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Abstract

These notes were written for the Harvard Relative Langlands Seminar in Fall 2023. They were last
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1 Symplectic Geometry

First we review some important constructions and examples in symplectic geometry.

1.1 The Basics

Definition 1.1. Let N be a smooth manifold. The cotangent space of T(*x p)N at (x, p) is isomorphic to

T.N @ TN (“the N direction and the T N direction”). The canonical 1-form 6 on T*N sends (£, )
to p(&)-

Lemma 1.2. Let ¢ be a diffeomorphism of N. It induces a diffeomorphism ¢ of T* N and o*0 = 6.
Proof. The definition of € only involves the smooth structure of N. O

Definition 1.3. The standard symplectic structure on 7* N is given by w = —d6. Explicitly,

w((€1,91), (§2,%2)) = Ya(&1) — ¥1(&2).

Lemma 1.4. Let G be a Lie group acting on N by diffeomorphisms. Then the induced action on T* N
acts by symplectomorphisms with respect to the standard symplectic structure.

Proof. g*w = g*df = dg*6 = df = w by Lemma 1.2. O

Definition 1.5. Let (M, w) be a symplectic variety with an action of a Lie group G. From the map
¢ : G — Diff (M) we can take the induced map on Lie algebras £ : g — ©(M) (we write © (M) for the
space of vector fields on M).

Lemma 1.6. g.§x = {aq,x forany X € gand g € G.

Proof. The map on Lie algebras associated to a homomorphism of Lie groups is always compatible with
adjoint actions, s0 a4, x = Ady(g)€x. But for any & € ©(M) and ¢ € Diff (M)

e(1+ &) (z) = oo™ (x) + efpm1(z))
=2z +edp(§p-1(a))
=z+ E(W*f)w

so Ady,& = ¢.£. From this we see that §Ang = g.€x. O

Definition 1.7. A moment map . for the action of G is a smooth G-equivariant map p : M — g* such
that V,, (u(m), X) = €x forall X € g (here g* is considered as a G-space via the coadjoint G-action).
We will also write 1 x for the function (1(—), X'). With this notation, the equivariance of y is equivalent
to pux(g-m) = MAdg_lx(m) forall X € g,g € Gandm € M.



Example 1.8. Suppose G acts on X and let M = T X with the standard symplectic structure. Then set
pwx = 0(Ex). To see that this p is G-equivariant, note that

9g~7n(£X) = 99~m(9*9;1§X) = (g*e)m(gglfx) = Qm(gAdgle)

where we’ve used Lemma 1.2 and Lemma 1.6 to obtain the last equality. To see that this p is a moment
map for the induced action of G on M, note that

w(Vul(€x),C) = ¢ 0(Ex) = [die 0)(C) = [Lex 0 — gy db](C) = w(€x, ()
where we’ve used Cartan’s magic formula plus Lemma 1.2.

Example 1.9. Let (V,w) be a symplectic vector space. By definition, Sp(V,w) acts on V by symplec-
tomorphisms. This action admits a moment map 4 : V — sp* with px (v) = 2w(Xv,v). To see that y
is G-equivariant, note that

1 1 1
éw(X (g-v),9-v)= gw((g_ng)vm) = iw(Adg_le,v)
To check that i is a moment map, note that
1
w(Vwpx(v),0) = ¢ sw(Xv,v)
1 1
= iw(XC,v) + iw(Xv,C)
= w(Xwv,()
where we’ve used the fact that X is a symplectomorphism to say w(X(¢,v) = w(Xw, (). Since ({x), =
X this is what we needed to show.

Definition 1.10. A symplectic variety with an action of GG that admits a moment map is called a Hamil-
tonian G-space.

Example 1.11. If G acts on M by symplectomorphisms and we have ¢ : H — G then restricting along
H gives an action of H on M by symplectomorphisms. Moreover, if the action of G on M admits a
moment map p then v = dy* o p is a moment map for the action of H on M. This procedure for
producing a Hamiltonian H-space from a Hamiltonian G-space is called Hamiltonian Restriction.

1.2 Reduction and Induction

In this section we introduce two procedures for producing to produce a new variety from a Hamiltonian
G-space: Hamiltonian reduction and Hamiltonian induction. Hamiltonian reduction is a standard con-
struction in symplectic geometry, and Hamiltonian induction is a generalization of Hamiltonian reduction
that will play an essential role in the sequel. We follow [1, Sections 3.2 and 3.3].

Definition 1.12. Let M be a Hamiltonian G-space. Then the Hamiltonian reduction of M is written
M /] G and equals (M X 4+ 0) /G. More generally, we can consider M // ; G = (M X g- Oy) /G for any
f € g* (here Oy is the coadjoint orbit of f).

Example 1.13. Suppose G acts freely on X . The following diagram is cartesian
T*X xg- 0 — T*(X/G)
X —— X/@
where 7" X maps to g* by the standard moment map; that is to say, a 1-form on X is pulled back from a

I-form on X /@ if and only if it vanishes on £x for all X € g (recall that the standard moment map on
T*X is px = 0(€x)). This shows that T*(X/G) = (T*X) JJ G.



Example 1.14. Let ¢ — X be a G, bundle. Then the twisted cotangent bundle of X, written 7 (X, ¥)
or Ty X,is T*W¥ J/; G,. Note that by the above example 7*V¥ // G, = T*X. Moreover, for any M
acted on by G, if we consider 7 M with the standard structure of a Hamiltonian G-space, the moment
map is a homomorphism of relative groups over X. In other words, the following diagram commutes:

T*M xx T*M —— T*M
ol
As aresult, we get a map
(T xg= 0) X (T"V xge 1) = (T"V xg- 1).
Taking the quotient of both sides by G, then produces an action relative to X of the group scheme 7" X
on 7'y, X, which makes T\ X into a torsor over T X.

Example 1.15. Given a Hamiltonian G-space M and an element o € g* which is invariant under the
coadjoint action of G we can form a new Hamiltonian GG space M,,, where the GG-action is the same but
the moment map is s, (m) = ppr(m) +«. Then M JJ G =M, ] G-

Definition 1.16. Given a map of groups H — G and a Hamiltonian H-variety S, we can perform
Hamiltonian induction to produce a Hamiltonian G-variety h-ind$(S) = (S x T*QG) JJ H.

Example 1.17. For any H we can consider the map to the trivial group H — 1. Then
h-ind}, (S) =S ) H

so we see that Hamiltonian restriction is a special case of Hamiltonian induction.
Lemma 1.18. (S x T*G) ) H = (S x4y g*) x2 G.

Lemma 1.19. Hamiltonian induction is right-adjoint to Hamiltonian restriction in the category of La-
grangian correspondences.

Definition 1.20. The symplectic normal bundle to a G-orbit O in a symplectic manifold M is a vector
bundle over O whose fiber at x is 7,0+ /(T,,0+ N T, 0).

Example 1.21. If we consider the G-orbit H\G = 0 x G inside of h—indg S then its fiber at any point
is given by S.

1.3 Graded Hamiltonian GG-spaces
TODO: Write something

2 Geometric Invariant Theory

In this section we work with affine varieties defined over an algebraically closed field not necessarily of
characteristic zero. Although there is a running assumption in most of [1, Section 3] that they work over
a field of characteristic zero, many (though not all!) of the arguments generalize to a field of arbitrary
characteristic (there is a discussion rationality questions in [1, Section 3.9]). The positive characteristic
setting is especially important for number-theoretic applications, so we found it reasonable to consider it
here.



2.1 GIT Quotients

We follow [5, Appendix 1.C] for our material on GIT quotients.

Definition 2.1. An algebraic group G is geometrically reductive if for any finite dimensional G-representation
V and any fixed vector v € V¢, there is some k and some f € (Sym* V*)& such that f(v) # 0.

Theorem 2.2 (Haboush). Every reductive group is geometrically reductive. In fact, one can always take
k to be a pth-power in the definition of geometrically reductive.

Proof. See [5, Theorem A.1.0]. O

Lemma 2.3. Let G be geometetrically reductive. If A is a (commutative) ring and I is a G-invariant
ideal in A then for any f € (A/I)€ there is some n and some function g € AC so that the image of g in
(A4/D)% = f7".

Proof. Because f is G-invariant, it spans a 1-dimensional subrepresentation of A/I. Because I is G-
invariant, we can lift this to a representation I + & - f inside of A. Let V be a finite-dimensional subrep-
resentation of I + f - f containing f (representations of affine algebraic groups are always locally finite
so such a V' must exist). Then we have a short exact sequence of G-representations

0=-VNI—=V—=k-f—0.

From this we see that in V'V, the function 6 which sends f to 1 and sends V N I to zero is G-invariant.
Because G is geometrically reductive, there is some g € (Sym?" V)< such that g() = 1. Since the
image of Sym?" Vin Aliesin k- fP" + I, the condition g(#) = 1 forces g = fP" mod I. It is also clear
that the image of g lies in AC, so we’re done. O

Definition 2.4. If X = Spec A is an affine variety over k acted on by G then the GIT quotient X |/ G
is Spec A%,

Theorem 2.5 (Nagata). If G is geometrically reductive then X || G is an affine variety.

Proof. The main difficulty is verifying that X / G is finite type over k. First, note that because A
is finitely generated (and the action of G on A is locally finite) we can find some finite-dimensional G-
subrepresentation V' containing a set of generators of A. Then Sym™ V' — A is a G-equivariant surjective
map, so it actually suffices to prove the following: let B be a finitely-generated, non-negatively graded
ring such that B® = k and the action of G on B preserves the grading. Then

1. B€ is finitely generated.
2. If M is a Noetherian B-module with a compatible G-action, then M G is Noetherian over BE.

If we take these statements for granted, then we're done: A is a quotient of B = Sym* V, so A% is
Noetherian over B. Since B¢ is finitely generated over k, this implies that A is finitely generated,
too.

To prove 1, we can use Noetherian induction to reduce to the case when B is an integral domain
and B is torsion-free as a B module (i.e., every f € B¢ is a non-zero divisor in B). Now we procede
by induction on dimension: if every homogeneous element of B¢ is a unit then B = B° = k and we’re
done. Otherwise let f € BS be a homogeneous non-unit; because f is a non-zero divisor in B we know
that B/ fB is codimension 1 in B, so by induction (B/fB)¢ is finitely generated. By Lemma 2.3 we
know that [(B/fB)¢|P" € B%/(fB)% C (B/fB) for some n, so it follows that BS /( f B)¢ is finitely
generated too. By [8, Tag 07Z4], to check that B¢ is finitely generated as a ring, it suffices to check that its
ideal I of positively-graded elements is finitely generated as an ideal. Since f is a G-invariant non-zero
divisor, (fB)® = f(B%), so It is generated by f plus lifts of the generators of It in B¢ /(fB)“.

To prove 2, we can apply a devissage argument to reduce to the the case when M is of the form B/p
for a G-invariant prime ideal p. Let K be the field of fractions of B/p, let K be the field of fractions of
BY /p%, and let L be the field of fractions of (B/p)“. Because B is finitely generated over k, there is a


https://stacks.math.columbia.edu/tag/07Z4

finite transcendence basis t1, . . . t,, so that K is finite over Kq(¢1,...t,). By Lemma 2.3, L is algebraic
over Ko, so LN Koy(t1,...,tn,) = Ko. We then see that

[L : K} = [LKo(tl,...,tn) : Ko(tl,...,tn)] S [K . Ko]

is a finite field extension. By 1, we know that B¢ is finitely generated over a field, so the same is true of
B /p©, so its integral closure in L is finite over B /p©. Lemma 2.3 implies that (B/p)€ is contained
in this integral closure, so because B /p< is Noetherian we see that it must be finitely generated as a
B%-module.

Additional details can be found in [5, Theorem A.1.1]. O

Lemma 2.6. Let I, be G-stable ideals in A. If f € (3, 1,)€ then f*" € >, IS for some n (which
depends on f).

Proof. Any given f is contained in a finite sum I; +. .. + I}, and by induction we can reduce to the case
where k = 2. Suppose f = F; + F» where F; € I and F; € Is. Then mod I; N I5 this decomposition
is unique, so because f is G-invariant, F} and F, must both be G-invariant mod I; N I>. Applying
Lemma 2.3 we can find some g; and g- in AC 50 that gi = Fip " mod I 1N I5. Note that this automatically
implies that g; € I€. Now

=P+ B =F" +F) =g+ gmod I, NI,

In other words, f?" = g1 + go + 7, where € I; N I,. Since f?", g1, and g, are all G-invariant, r must
be too, so fP* = (g1 + 1) + go isin IC 4 IS . O

Lemma 2.7. If X = Spec A is an affine variety then the natural projection m : X — X [/ G is surjective.

Proof. First suppose that A is an integral domain. Then for any maximal ideal m C A% if Am = A then
there are some my, ..., my such that 1 € 3", Am;. Lemma 2.6 implies 17" = 1 € Y".(4Am,;), and
since A is integral we know (Am;)¢ = A%m;. But this implies 1 € m, which is a contradiction.

Now if A is an arbitrary finitely generated k-algebra, we can form the primary decomposition of the
zero ideal: 0 = M;q,. But then 0 = N;(q; N A%), and since m is prime this implies that some q; N A“ is
contained in m. If p; is the radical of q; then p; N A% is the radical of q; N A%, so p; N A% is contained
in m. Then A/p; is an integral domain and the image of m in A /(p; N A%) is a maximal ideal, so its
extension to A/p; is proper in A/p, by the above. This implies that Am is proper, too. O

Lemma 2.8. If X = Spec A is an affine variety then the points of X /| G are in bijection with the closed
orbits of G in X.

Proof. First note that if f € A and O, O’ are two G-orbits of X with © C O’ then f|» = 0 if and only
if flo- = 0. This follows because the value of f when restricted to any G-orbit is constant, and if f is
constant on a set, then it must also be constant on its closure. Let’s say that a G-stable closed subscheme
7 C X is “replete” if for any O and O’ as above, O C Z implies O’ C Z. Evidently, the preimage of
any closed subscheme of X // G under m must be replete.

Now note that every nonempty replete subscheme Z contains a closed orbit: since Z is G-stable and
non-empty it must contain some G-orbit, and since Z is closed it must contain the closure of this orbit.
But the closure of any G-orbit contains a closed orbit (any orbit with minimal dimension in the closure
works). Since Lemma 2.7 implies that 7 is surjective we see that the preimage of any point of X / G
contains a closed orbit.

Now we claim that if @7 and Oy are distinct closed orbits in X then their images in X / G must be
disjoint. If not, let z € X // G be a point in the intersection, with corresponding maximal ideal m. Then
there is a G-invariant function f defined on O; U O3 so that f|p, = 0 and f|p, = 1. Lemma 2.3 tells
us that there is some g € A whose restriction to 01 LI Oy is fP" = f. Because g|Oy # 0 we see that
g € m, but because g|o, = 0 we see that m + (g) # AY. This contradicts the maximality of m, so we
conclude that 7(O1) N7 (O2) = (.



Now we see that there is a map from points of X )/ G to the closed orbits of X which sends each
point to the unique closed G-orbit in its preimage under 7. The preimages of distinct points are disjoint,
so this map is injective, and if O is a closed orbit then the preimage of any y € 7(O) contains O (it must
contain some closed orbit O’, and if O’ # O then 7(O) N 7(O’) would be nonempty). O

2.2 @G, actions

Although the results of this section are originally due to Bialynicki-Birula, we adopt the perspective
introduced by Drinfeld in [3].

Definition 2.9. Let Z be a k-scheme with an action of G,,,. Then the attracting locus of Z is the space
Z which represents the functor

Hom(S, Z+) = Hom®™ (S x A, Z)

where G, acts trivially on S and by the usual action on A,

Definition 2.10. Let Z be a k-scheme with an action of G,,,. Then the fixed locus of Z is the space Z°
which represents the functor
Hom(S, Z°) = Hom®" (S, Z)

where A acts trivially on S.

Theorem 2.11 (Bialynicki-Birula). Let Z be a k-scheme with an action of G,,. Then Z+ and Z° are
both representable. The inclusion of Z° into Z is a closed embedding. In the diagram below, ¢ is affine
and pt is a locally closed embedding on each connected component of Z.

Vs

Z A

Proof. We’ll prove this result under the assumption that Z is affine, since this is the case that will be
relevant for us later.

Let I~ be the ideal generated by negatively graded homogeneous elements and let AT = A/,
Then we claim that Z+ = Spec A™T. To see this, note that if S = Spec B is affine then

Hom%™ (S x A', Z) = Homg, ping(A, B ®y k[z])
= HomgrRing+ (A+» B ®k ]{I[SL’])
= HomRing(A+, B)7

where we’ve used the fact that every element of B ®y, k[z] is non-negatively graded so every graded map
from A to B ®y, k[z] factors through AT and the functor B — B ®, k[z] is right-adjoint to the forgetful
functor from non-negatively graded rings to rings.

By a similar argument, if we let I° be the ideal generated by the homogeneous elements with nonzero
graded degree and set A’ = A/I° then Spec A° represents Z°. From our constructions of Z+ and Z°
we see that we get closed embeddings i+ : Z° — ZT and p* : Zt — Z (so in particular p* is not just
locally closed but a closed embedding).

To construct ¢*, note that A* = (AT)G= @ I as a k-vector space (where I is the ideal generated
by positively-graded elements). The natural projection from A™ to A° then induces an isomorphism from
(A+)Gm to A°. The inverse of this map gives an inclusion A < A%, which induces ¢* : Spec AT —
Spec A°. From the construction of g+ we see that ¢* o it = idz,. It’s routine to check that the map
g that we’ve defined agrees with the map from Z* to Z° induced by the G.,,,-equivariant inclusion of 0
into A, O

Lemma 2.12. Let Z be a k-scheme with an action of G.,,. If x is a k-point of Z° then T,(Z7") is the
subspace of Ty Z given by the sum of the non-negative weight spaces.



Proof. 1f we let X = Spec k[e] /<2, note that the following diagram commutes:

G, — Sch /k —% G,, — Sch /k

T—XA1 T—xA1

Passing to right-adjoints gives (T'Z)* = T(Z7") forall Z € G,,, — Sch /k. If z is a k-point of G,
then the inclusion of x into Z is G,,-equivariant, so we get 1,7 = = Xz TZ as a fiber product in
G, — Sch /k. Since (—)7 is right-adjoint, it commutes with limits and we see that

(T Z2)t =axz+ (TZ2)" = %2+ T(Z) = T.(Z7).

Our claim then reduces to showing that for a finite-dimensional G, -representation V' with associated
G.,,-vector scheme V we have (V)T = V=9 where V20 is the subrepresentation generated by the non-
negative weight spaces. But V. = Spec Sym V*, so by our explicit construction for affine schemes in
Theorem 2.11 we have (V)* = Spec Sym V*/I~. Since V = V=0 @ V<0 we see that

Sym V* = Sym(V=%)* ® Sym(V <%)*
and Sym V* /I~ = Sym(VZ%)* as desired. O

Definition 2.13. By the universal property characterizing Z+, we know that the idenitity map of Z+
induces a G,,-equivariant map o : A x Z+ — Z%, where G,,, only acts on A' in the source. The
following is a commutative diagram of G,,-schemes:

Ox Zt —— Al x Zt «+— T(Al x Z%)

I J» I
Z° zZ+ T(Z*)

it

It induces a G,,-equivariant map on fiber products da : ToA' x TZ+ — TyoZ7*. Identifying Ty Al
with k, we get the tangent vector ¢ € Ty A corresponding to 1 € k. We can then defineamap A : Z+ —
TzoZT as da o (€, s0), where sq is the zero section Z1t — TZT.

Lemma2.14. Letw : Ty0ZT — Z9 be the projection and let A be as in Definition 2.13. ThenwoA = ¢+.

Proof. If ' : ToA' x TZT — 0 x ZT is the projection map then by construction 7 o dav = ¢ o 7.
Since 7’ o (€, s9) = idz+ the result follows. O

Lemma 2.15. The image of A lies inside the weight-one subbundle of Tz0 Z .

Proof. Since da is linear in tangent directions and G,,, equivariant, where G,,, only acts on the A factor
in the source,
A A(2) = da(X, s0(2)) = Ada(€, so(z)) = AA(2).

2.2.1 A filtration on Z+

The results of this section seem to be new, but the main ideas of the arguments are largely borrowed from
[3]. Conversations with Sanath Devalapurkar were helpful for formulating Definition 2.19.

Let A] be the n-th formal neighborhood of zero (i.e. Spec k[]/e"*1). This a closed G.,,-subscheme
of A! with the standard G, action. The following definition appears in [3, Subsection 4.2].

Definition 2.16. Write Z;" for the mapping space Hom®™ (A, Z). In other words, Hom(S, Z;) =
Hom®™ (AL x S, 7).



Remark 2.17. 1do not know whether ZT is representable by a scheme if Z is a scheme. It seems unlikely
to me.

Proposition 2.18. Let Z be a scheme smooth over k. Then the restriction map Z+ — Z is formally
smooth.

Proof. This follows from “standard arguments”, as in [3, Proposition 1.4.20]. To elaborate: we want to
show that given any diagram as below with S — S' a square-zero extension, we can find a dashed arrow
making the diagram commute.

In other words, given G,,-equivariant maps f : S x A! — Zandg:S x Al — Z we want to find a
G, equivariant arrow f : S x A! — Z as in the diagram below.

Sx AL —— Sx Al

|

Sx AL

In other words, writing X = S x Al Ug, At S x A}L, we want to show that the restriction map

Maps®™ (S x A, Z) — Maps®™ (X, Z)
is surjective. Since the map X — S x Al is a square-zero extension and Z is smooth, we know that
Maps(S x A', Z) — Maps(X, Z)

is surjective, and the fiber over g in Maps(X, Z) is a torsor for H*(X;§*07 ® Jx), where Jx is the
ideal defining X in S x A (considered as a sheaf over X because the extension is square-zero). Because
G,,, is linearly reductive (true in any characteristic!) we can apply Corollary A.8 to see that

Maps®™ (S x A, Z) — Maps®™ (X, Z)
is surjective, too. O

Definition 2.19. Given a G,,,-scheme Z, define Z%=* to be the fiber product

70>k s 7+
70— 7ZF |
Proposition 2.20. Let Z be affine. Then the map Z%Z% — Z% is a closed embedding.

Proof. The map Z° — Z,j_l is a split monomorphism, so the map Z%2F — ZT must also be a
monomorphism. If S = Spec B and Z = Spec A, then an S-point of Z ¥ is a map

¢ € Homg, ping(A, B ® k[z]) = Homgrng(AJ“, B ® k[x]).

Let's write p(a) = Y, ¢n(a)z™. The S-point lies in Z%=%(S) when the reduction mod z* of ¢ is
concentrated in degree zero. In other words, ¢; = 0 for 0 < 7 < k. But maps ¢ satisfying this condition
are exactly those that factor through A /I, where I}, is the ideal generated by homogeneous elements
of A concentrated in degrees d with 0 < d < k. O



Remark 2.21. The assumption that Z is affine in the above proposition can probably be removed by
analyzing jet schemes.

Corollary 2.22. Let Z be a smooth affine G, -scheme. Then Z%Z* is smooth over Z°.

70>k

There is an alternative description of as an equivariant mapping space which will be useful.

Definition 2.23. Let C}, be the pushout A Uar * By Proposition B.10 we see that C}, is a G,,,-scheme.
Explicitly, Cy = Spec k[tk, tk+1 ¢+2 ],
Example 2.24. C; is A'. C, is the cuspidal cubic Spec k[t2, t?].
Proposition 2.25. Z%2% = Maps®™ (Cy, 2).
Proof. This follows from Corollary B.11. O
Proposition 2.26. Suppose X — Y is a G,,,-equivariant closed embedding. Then
X02F = X xy YO2F,

Here X 2% maps to X via the composite of the map X*=% — X+ and p*™ : X+ — X. Similarly,

Xt =Xxy Yt
and

X0=X xyY?

Proof. Note that X = Maps©®™ (G,,,, X) and the map X*=* — X is induced from the map G, — C}.
This map is universally schematically dominant as a map over the base field k, so the result follows
from Corollary B.6. The statements about X+ and X° follow similarly by considering the universally
schematically dominant maps G, — A' and G,,, — *, respectively. O

2.2.2 Linear Algebraic Groups with G, Actions

The results in this section are also new, but they’re mostly an extension of the ideas in [2, Section 2.1].
To elaborate: there is substantial overlap in the results of our Proposition 2.32 and [2, Proposition 2.1.8]
(in loc. cit. they assume that the G,;, action on G is “inner”, but they work over a general ring while we
only work over fields). In loc. cit. they also prove the result “by hand”, while we appeal to the general
theory of Bialynicki-Birula decompositions (the conceptual contents of the proofs are basically identical).
What’s new is that we then go on to extend the results of Proposition 2.32 to the subgroups G=*, which
we define using the ideas from the previous section.

Definition 2.27. A G,,-algebraic group is a group object in the category of affine schemes of finite type
over k.

Proposition 2.28. IfG is a G,,-algebraic group, then G°, GT, and G®=F are all linear algebraic groups.
If G is smooth then these groups are all smooth.

Proof. The functors Z — Z° and Z — Z7 are both right adjoints, so they send group objects to group
objects. The functor Z — Z%=* can be expressed as a limit of right adjoints, so it also preserves group
objects. When G is smooth, the smoothness of GP and G is shown in [3, Proposition 1.4.20]. Then the
smoothness of G%Z* follows from Corollary 2.22. O

Definition 2.29. We say that a G,,-scheme Z is attractive if Z = Z 7.
Note that the full subcategory of attractive G, -schemes is closed under the formation of products.

Lemma 2.30. The functor Z — Z || G.,, preserves products when restricted to attractive affine schemes.

Proof. For any graded rings A and B, we have an inclusion A° ® B — (A ® B)°. When A and B are
both non-negatively graded, this map is an isomorphism. O



Definition 2.31. Let G be a G,,-algebraic group. Define G+ to be the kernel of the map ¢+ : G+ — G°
(note that from the construction in Theorem 2.11 ¢ is the map from G to G J/ G,,).

Proposition 2.32. Let G be an attractive linear algebraic group. Then there is a canonical decomposition
G=GT xG°
G is connected, attractive, and (GT1)° = x. If G is smooth then Gt and G° are both smooth.
Proof. The inclusion GT+ — G is a closed embedding by definition, so by Proposition 2.26 we see that
(GTH)T =Gt xg Gt =Gt

since by assumption G = G*. This shows that G* is attractive. The lower square in the diagram below
is a pullback by definition, and the upper square is a pullback by Proposition 2.26. The composite right
vertical arrow is an isomorphism, so (G+—|—)0 = *.

(G-H—)O . Qo
Gt —— G
|7 b
* — GO
Now we know that Gt / G,,, = (GT1)? = x, so by Lemma 2.8 we see that every G,,-orbit of G
contains the identity in its closure. This shows that G is connected. The fact that G = GT+ x G°
follows from the fact that GTF x g G® = x as in the diagram above. The smoothness of G follows from

[3, Proposition 1.4.20]. The smoothness of G follows from the fact that ¢ is smooth by base-change;
the smoothness of ¢ is also shown in [3, Proposition 1.4.20]. O

Lemma 2.33. Let G be an attractive G,-algebraic group. Then

(G++)O,Zk — (Go,Zk)++

Proof. TODO: Write this O

Definition 2.34. In light of Lemma 2.33, define GZ* = (GO2F)*+ = (G+1)0:2F,

Representation Theory Now we give a Tannakian description of the group schemes G=* which will
be useful both for understanding their structure theory and their actions on G.,,-schemes.

Definition 2.35. Let V' be a graded vector space. Then GL(V') naturally has the structure of a G-
algebraic group: by composing the grading map G,,, — GL(V) with the adjoint action of GL(V') on
itself, we get an action of G,,, on GL(V') by homomorphisms. Call this the standard G,,, structure on
GL(V).

Definition 2.36. A graded representation of a 3,,-algebraic group G is a graded vector space V' and
amap p: G — GL(V) of G,,-algebraic groups, where GL(V) has the standard G, structure.

Lemma 2.37. A graded representation of a G,-algebraic group G is the same as a representation of
G x G,

Proof. TODO: write this O

Definition 2.38. A graded representation of a G,,,-algebraic group G is faithful if ker p = *.

Lemma 2.39. Every G,,-algebraic group has a faithful G, -representation.

Proof. TODO: write this O
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Definition 2.40. Let V be a graded vector space. Then let 72¢V be direct sum of the weight subspaces
of V' with weight at least <.

Proposition 2.41. Let V be a graded vector space and let GL(V') have the standard G.,, structure. Then
o GL(V)T is the subgroup of linear transformations that preserve every 7=V

o GL(V)Z* is the subgroup of linear transformations that act trivially on each subquotient =V /72 +FV
Proof. TODO: write this O

Theorem 2.42 (Tannakian description of G=¥). Let G be attractive. Then G=F is the largest subgroup
of G so that for every graded representation V, the action of G=F is trivial on 721V 721k

Proof. TODO: write this O
Corollary 2.43. G=* is unipotent for every k > 1.

Proof. Let V be a faithful graded representation of G. Then as in the proof of Theorem 2.42 we see that
GZ* is a closed subgroup of GL(V)Z*. Since GL(V)Z* is unipotent this implies that G=* is unipotent,
too. O

The following corollary will not be used in the remainder of the text.

Corollary 2.44. If G is a G,,-algebraic group which is both attractive and reductive, then G, acts
trivially on G.

Proof. By Proposition 2.32 and Corollary 2.43 we see that G is a smooth connected normal unipotent
subgroup of G. It must be trivial if G, so G = G°. O

2.2.3 Equivariant Bialynicki-Birula Decompositions
This section is also new.

Definition 2.45. If G is a G, algebraic group, then a G-equivariant G,,-scheme Z is a G,,, scheme
with an action of G internal to the category of G,,-schemes. In other words, we require the action map
G x Z — Z to be G,,-equivariant.

Proposition 2.46. Let Z be a G-equivariant G ,-scheme. Then Z° is a G°-equivariant scheme. If G is
attractive then Z7 is a G-equivariant G.,,-scheme and Z° is G-equivariant, where the G action factors
through the quotient map to G° = G /G*+. Moreover, the map q* : Z+ — Z° is G-equivariant.

Proof. TODO: write this O

Definition 2.47. Let G be attractive and let Z be a G-equivariant G,,,-scheme. Define a G-equivariant
G,,,-scheme (A1 X ZT)s (“source”) as follows: as a G, scheme, the action of G, is by the defining
action on Z* and by the inverse of the standard action on A!. Then G acts by the given action on Z7.
The action is G,,,-equivariant because

g/\ : [)‘ ’ (:U‘7 Z)] g)\ ! ()‘71/1“’ /\Z)
-1

=(A"u,gM\2)
= ()‘_1/’6’)‘92)
=X-[g- (1 2)]
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Definition 2.48. Let G be attractive and let Z be a G-equivariant G,,-scheme. Define a G-equivariant
G,,-scheme (A! x Z+), (“target”) as follows: as a G, scheme, the action of Gy, is trivial on Z* and
by the inverse of the standard action on A'. Then G acts by the given action on Z+ after first twisting
by the action of A! on G (which is well-defined because G is attractive). This action is G,,, equivariant
because:

g (A, 2)
A, g )
= (A", g"2)
=X-[g- (1, 2)]

Proposition 2.49. There is a G x G, -equivariant map cenp, : (A x Z1), — (A x Z1),; so that
Qenn (1, 2) = (u, a(p, 2)), where o : A x Z+ — Z7F is the action map from Definition 2.13.

gt [N (n,2)]

Proof. First note that ey, is G,,,-equivariant:
Qenn(X - (1, 2)) = aenh()rl:u» Az)
= (A e, A2)
= (A, a(p, 2))
=X\ aenh(ﬂa Z)
Now note that it’s G-equivariant, too:
aenh(g : (,LL, Z)) = aenh(,u7gz

)
= (p, a(p, g2))
= (1, 9"a(u, 2))

=g Qenn(p, 2)
O
Lemma 2.50. Let x be in Z°. Then Stab(x) is again an attractive G.,-algebraic group and
Stab(z)" = G° N Stab(x)
Stab(z)*™t = G*t*
Proof. TODO: write this O

Lemma 2.51. Let x be in Z°. Then we get a graded representation of Stab(z) on the vector space
V =To.(A' x Z%), = TyA! x T, Z™". The grading is such that TyA' has weight —1 and T, Z™" has
weight 0. Also, Stab(z) acts trivially on TyA' = V720V,

Proof. TODO: write this O

Definition 2.52. In the setting of Lemma 2.51, identifying Ty A'! with k, the quotient map gives a
Stab(z)-equivariant linear functional § : V' — k. We can form the standard affine space Ay as in
Definition A.4, which acquires an action of Stab(z) by affine-linear transformations. Ay comes with a
distinguished point a, which comes from the fact that V' is split as a vector space (but note that a doesn’t
need to be preserved by the action of Stab(z)!).

Proposition 2.53. In the setting of Lemma 2.51, G=2 acts trivially on Ag. Also, the action of Stab(x)?
preserves a.

Proof. Since V = 7271V/721V, we see from Theorem 2.42 that G=2 must act trivially on V. Also,
by the Tannakian description of Stab(z)? (TODO: write this) we know that its action on V' preserves the
decomposition into weight spaces—so V' = ToA! @& T, Z " as a Stab(x) representation. O
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Definition 2.54. In the spirit of Definition 2.13 and Proposition 2.49 we can define an equivariant map
Acnp, which maps from Z+ to Ty z0 (Al x Z7F). In fact, Ay, factors through a map to {£} x TzoZ T,
so the fiber at every x € Z9 is Ag. TODO: expand on this

2.3 Miscellaneous

In this section we collect a handful of results that are important in [1]. Our proof of Theorem 2.55
follows [6]. Theorem 2.57 and Lemma 2.58 are from [4, Section 1.4]-although this paper has a running
assumption that all varieties are defined over a field of characteristic zero, the results from this section
do not depend on this assumption. Since we are especially interested in applying the results of [4] to the
case of integral schemes, we give proofs with this additional assumption for simplicity. In this setting the
arguments become much simpler, as indicated in the “Remarque” in Section 1.4 of loc. cit.

Theorem 2.55 (Matsushima). If G is reductive then G/ H is affine if and only if H is reductive.

Proof. The reverse direction follows from Nagata’s theorem since G/H = G // H. For the forward
direction let » = dim G and m = dim H. If 7 : G — G/ H is the projection, then because G is etale-
locally a product of H with G/ H, we know by Artin vanishing for H that R?r, A = 0 for all ¢ > m (here
it’s important that G/ H is smooth). Because G/ H is assumed to be affine, we can apply Artin vanishing
to conclude that H,(G/H; Rim.A) = 0 whenever p > n — m. Now a collapse happens in the Leray
spectral sequence and we get that

HJ,(G;A) = HI™(G/H; R"m. ).
Since G is reductive, we can use its Chevalley model plus the Artin comparison theorem to see that
HL(G;A) = H;ng(GC;A) =A#£0,

where we’ve used the fact that a complex reductive group deformation retracts onto its compact real form,
which is a smooth compact n-fold. This implies that R"*7, A must be nonzero, so some stalk of this sheaf
must be nonzero. But again by the fact that G is etale-locally a product over the base we have

(R™1,\)y = H™(H; A) # 0.

If H weren’t reductive, then we could quotient by its unipotent radical to realize H as an A*-bundle over
the affine algebraic group H/ R, (H). By Artin vanishing, this would contradict the fact that H} (H; A)
is nonzero. O

Example 2.56. Consider G = G,,, and H = p,. Then the quotient is G,,, which is affine but H may
not be reductive if you assume reductive groups to be smooth.

Theorem 2.57 (G-equivariant Zariski’s Main Theorem). Let X, Y be affine G-varieties and let p : X —
Y be a quasi-finite G-morphism. Then there is a G-variety Z so that o factors as 1) oi, wherei : X — Z
is an open immersion, v : Z — Y is finite, and both i and 1) are G-equivariant.

Proof (when X and Y are integral). Let Z be the normalization of Y in X (see [8, Tag 035H]). Then Z
is a G-scheme since if f € Ox satisfies the equation 2% + yp 12571 + ... +yo = 0 with y; € Oy then
g - f satsifies the equation ¥ + (g - yr_1)2* 1+ ...+ g-yo = 0. By [8, Tag 0AVK] Z is finite over Y’
and by [8, Tag 02LR] the map X — Z is an open embedding. O

Lemma 2.58 (Luna’s Lemma). Let ¢ : X — Y be a map of affine G-varieties which is quasi-finite,
sends closed orbits to closed orbits, and induces a finite map on GIT quotients. Then  is finite.

Proof (when X andY are integral). Ifthemap ¢ /G : X J/ G — Y J/ G is finite then every element of
O is automatically integral over Oy-. In the notation of the previous proof we see that i / G is therefore
an isomorphism. If the image of 7 in Z has a non-empty closed complement, then we can find a closed
G-orbit T contained in the complement. Because 7 // G is an isomorphism, there must be an orbit T which

is closed in X such that T is in the closure of i(T). Point-set topology shows that ¢)(T) is in the closure
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of 1) 0 i(T) = o(T), but by assumption ©(T) is closed, so ¥(T) = (T). Since 1(T) = 1 0 i(T) and
1 is finite we see that 7" and i(7") must have the same dimension, contradicting the fact that 7" is in the
closure of (7). O

3 Whittaker Induction

In this section we follow [1, Sections 3.4-3.6]. For simplicity, we impose the assumption of evenness in
our definitions and proofs in this section. Since one is mainly interested in hyperspherical varieties with
a “distinguished polarization” (see Definition 4.4), which automatically implies evenness, this is not a
terribly restrictive assumption. We recommend that readers interested in the odd case consult [1].

Definition 3.1. Consider a map H x SLy — G (in particular, H lies in the centralizer of SLs) and a
Hamiltonian H-space S. Suppose the map SLo — G is even, which means that —1 € SLs is in the
kernel. Then the Whittaker induction of S is h-ind %, S;.

Definition 3.2. A graded Hamiltonian G-space X has property h if
* X is affine.
* X has a unique closed orbit X under the action of G X G,.
¢ The image of X under p is contained in the nilpotent cone in g*

* The G,, action on X is “neutral”. Namely, for all z € X, it must be possible to extend p(x) to
an slo-triple so that z - A = x - A", Additionally, the cocharacter 7, : G, — G x G, that sends
A (A7", X) should act by simple scaling on the fiber of the symplectic normal bundle of X in
X.

Lemma 3.3. Let M be a graded Hamiltonian G-space with property h. Then the unique closed G x G,
orbit My is actually a single G-orbit.

Proof. By the neutrality assumption, at every point z € M the G, action is given by a cocharacter of
G. O

Lemma 3.4. Ignoring symplectic structures, when S is a linear graded Hamiltonian H -space W—inde S =
V xH G where V =8 @ (b @ g°). The grading is such that G, acts by the given action on S, it acts
by weight 2 + i on the part of g¢ with weight i with respect to h, and G, acts on G by left multiplication
by A\,

Proof. By Lemma 1.18 we know that w-ind$, = (5¢ X (1) 8%) x Y G. The theory of Slodowy slices
says that (S X ()« 8°) = (Sf xp= g°) x U. O

Lemma 3.5. If H x SLy — G is Whittaker data where H is reductive and S is a linear graded Hamil-
tonian H-space then W—indg S satisfies property h.

Proof. When H is reductive, H\G is affine. By Lemma 3.4, we see that W—indg S'is a vector bundle over
H\G, so it is affine, too. Under the G, action on V, every nonzero element gets contracted to zero, so
H\G = X, is the unique closed G x G, orbit in W—indg S. The image of X under the moment map is
conjugate to f, and the action of G,, is given by scaling by . The fiber of the symplectic normal bundle
to X, at any point is given by S, which is acted on by linear scaling under (A\=",\) C G x G,y,. O

Lemma 3.6. If M and M are graded Hamiltonian G-spaces with property h and ¢ : My — Ms is a
map that is etale and an isomorphism on the closed orbits then  is an isomorphism.

Proof. Tt suffices to show that ¢ is finite; given this ¢ is finite etale, so it’s a covering map, and its fibers
consist of a single point because it’s an isomorphism on the closed orbits. To check finiteness, we can
apply Lemma 2.58: both the source and the target are affine by property h, ¢ is quasi-finite because it is
etale, it carries closed orbits to closed orbits by assumption, and since each GIT quotient is a point the
map on GIT quotients is finite. O
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Lemma 3.7. If M is a graded Hamiltonian G-space with property h and x € My is a point in the closed
orbit, then T, My N T, Mg~ = g/ /b, where [ is the image of x under the moment map (here we identify
g and g* using an invariant bilinear form) and b is the Lie algebra of the stabilizer of x.

Proof. By Lemma 3.3 we know that g surjects onto the tangent space of M at x via the map & (Defi-
nition 1.5), and the kernel is exactly . It remains to determine which X € g/b pair to zero with every
other element under the symplectic form. But

wa(€x,&y) = &y px(z) = py,xy(@) = (f, [V, X]) = (X, f.Y).
This vanishes for all Y € g if and only if X € g7. O

Theorem 3.8. If M is a graded Hamiltonian G-space with property h then M is Whittaker-induced from
a linear Hamiltonian H-space.

Proof. Let Mj be the closed orbit and let = be a point in M. Let H be the stabilizer of x (which is
reductive by Theorem 2.55). Let f be the image of = under the moment map; by the neutrality condition
there is an S Lo-triple where G.,,, acts by A" at z. Let S be the fiber of the symplectic normal bundle of
My at . Recall that z is fixed under the G,,, action (A\~", \). By the Bialynicki-Birula theorem, there is
a contracting scheme Z* for this G,,, action, which maps to the fixed locus Z° by ¢*. By Lemma 2.12
and the neutrality condition on the G.,,, action, we know that S automatically lies inside T, Z .

Let M be the fiber of ¢+ at = (i.e. the points of M that contract to = under the G, action). Note the
slight mismatch between this notation (which matches the notation in [1]) and the notation of Section 2.2
(according to which M ™ would denote what we call Z* here). M™ is stable under the HU action by
Proposition 2.46 because HU is attractive for the action of \".

If Ay : Zt — TyoZ7 is as in Definition 2.13, then we claim that M+ can be expressed as the
pullback in the upper square of the following diagram:

Mt — 5 7+
L

T2+ —— TyoZt
A

This follows because the bottom square is a pullback by definition and the outer rectangle is a pullback
by Lemma 2.14. We therefore get amap A : M+ — T,Z7% as indicated in the diagram. It must land in
the weight-one subspace of T, Z+ by Lemma 2.15. We claim that the weight-one subspace is exactly S.
Clearly S is in the weight-one subspace by the neutrality condition on the G, action, so it remains to see
the other inclusion.

By the neutrality condition, T, My = g/b is a G,,,-stable subspace that G,,, acts on by \". This gives
a sequence of inclusions of G, -stable subspaces:

0CViCT, My C V" CT,Z"

where V; = T,.My N (TwMO)L. Because G, is linearly reductive we get a splitting of T, ZT as a
G,,,-representation into
T, My & Vit )T, My & T, Z" ) Vi*

Note that the weights of the G, action on this subspace are non-positive, so because w is acted
on by the squared action, all of the weights of T,,M/V;- are at least 2. By the evenness assumption,
all of the weights of g/h are even. So the subspace of weight one must be contained in V- /T, My =

Since we assume that the S L-triple is even, we know that U = U=2, so by Proposition 2.53 we see
that A is HU -equivariant, where U acts trivially on S and H acts by the usual action on T, Z .
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We therefore getamap A : M — S. We further claim that this map realizes M as the fiber product

Mt —2 8

| |

g —— (h+w*

This amounts to saying that dy is injective on the weight > 2 subspace of 7, M. The kernel of dy is given
by (T, Mp)*, which is a sum of T}, My N (T, My)* and S. But the weights on both of these subspaces
are < 2. Now by dimension counting we get an iso on tangent spaces. TODO: Finish this out... O

4 Statements of Results

In this section we state other important definitions and theorems from Sections 3.6 and 3.7 of [1].

Definition 4.1. A symplectic G-variety X is coisotropic if k(X)® is commutative with respect to the
Poisson bracket.

Proposition 4.2. If H is reductive then W—indfl S is coisotropic if and only if G/HU is spherical and S
is coisotropic for the generic stabilizer of G on T*Y .

Definition 4.3. A graded Hamiltonian G-variety X is hyperspherical if
* It satsifies property h.
* [t is coisotropic.
 The stabilizer of a generic point of X is connected.

Definition 4.4. A hyperspherical variety admits a distinguished polarization if it is even and the sym-
plectic normal bundle to the closed orbit admits an H-stable splitting S = ST & S~.

Lemma 4.5. If hyperspherical M admits a distinguished polarization then M = T*(X, V), where
X =St xHYU Gand U = St xHU" G, where U' = ker f. Moreover X has to be spherical and the
B-stablizer of a point in the open B orbit is connected.

A Affine Spaces

Here we collect some basic facts about affine spaces.
Definition A.1. An affine space is a torsor for a vector space.

The ring of polynomial functions on any vector space V' has a grading by degree; associated to this
grading one can produce a filtration F;k[V]| = @;<;k[V];. If A is an affine space which is a torsor for
V', we can identify A with V' by choosing a point @ € A. This then gives an identification of the ring of
functions on A and the ring of functions on V, and one can transport the grading and filtration on k[V]
to k[A]. The grading on k[A] that one produces through this procedure is dependent on the choice of a,
but importantly the filtration does not depend on the choice of a.

Definition A.2. The filtration by degree on k[A] is the filtration defined above.
Definition A.3. The space Aff(A, k) of affine functionals on A is F1k[A].
One common source of affine spaces is the following construction

Definition A.4. Given a vector space V' and a nonzero linear functional @ : V' — k, the fiber Ag = 61(1)
is an affine space over the vector space Vy = ker 6, where the action of Vj on Ay is given by the addition
map of V. Call such an affine space standard.

Lemma A.5. Splittings of a nonzero linear functional 0 : V. — k are in bijection with points of the
standard affine space Ay.
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Proof. The splitting is determined by the image of 1, which must lie in 0=1(1) = A,. O

In fact every affine space can be functorially realized as a standard affine space.

Proposition A.6. Given an affine space A which is a torsor for a finite dimensional vector space V, there
is a canonical linear embedding A : V. — Aff (A, k)Y which realizes V as a hyperplane in Aff(A, k)V.
There is a canonical affine embedding ev : A — Aff(A, k)Y and a canonical linear functional 6 :
Aff(A, k)Y — k so that (A, ev) identifies (V, A) with the standard affine space (Vy, Ay).

Proof. Inside the space of affine functionals Fyk[A] there is the subspace of constant functionals k =
Fyk[A]. The embedding k¥ — Aff(A, k) induces a map Aff(A4, k)Y — kY. Identifying k with its dual
gives the map 0 : Aff(a,k) — k. Spelling this out, for any A € k and any £ € Aff(A, k)Y, we have
& fo = 0(&)X (where f is the constant function with value \).

The embedding A : V' — Aff(A, k)Y sends v € V to the difference operator A, (so

Ayf = flp+v) - f(p),

which is independent of the choice of point p € A) and the embedding ev : A — Aff(A, k)Y sends
a € A to the evalutation operator ev, (so ev, f = f(a)). Since the functions for which A, vanishes for
all v are exactly the constant functions, we see that A identifies V' with ker 6. Clearly 6(ev,) = 1, so by
dimension counting we see that ev identifies A with Ay. It remains to note that ev, +A, = evgy,. O

Since all of the above constructions are functorial, we can perform them in families. Working over
BG and combining Proposition A.6 and Lemma A.5 we get the following proposition

Proposition A.7. If A is a finite-dimensional affine space with a G action then the fixed points A® are
in bijection with the G-equivariant splittings of 0 : AR(V, k)Y — k.

Corollary A.8. If G is linearly reductive then every G-affine space A has a fixed point.
Proof. By local-finiteness considerations we can reduce to the case when A is finite-dimensional. Then
by Proposition A.7 we see that the obstruction to the existence of a fixed point is given by the class of the

extension A ,
0=V = AFVE)Y - k—0

in Ext%{ep(g) (k, V). Butif G is linearly reductive this Ext group vanishes. O

B Mapping Spaces

Here we collect some basic facts about mapping spaces. Let’s work over a base ring k which is not
necessarily a field. Although we will only be interested in the case when k is a field, we feel that it
clarifies the nature of the arguments to work in this more general situation.

Definition B.1. A map of schmes f : X — Y is schematically dominant if the schematic image of f
isequalto Y.

Proposition B.2. Let f : X — Y be a map of schemes. The following are equivalent

1. f is schematically dominant.

2. f satisfies the left lifting property with respect to closed embeddings.

Proof. First suppose f is schematically dominant. Then for any closed embeding Z — W and compati-
ble maps X — Z,Y — W, we need to find a lift from Y to Z.




Since f factors through the closed embedding Y xy Z — Y, we see that the map Y Xy Z — Y must
be an isomorphism. This gives the lift from Y to Z.

On the other hand, suppose that f satisfies the left lifting property with respect to closed embeddings.
Then we can lift against the inclusion of the schematic image of f into Y as in the diagram below.

X ——Imf

A
|7

Y — Y
idy

This shows that Im f =Y. O

Definition B.3. A map of schemes f : X — Y is universally schematically dominant if it remains
schematically dominant after any change of base.

Proposition B.4. Suppose f : X — Y is universally schematically dominant and g : Z — W is closed.
Then Maps(Y, Z) = Maps(Y, W) Xnaps(x,w) Maps(X, 2).

Proof. We’ll check equality on S-points for all S. We need to show that every diagram as below admits
a lift:
S x k X — 7

I 7]
SXrY — W

This follows since Z — W is closed and S x; X — S X Y is schematically dominant. O

This proposition has a G-equivariant upgrade, based on the following

Lemma B.5. Let X,Y,Z be G-schemes. Let f : X — Y and g : Y — Z be maps such that g is a
monomorphism. Then if g is G-equivariant and g o f is G-equivariant, so is f.

Proof.
GxX — X

L

GxY — Y

L

Gx 2 —— 7

We want to check that the upper square in this diagram commutes. Since g is a monomorphism, we can
check this after composition with g. The lower square and the outer rectangle commute because g and
g o f are G-equivariant, giving the desired result. O

Corollary B.6. In the setting of Proposition B4, if X,Y, Z, W are G-schemes and f and g are G-
equivariant, then we also have Maps® (Y, Z) = Maps® (Y, W) X MapsC (X, W) Maps® (X, Z).

Proof. We need to check that if S x; Z and S X Y are G-equivariant then the lift constructed in
the proof of Proposition B.4 is G-equivariant. Since Z — W is a monomorphism this follows from
Lemma B.5. O
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Pushouts The inclusion of affine schemes into schemes doesn’t preserve pushouts in general; however,
there are special circumstances when this is true. The following is due to Schwede:

Theorem B.7. [7, Theorem 3.4] Let X,Y, Z be affine schemes withmaps f :' Y — X, g:Y — Z.
If f is a closed embedding then the pushout X Uy Z in the category of schemes exists, and is equal
to the pushout in the category of affine schemes. More explicitly, if X = Spec A, Z = Spec B, and
Y = SpecC, then X Ly Z = Spec A x¢ B.

Lemma B.8. In the setting of Theorem B.7, let W be another affine scheme. If either Y is flat over k or
W is flat over k, then
(XUy Z)xW=(X xW) Uy xw) (Z xW)

Proof. Since A — C! is surjective we have the following exact sequence of k-modules
0>AxgB—-A®»B—-C—0
Writing R = Oy, if either R or C'is flat over & then this induces an exact sequence
0> (Ax¢cB)® R—- (A®R)®(BRR)— (C®R)—0

which shows that
(AxcB)®@ R=(A®R) xcgr (B® R)

as desired. O

Proposition B.9. In the setting of Theorem B.7, if Y is flat over k then for any scheme W we get
Maps(X Uy Z, W) = Maps(X, W) Xnaps(v,w) Maps(Z, W).

Proof. Tt suffices to check that the S-points are the same whenever S = Spec R is an affine scheme. But
by Lemma B.8 we know that (X Uy Z) xS = (X x5)Uy xs (Z x 5), so this follows from the universal
property of the pushout. O

This proposition also has a G-equivariant upgrade.

Proposition B.10. Let G be a group scheme flat over k. In the setting of Theorem B.7, if X, Y, Z are
G-schemes and f, g are G-equivariant, then the pushout X Uy Z exists in the category of G-schemes
(and the underlying scheme is the usual pushout X Uy Z).

Proof. By Lemma B.8 we see that
GX(XuyZ):(GXX)HGXy(GXZ)

so the action maps of X and Z define an action map on X Ly Z. Given any G-scheme W with equivariant
maps from X and Z which agree on Y, we get a map of schemes X Lly- Z — W by the universal property
of the pushout. To check that the following diagram commutes

(GxX)Ugxy (GXZ) — XUy Z

| |

GXW —mm— W

it suffices to check after precomposing with the inclusions of G x X and G x Z into the pushout. But
then the diagram commutes by the equivariance of the maps X — W and Z — W. O

Corollary B.11. In the setting of Proposition B.10, if Y is flat over k then for any G-scheme W we have
Maps“ (X Uy Z, W) = Maps® (X, W) Xyjapsc (v.w) Maps© (Z, W).

Proof. Combine proposition B.10 and Proposition B.9. O
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