_{\sigma'}$ . More generally, if  $\Sigma$  is any fan in  $\text{Hom}(\Lambda, \mathbb{Q})$  (a collection of cones intersecting along their faces), then there is a toric variety  $X_\Sigma$ . Remarkably, every normal toric variety arises from this construction, by the following result.

**Theorem 1.2: (Sumihiro).**

If  $X$  is a normal variety with an action of a torus  $T$ , then  $X$  has an open cover by  $T$ -stable affine subvarieties.

**Example 1.3.**

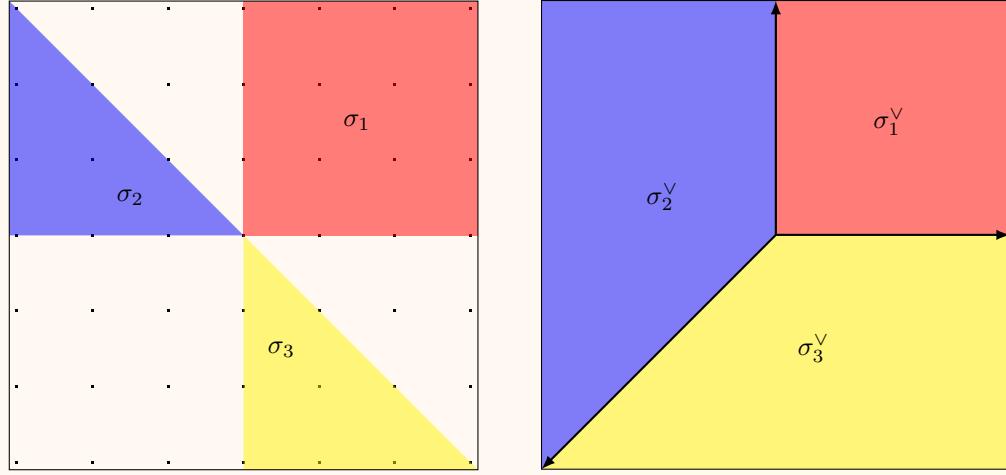
Set  $\Lambda = \mathbb{Z}$  and let  $\sigma_1 = \mathbb{Q}_{\geq 0}$  and  $\sigma_2 = \mathbb{Q}_{\leq 0}$  be cones in  $\text{Hom}(\Lambda, \mathbb{Q}) \cong \mathbb{Q}$ . Then  $\sigma_1^\vee = \mathbb{Q}_{\geq 0}$  and  $\sigma_2^\vee = \mathbb{Q}_{\leq 0}$  give rise to toric varieties  $X_{\sigma_1} = \text{Spec } k[t]$  and  $X_{\sigma_2} = \text{Spec } k[t^{-1}]$ , respectively. The intersection  $\sigma_1 \cap \sigma_2 = \{0\}$  has dual cone  $(\sigma_1 \cap \sigma_2)^\vee = \mathbb{Q}$ . Hence the toric variety  $X_{\{\sigma_1, \sigma_2\}}$  is given by gluing  $X_{\sigma_1}$  and  $X_{\sigma_2}$  along their mutual open subvariety  $X_{\sigma_1 \cap \sigma_2} = \text{Spec } k[t, t^{-1}]$ . We conclude that  $X_{\{\sigma_1, \sigma_2\}} \cong \mathbb{P}^1$ .

**Example 1.4.**

Consider  $\mathbb{P}^2$ , with homogeneous coordinates  $[x_0 : x_1 : x_2]$  and field of rational functions  $k(x, y)$ , where  $x = \frac{x_1}{x_0}, y = \frac{x_2}{x_0}$ . We can describe  $\mathbb{P}^2$  as a toric variety, with open torus  $T = \text{Spec } k[x^{\pm 1}, y^{\pm 1}]$ . There are three maximal open affine  $T$ -stable subsets:

$$U_1 = \text{Spec } k[x, y], \quad U_2 = \text{Spec } k[x^{-1}, x^{-1}y], \quad U_3 = \text{Spec } k[xy^{-1}, y^{-1}].$$

We depict the lattice  $\Lambda = \mathbb{Z}^2$  on the left below, with the subsets associated to the three open subvarieties. On the right we show the fan  $\Sigma$  in the dual space  $\text{Hom}(\Lambda, \mathbb{Q})$ .



We note that each of  $U_1$ ,  $U_2$ , and  $U_3$  contain a unique point fixed by  $T$ . More generally, for each  $\sigma \in \Sigma$ , the open affine toric variety  $X_\sigma$  contains a unique closed  $T$ -orbit.

We can deduce geometric properties of  $X_\Sigma$  from the combinatorial properties of the fan  $\Sigma$ . For instance,  $X_\Sigma$  is smooth if and only if every  $X_\sigma$  is smooth, and  $X_\sigma$  is smooth if and only if the cone  $\sigma$  is simplicial and unimodular. Furthermore, the variety  $X_\Sigma$  is proper over  $\text{Spec } k$  if and only if  $\Sigma$  is a complete fan (meaning the union of its cones is all of  $\text{Hom}(\Lambda, \mathbb{Q})$ ). We can also describe (toric) line bundles in a combinatorial way, and hence detect the existence of ample line bundles combinatorially, which tells us when  $X_\Sigma$  is quasi-projective. If  $X_\Sigma$  is proper, then toric line bundles correspond to polytopes which are the convex hulls of points in  $\Lambda$ , with normal fan coarsening  $\Sigma$ , up to translation. More generally, on any normal toric variety  $X_\Sigma$ , the Cartier divisors whose underlying Weil divisor is  $T$ -invariant correspond to piecewise-linear functions on  $\Sigma$  (linear on each cone), such that each linear subfunction is determined by an element of  $\Lambda$ . Two such Cartier divisors are linearly equivalent iff they differ by a global linear function.

## 2 Spherical varieties

Spherical varieties generalize (normal) toric varieties. Fix a reductive group  $G$  and a Borel subgroup  $B$ .

### Definition 2.1.

A *spherical variety* is a normal (irreducible) variety  $X$  with an action of  $G$  such that  $B$  has an orbit which is an open subvariety of  $X$ .

### Example 2.2.

Some familiar spaces are spherical varieties:

- Toric varieties
- Flag varieties/Grassmannians: spaces of the form  $G/P$  for some parabolic subgroup  $P$
- Symmetric spaces: spaces of the form  $G/H$  where  $H$  is the fixed points of an involution on  $G$
- Horospherical varieties: spaces of the form  $G/H$  where  $H$  contains the unipotent radical of a Borel subgroup

As the examples indicate, it is already interesting to examine the spherical varieties which are *homogeneous*, that is, of the form  $G/H$  for some subgroup  $H$  of  $G$ . If  $X$  is any spherical variety with open Borel orbit  $\mathring{X}$ , then  $G\mathring{X}$  will be a homogeneous spherical variety. For tori (for which  $B = G$ ), any homogeneous spherical varieties are also tori. For arbitrary  $G$ , we may give a similar explicit description of  $\mathring{X}$  as the product of a torus and an affine space. Specifically, there is a maximal subgroup stabilizing  $\mathring{X}$  (necessarily parabolic, since it will contain  $B$ ) denoted  $P(X)$ , the *parabolic stabilizer* of  $X$ . Then the unipotent radical  $U(X)$  of  $P(X)$  acts freely on  $\mathring{X}$ , and given a point in  $\mathring{X}$  and a Levi splitting of  $P(X)$ , there is an isomorphism  $\mathring{X} \cong A_X \times U(X)$ , where  $A_X$  is a torus quotient of  $P(X)$  (determined by  $X$ ).

### Example 2.3.

Let us examine the homogeneous spherical varieties for  $G = \mathrm{PGL}_2$ . A subgroup  $H$  of  $G$  defines a spherical variety if and only if  $HB$  is open in  $\mathrm{PGL}_2$  if and only if  $H$  has an open orbit in  $\mathrm{PGL}_2/B = \mathbb{P}^1$ . When  $H$  is a finite subgroup this will certainly not be the case, but if  $H$  has positive dimension then this turns out to be true (since otherwise the connected component of  $H$  is contained in all conjugates of  $B$ , but this intersection is trivial).

Up to conjugation, the positive-dimensional subgroups of  $\mathrm{PGL}_2$  are the following:

- (G)  $\mathrm{PGL}_2$ , in which case  $G/H$  is a point,
- (T)  $\mathbb{G}_m$ , the pointwise stabilizer of two points in  $\mathbb{P}^1$ , so  $G/H \cong \mathbb{P}^1 \times \mathbb{P}^1 \setminus \Delta$ ,
- (N) The normalizer  $N_G(\mathbb{G}_m) \cong \mathrm{PO}_2 \cong \mathbb{Z}/2 \ltimes \mathbb{G}_m$ , the stabilizer of a set of two points in  $\mathbb{P}^1$ , so that  $G/H \cong (\mathbb{P}^1 \times \mathbb{P}^1 \setminus \Delta)/(\mathbb{Z}/2)$ ,
- (U)  $S \cdot U$ , where  $S$  is a subgroup of the group of diagonal matrices  $\mathbb{G}_m$ , and  $U \cong \mathbb{G}_a$  is the elements of the form  $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ . When  $H = U$ , the quotient  $G/H$  is a  $\mathbb{G}_m$ -bundle over  $\mathbb{P}^1$ .

We say that  $G/H$  is *horospherical* if  $H$  contains the unipotent radical of some Borel; types (G) and (U) shown here are horospherical.

The parabolic stabilizers and descriptions of  $\mathring{X}$  in these four cases are

- (G)  $P(X) = \mathrm{PGL}_2$ ;  $\mathring{X} = *$ ,
- (T)  $P(X) = B$ ;  $\mathring{X} = B \cong \mathbb{G}_m \times \mathbb{A}^1$ ,
- (N)  $P(X) = B$ ;  $\mathring{X} = B \cong \mathbb{G}_m \times \mathbb{A}^1$ ,
- (U)  $P(X) = B$ ;  $\mathring{X} = B/S \cong \mathbb{G}_m/S \times \mathbb{A}^1$ .

As a non-example, consider  $\mathrm{GL}_n/T$ . Since  $T$  does not have an open orbit on the variety  $\mathrm{GL}_n/B$  of complete flags in  $n$ -space for  $n > 2$  (consider dimensions), there is no open  $B$ -orbit on  $\mathrm{GL}_n/T$  in this case, so this is not a spherical variety.

If  $X$  has a  $G$  action, then the rings of regular functions and of rational functions both admit an action of  $G$  by pre-composition. If  $G$  is reductive, then these rings decompose as  $G$ -modules into a direct sum of irreducible representations. Note that for a torus  $T = \mathrm{Spec} k[\Lambda]$ , the irreducible  $T$ -modules are parametrized by weights in  $\Lambda$ , and  $k[\Lambda]$  decomposes into one-dimensional weight spaces, with exactly one irreducible appearing for each weight. We say a  $G$ -module is *multiplicity-free* if each irrep appears at most once in the decomposition.

### Theorem 2.4: Equivalent formulations of spherical varieties; [Gandini, Theorem 2.8].

The following are equivalent, for a normal irreducible variety  $X$  acted on by  $G$ :

- $X$  is spherical

- Any  $B$ -invariant rational function on  $X$  is constant
- $X$  has finitely many  $B$ -orbits
- If  $X$  is quasi-projective: for every  $G$ -linearized line bundle  $\mathcal{L}$  on  $X$ , the global sections of  $\mathcal{L}$  is a multiplicity-free  $G$ -module
- If  $X$  is quasi-affine: the coordinate ring  $k[X]$  is a multiplicity-free  $G$ -module

If  $X = G/H$  is homogeneous, then these are further equivalent to:

- Every equivariant completion of  $G/H$  contains only finitely many orbits
- The  $H$ -action on any irreducible  $G$ -module is multiplicity-free for characters of  $H$ .

The smooth affine spherical varieties have a particularly nice description:

**Theorem 2.5:** [Knop–Steirteghem, Cor 2.2].

If  $X$  is a smooth affine spherical variety, then  $X = G \times^H V$  for some reductive subgroup  $H$  of  $G$  with  $G/H$  spherical and  $V$  is a module for  $H$  which is itself a spherical variety. In particular, if  $G/H$  is smooth and affine, then  $H$  is reductive.

Furthermore a smooth affine homogeneous spherical variety is determined by its weight monoid  $\Lambda_{G/H}^+$  inside  $\Lambda_{G/H}$ .

The analog of the decomposition of normal toric varieties into open affine toric subvarieties is the following:

**Theorem 2.6.**

Let  $X$  be a spherical variety and  $x \in X(k)$ . Then there is an open affine  $B$ -stable subset intersecting the  $G$ -orbit through  $x$ .

### 3 Colored fans

Here we give a combinatorial description of spherical varieties containing  $G/H$ . If  $X$  is a spherical variety, then we fix  $x_0 \in X(k)$  generating the open  $B$ -orbit  $\dot{X}$ . If  $H$  is the stabilizer of  $x_0$ , then  $Gx_0 \cong G/H$  is spherical.

For a representation  $V$  of a group  $K$ , we write  $V^{(K)}$  for the subset of nonzero vectors on which  $K$  acts via a character. Let  $T = \text{Spec } k[\Lambda]$  be a maximal torus of  $B$ . Recall that the choice of  $T \subseteq B \subseteq G$  determines a set of *dominant weights*  $\Lambda^+ \subseteq \Lambda$ .

**Definition 3.1.**

The *weight lattice* of  $X$  is

$$\Lambda_X = \{\lambda \in \Lambda \mid \lambda \text{ is the weight of a function in } k(X)^{(B)}\}.$$

This coincides with the weights of the torus  $A_X$ . The *weight monoid* of  $X$  is

$$\Lambda_X^+ = \{\lambda \in \Lambda^+ \mid \lambda \text{ is the weight of a function in } k[X]^{(B)}\}.$$

We write  $\mathcal{Q}_X = \text{Hom}(\Lambda_X, \mathbb{Q})$ .

There is an exact sequence

$$0 \rightarrow k^\times \rightarrow k(X)^{(B)} \rightarrow \Lambda_X \rightarrow 0.$$

Normality of  $X$  implies that  $\Lambda_X^+$  is a saturated submonoid of  $\Lambda_X$ , hence is determined by its dual cone. Notice that  $\Lambda_X$  is a birational invariant, so if the  $G$ -orbit of the open Borel orbit is  $G/H$ , then  $\Lambda_X = \Lambda_{G/H}$ .

**Definition 3.2.**

We write

$$\mathcal{D}(X) = \{B\text{-stable prime divisors of } X\}$$

$$\Delta(X) = \{D \in \mathcal{D}(X) \mid D \text{ is not } G\text{-stable}\}.$$

The elements of  $\Delta(X)$  are called the *colors* of  $X$ .

The elements of  $\mathcal{D}(X)$  are exactly the irreducible components of  $X \setminus \mathring{X}$ . The elements of  $\Delta(X)$  are exactly those  $D \in \mathcal{D}(X)$  such that  $D \cap G/H \neq \emptyset$ . As a result, the restriction map  $\Delta(X) \rightarrow \Delta(G/H)$  is a bijection. For each  $D \in \mathcal{D}(X)$  we get an element  $\rho_X(D) \in \text{Hom}(\Lambda_X, \mathbb{Z})$  via

$$\langle \rho_X(D), \lambda \rangle = \nu_D(f_\lambda),$$

where  $f_\lambda \in k(X)^{(B)}$  has weight  $\lambda$  and where  $\nu_D(f_\lambda)$  is the order of vanishing of  $f$  along  $D$  (well-defined by normality). More generally, we can define  $\rho_X(\nu) \in \mathcal{Q}_X$  for any valuation  $\nu : k(X) \rightarrow \mathbb{Q} \cup \{\infty\}$  invariant under the action of  $G$ . Let  $\mathcal{V}(X)$  denote the set of all  $G$ -invariant valuations on  $k(X)$ .

**Theorem 3.3.**

The map  $\rho_X : \mathcal{V}(X) \rightarrow \mathcal{Q}_X$  is injective; its image is a cone in  $\mathcal{Q}_X$ .

*Remark 3.4.* A homogeneous spherical variety is horospherical iff  $\mathcal{V}(X) = \mathcal{Q}_X$ .

**Example 3.5.**

Consider  $G = \text{PGL}_2$  and  $H = T = \mathbb{G}_m = \text{Spec } k[\Lambda]$  the maximal torus. Then  $G/H$  is isomorphic to  $\mathbb{P}^1 \times \mathbb{P}^1 \setminus \Delta$ . Since the associated parabolic  $P(G/H) = B$ , and the dimension of  $G/H$  is two, we find that  $\mathring{X} \cong \mathbb{G}_m \times \mathbb{A}^1$ . The torus  $\mathbb{G}_m$  acts freely on  $\mathring{X}$ , so  $A_X = T$  and  $\Lambda_X = \Lambda$ . We compute

$$k[\text{PGL}_2/T] = k[\text{PGL}_2]^T = \bigoplus_{m \geq 0} V_{m,-m} \otimes (V_{m,-m}^*)^T = \bigoplus_{m \geq 0} V_{m,-m},$$

so  $\Lambda_X^+ = \Lambda^+$ , the set of dominant weights for  $\text{PGL}_2$ . (Here  $V_{m,-m}$  denotes the irreducible

$\mathrm{GL}_2$  representation of highest weight  $(m, -m)$ ; these exhaust the irreps of  $\mathrm{PGL}_2$ , are self-dual, and each have a one dimensional subspace of  $T$ -invariants.) It will be convenient to have an explicit highest weight vector for one of the nontrivial representations. We can take the function sending a matrix  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  to  $\frac{cd}{ad-bc}$ ; this gives a regular function on  $\mathrm{PGL}_2/T$  which is a  $B$ -eigenvector of weight  $(1, -1)$ .

The colors of  $G/H$  are its  $B$ -stable prime divisors. There are just three  $B$ -orbits on  $X$ . If  $p \in \mathbb{P}^1$  is the unique point fixed by  $B$ , then the orbits are

$$D_1 := (\mathbb{P}^1 - \{p\}) \times \{p\}, \quad D_2 := \{p\} \times (\mathbb{P}^1 - \{p\}), \quad (\mathbb{P}^1 - \{p\}) \times (\mathbb{P}^1 - \{p\}).$$

The first two are divisors and the last is the open orbit. Neither divisor is  $G$ -stable. So our colors are

$$\Delta(G/H) = \{D_1, D_2\}.$$

Since  $X$  is not horospherical,  $\mathcal{V}(X)$  is not all of  $\mathcal{Q}_X$ . Furthermore it is nonzero, since there is a  $G$ -invariant valuation  $\nu$  from the divisor  $\mathbb{P}^1 \xrightarrow{\Delta} \mathbb{P}^1 \times \mathbb{P}^1$  (noting that  $k(\mathbb{P}^1 \times \mathbb{P}^1) = k(X)$ ). Let us pair  $\nu$  with our highest weight function above. We want to find the order of the pole of  $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \frac{cd}{ad-bc}$  as the homogeneous coordinate  $[a : c]$  approaches  $[b : d]$ , which we find to be 1. Hence  $\nu(f) = -1$ . Since  $\mathcal{V}(X)$  must be a ray in this case,  $\nu$  must generate  $\mathcal{V}(X)$ , so we conclude that

$$\mathcal{V}(X) = \{f : \Lambda \rightarrow \mathbb{Q} \mid f(\Lambda^+) \leq 0\}.$$

Finally, we compute the vectors  $\rho_X(D_1)$  and  $\rho_X(D_2)$ . In this case we want to compute the order of vanishing of  $f = \frac{cd}{ad-bc}$  on the divisors  $D_1$  and  $D_2$ . We compute  $\nu_{D_1}(f) = 1$  and  $\nu_{D_2}(f) = 1$ .

Call a spherical embedding  $G/H \hookrightarrow X$  a *simple embedding* if it has a unique closed orbit  $Y$ . Write  $\mathcal{D}_Y(X)$  for the  $B$ -stable divisors  $D \in \mathcal{D}(X)$  such that  $Y \subseteq X$ . We can associate a set of colors to  $Y \subseteq X$  by

$$\Delta_Y(X) = \{D \cap G/H \in \mathcal{D}(G/H) \mid D \in \mathcal{D}_Y(X) \text{ which is not } G\text{-stable}\}.$$

We can also associate a cone  $\mathcal{C}_Y(X)$  in  $\mathcal{Q}(G/H)$ , which is generated by

$$\{\rho_X(D) \mid D \in \mathcal{D}_Y(X) \text{ is } G\text{-stable}\} \cup \rho_X(\Delta_Y(X)).$$

### Theorem 3.6.

Simple embeddings up to isomorphism are in bijection with (strictly convex) *colored cones*: a cone  $\mathcal{C} \subseteq \mathcal{Q}(G/H)$  and a subset  $\mathcal{F} \subseteq \Delta(G/H)$  satisfying:

- $\mathcal{C}$  is a convex cone generated by  $\rho(\mathcal{F})$  and finitely many elements of  $\mathcal{V}(G/H)$ ,
- The interior  $\mathcal{C}^\circ$  has nonempty intersection with  $\mathcal{V}(G/H)$ , and
- $\mathcal{C}$  is strictly convex, and  $0 \notin \rho(\mathcal{F})$ .

See Gandini's survey for many more examples. We can also classify the embeddings with multiple closed orbits.

**Theorem 3.7.**

Embeddings of  $G/H \hookrightarrow X$  up to isomorphism are in bijection with (strictly convex) *colored fans*: a nonempty set  $\mathfrak{F}$  of strictly convex colored cones such that:

- Every face of a colored cone in  $\mathfrak{F}$  belongs to  $\mathfrak{F}$ , and
- For all  $\nu \in \mathcal{V}(G/H)$  there is at most one colored cone  $(\mathcal{C}, \mathcal{F}) \in \mathfrak{F}$  such that  $\nu \in \mathcal{C}^\circ$ .

We can write  $X_{\mathfrak{F}}$  for the corresponding spherical variety. Then  $X_{\mathfrak{F}}$  is complete if and only if the union of all of the cones contains  $\mathcal{V}(G/H)$ . The embedding is called *toroidal* if the set of colors is empty. Every spherical homogeneous space admits a complete toroidal embedding.

**Example 3.8.**

Return to  $G = \mathrm{PGL}_2$  acting on  $G/H \cong \mathbb{P}^1 \times \mathbb{P}^1 \setminus \Delta$ .

The spherical variety  $X = \mathbb{P}^1 \times \mathbb{P}^1$  gives a simple embedding of  $G/H$ , with unique closed orbit  $Y = \mathbb{P}^1 \xrightarrow{\Delta} \mathbb{P}^1 \times \mathbb{P}^1$ . Hence there should be a colored cone associated to  $X$ . Its colors should be the  $B$ -invariant prime divisors containing  $Y$  and intersecting  $G/H$ , of which there are none. So  $\Delta_Y(X) = \emptyset$ . The cone  $\mathcal{C}_Y(X)$  is generated by  $\rho_X$  applied to the  $G$ -stable prime divisors containing  $Y$ ; the unique such is  $Y$  itself. Hence the cone is generated by  $\rho_X(Y)$ , which we have previously computed to be the unique generator of  $\mathcal{V}(G/H)$ .

Note that this is the only possible (strictly convex) colored cone for  $G/H$ ! Since both possible colors for  $G/H$  generate the cone which is the negation of  $\mathcal{V}(G/H)$ , there is no way to build a strictly convex cone containing any points of  $\mathcal{V}(G/H)$  in its interior, unless we use no colors. If we do use no colors, the unique cone containing points of  $\mathcal{V}(G/H)$  in its interior is  $\mathcal{V}(G/H)$  itself. Hence there is exactly one nonzero (strictly convex) colored cone, and therefore exactly one nontrivial colored fan for  $G/H$ . So the only spherical embeddings of  $G/H$  are the trivial one, and  $G/H \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ .

Write  $\Lambda = \Lambda_{G/H}$  and  $\mathcal{Q} = \mathcal{Q}_{G/H}$ .

**Definition 3.9.**

The *spherical roots* of  $G/H$ , denoted  $\Sigma_{G/H}$  are the primitive elements in  $\Lambda$  generating an extremal ray of  $-\mathcal{V}^\vee$ .

The *little Weyl group* of  $G/H$  is the Weyl group  $W_{G/H}$  of the root system generated by  $\Sigma_{G/H}$ ; equivalently, the subgroup of  $\mathrm{GL}(\mathcal{Q})$  generated by reflections about the codimension 1 faces of  $\mathcal{V}$ .

**Theorem 3.10.**

The cone  $\mathcal{V}(G/H)$  is a fundamental domain for the action of the little Weyl group on  $\mathcal{Q}$

(except in characteristic 2).

**Definition 3.11.**

If it exists, then the *wonderful embedding* of  $G/H$  is the unique complete, simple, toroidal, smooth embedding  $G/H \hookrightarrow X$ .

**Theorem 3.12.**

$G/H$  admits a wonderful embedding iff  $\Sigma$  is a basis of  $\Lambda$ .

**Example 3.13.**

The embedding  $\mathrm{PGL}_2/\mathbb{G}_m \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^1$  studied in earlier examples is a wonderful embedding. The spherical roots are the unique basis for  $\Lambda$ .

## 4 Gaitsgory–Nadler theorem on $G(\mathcal{O})$ orbits

Gaitsgory and Nadler give a description of  $\mathcal{V}(G/H)$  generalizing the description of fundamental coweights via orbits on the affine Grassmannian (a key input to the geometric Satake equivalence). Let  $\mathcal{O} = \mathbb{C}[[x]]$  and  $\mathcal{K} = \mathbb{C}((x))$ . If  $T = \mathrm{Spec} k[\Lambda]$  is a torus, then the  $T(\mathcal{K})$  points include those coming from coweights  $\mathbb{G}_m \rightarrow T$ . Hence we can identify the coweight lattice  $\Lambda^\vee = \mathrm{Hom}(\Lambda, \mathbb{Z})$  as a subset of  $T(\mathcal{K})$ . In fact each  $T(\mathcal{O})$  orbit in  $T(\mathcal{K})$  contains a unique such coweight. More generally, the coweights of the associated Cartan  $A_{G/H}$  are a subset of  $(G/H)(\mathcal{K})$  and we have:

**Theorem 4.1.**

If  $G$  is reductive and  $H$  is a subgroup, then the following are equivalent:

- $G/H$  is a spherical variety
- $H(\mathcal{K})$  acts on the affine Grassmannian  $\mathrm{Gr}_G$  with countably many orbits
- $G(\mathcal{O})$  acts on  $(G/H)(\mathcal{K})$  with countably many orbits.

**Theorem 4.2: [Gaitsgory–Nadler, Thm 3.3.1].**

Each element of  $(G/H)(\mathcal{K})$  contains a unique element of  $\mathcal{V}(G/H) \cap \Lambda^\vee$  in the  $G(\mathcal{O})$  orbit through it, and every such element is realized.

In other words, we can identify the  $G(\mathcal{O})$  orbits in  $(G/H)(\mathcal{K})$  with (the integral points of) the cone  $\mathcal{V}(G/H) \subseteq \mathcal{Q}$ .

**Example 4.3.**

Consider the group  $G \times G$  with  $H$  the diagonal embedding of  $G$ . This is a symmetric space, since  $G$  is the fixed points of the evident  $\mathbb{Z}/2$  action. In this case the Gaitsgory–Nadler theorem says that

$$(G(\mathcal{O}) \times G(\mathcal{O})) \backslash (G(K) \times G(K)) / G(K) = G(\mathcal{O}) \backslash G(\mathcal{K}) / G(\mathcal{O}) \cong \Lambda_G^+,$$

which is a key input to the geometric (and classical) Satake equivalence.