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1 Symplectic Geometry
First we review some important constructions and examples in symplectic geometry.

1.1 The Basics
Definition 1.1. Let N be a smooth manifold. The cotangent space of T ∗

(x,ρ)N at (x, ρ) is isomorphic to
TxN ⊕ T ∗

xN (“the N direction and the T ∗
xN direction”). The canonical 1-form θ on T ∗N sends (ξ, ψ)

to ρ(ξ).

Lemma 1.2. Let φ be a diffeomorphism of N . It induces a diffeomorphism φ̃ of T ∗N and φ̃∗θ = θ.

Proof. The definition of θ only involves the smooth structure of N .

Definition 1.3. The standard symplectic structure on T ∗N is given by ω = −dθ. Explicitly,

ω((ξ1, ψ1), (ξ2, ψ2)) = ψ2(ξ1)− ψ1(ξ2).

Lemma 1.4. Let G be a Lie group acting on N by diffeomorphisms. Then the induced action on T ∗N
acts by symplectomorphisms with respect to the standard symplectic structure.

Proof. g∗ω = g∗dθ = dg∗θ = dθ = ω by Lemma 1.2.

Definition 1.5. Let (M,ω) be a symplectic variety with an action of a Lie group G. From the map
φ : G→ Diff(M) we can take the induced map on Lie algebras ξ : g → Θ(M) (we write Θ(M) for the
space of vector fields on M ).

Lemma 1.6. g∗ξX = ξAdgX for any X ∈ g and g ∈ G.

Proof. The map on Lie algebras associated to a homomorphism of Lie groups is always compatible with
adjoint actions, so ξAdgX = Adφ(g)ξX . But for any ξ ∈ Θ(M) and φ ∈ Diff(M)

φ(1 + εξ)φ−1(x) = φ(φ−1(x) + εξφ−1(x))

= x+ εdφ(ξφ−1(x))

= x+ ε(φ∗ξ)x

so Adφξ = φ∗ξ. From this we see that ξAdgX = g∗ξX .

Definition 1.7. A moment map µ for the action of G is a smooth G-equivariant map µ :M → g∗ such
that ∇ω ⟨µ(m), X⟩ = ξX for all X ∈ g (here g∗ is considered as a G-space via the coadjoint G-action).
We will also write µX for the function ⟨µ(−), X⟩. With this notation, the equivariance of µ is equivalent
to µX(g ·m) = µAdg−1X(m) for all X ∈ g, g ∈ G and m ∈M .
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Example 1.8. SupposeG acts onX and letM = T ∗X with the standard symplectic structure. Then set
µX = θ(ξX). To see that this µ is G-equivariant, note that

θg·m(ξX) = θg·m(g∗g
−1
∗ ξX) = (g∗θ)m(g−1

∗ ξX) = θm(ξAdg−1X)

where we’ve used Lemma 1.2 and Lemma 1.6 to obtain the last equality. To see that this µ is a moment
map for the induced action of G on M , note that

ω(∇ωθ(ξX), ζ) = ζ · θ(ξX) = [diξXθ](ζ) = [LξXθ − iξXdθ](ζ) = ω(ξX , ζ)

where we’ve used Cartan’s magic formula plus Lemma 1.2.

Example 1.9. Let (V, ω) be a symplectic vector space. By definition, Sp(V, ω) acts on V by symplec-
tomorphisms. This action admits a moment map µ : V → sp∗ with µX(v) = 1

2ω(Xv, v). To see that µ
is G-equivariant, note that

1

2
ω(X · (g · v), g · v) = 1

2
ω((g−1Xg)v, v) =

1

2
ω(Adg−1Xv, v)

To check that µ is a moment map, note that

ω(∇ωµX(v), ζ) = ζ · 1
2
ω(Xv, v)

=
1

2
ω(Xζ, v) +

1

2
ω(Xv, ζ)

= ω(Xv, ζ)

where we’ve used the fact that X is a symplectomorphism to say ω(Xζ, v) = ω(Xv, ζ). Since (ξX)v =
Xv this is what we needed to show.

Definition 1.10. A symplectic variety with an action of G that admits a moment map is called a Hamil-
tonian G-space.

Example 1.11. If G acts on M by symplectomorphisms and we have φ : H → G then restricting along
H gives an action of H on M by symplectomorphisms. Moreover, if the action of G on M admits a
moment map µ then ν = dφ∗ ◦ µ is a moment map for the action of H on M . This procedure for
producing a Hamiltonian H-space from a Hamiltonian G-space is called Hamiltonian Restriction.

1.2 Reduction and Induction
In this section we introduce two procedures for producing to produce a new variety from a Hamiltonian
G-space: Hamiltonian reduction and Hamiltonian induction. Hamiltonian reduction is a standard con-
struction in symplectic geometry, and Hamiltonian induction is a generalization of Hamiltonian reduction
that will play an essential role in the sequel. We follow [1, Sections 3.2 and 3.3].

Definition 1.12. Let M be a Hamiltonian G-space. Then the Hamiltonian reduction of M is written
M ///G and equals (M ×g∗ 0)/G. More generally, we can consider M ///f G = (M ×g∗ Of )/G for any
f ∈ g∗ (here Of is the coadjoint orbit of f ).

Example 1.13. Suppose G acts freely on X . The following diagram is cartesian

T ∗X ×g∗ 0 T ∗(X/G)

X X/G

⌟

where T ∗X maps to g∗ by the standard moment map; that is to say, a 1-form on X is pulled back from a
1-form on X/G if and only if it vanishes on ξX for all X ∈ g (recall that the standard moment map on
T ∗X is µX = θ(ξX)). This shows that T ∗(X/G) = (T ∗X) /// G.
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Example 1.14. LetΨ → X be aGa bundle. Then the twisted cotangent bundle ofX , writtenT ∗(X,Ψ)
or T ∗

ΨX , is T ∗Ψ ///1 Ga. Note that by the above example T ∗Ψ ///Ga = T ∗X . Moreover, for any M
acted on by G, if we consider T ∗M with the standard structure of a Hamiltonian G-space, the moment
map is a homomorphism of relative groups over X . In other words, the following diagram commutes:

T ∗M ×X T ∗M T ∗M

g∗ × g∗ g∗

+

µ×µ µ

+

As a result, we get a map

(T ∗Ψ×g∗ 0)×Ψ (T ∗Ψ×g∗ 1) → (T ∗Ψ×g∗ 1) .

Taking the quotient of both sides by Ga then produces an action relative to X of the group scheme T ∗X
on T ∗

ΨX , which makes T ∗
ΨX into a torsor over T ∗X .

Example 1.15. Given a Hamiltonian G-space M and an element α ∈ g∗ which is invariant under the
coadjoint action of G we can form a new Hamiltonian G space Mα, where the G-action is the same but
the moment map is µMα

(m) = µM (m) + α. Then M ///α G =Mα /// G.-

Definition 1.16. Given a map of groups H → G and a Hamiltonian H-variety S, we can perform
Hamiltonian induction to produce a Hamiltonian G-variety h-indGH(S) = (S × T ∗G) /// H .

Example 1.17. For any H we can consider the map to the trivial group H → 1. Then

h-ind1H(S) = S /// H

so we see that Hamiltonian restriction is a special case of Hamiltonian induction.

Lemma 1.18. (S × T ∗G) /// H = (S ×h∗ g∗)×H G.

Lemma 1.19. Hamiltonian induction is right-adjoint to Hamiltonian restriction in the category of La-
grangian correspondences.

Definition 1.20. The symplectic normal bundle to a G-orbit O in a symplectic manifold M is a vector
bundle over O whose fiber at x is TxO⊥/(TxO

⊥ ∩ TxO).

Example 1.21. If we consider theG-orbitH\G = 0×H G inside of h-indGH S then its fiber at any point
is given by S.

1.3 Graded Hamiltonian G-spaces
TODO: Write something

2 Geometric Invariant Theory
In this section we work with affine varieties defined over an algebraically closed field not necessarily of
characteristic zero. Although there is a running assumption in most of [1, Section 3] that they work over
a field of characteristic zero, many (though not all!) of the arguments generalize to a field of arbitrary
characteristic (there is a discussion rationality questions in [1, Section 3.9]). The positive characteristic
setting is especially important for number-theoretic applications, so we found it reasonable to consider it
here.
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2.1 GIT Quotients
We follow [5, Appendix 1.C] for our material on GIT quotients.

Definition 2.1. An algebraic groupG is geometrically reductive if for any finite dimensionalG-representation
V and any fixed vector v ∈ V G, there is some k and some f ∈ (Symk V ∗)G such that f(v) ̸= 0.

Theorem 2.2 (Haboush). Every reductive group is geometrically reductive. In fact, one can always take
k to be a pth-power in the definition of geometrically reductive.

Proof. See [5, Theorem A.1.0].

Lemma 2.3. Let G be geometetrically reductive. If A is a (commutative) ring and I is a G-invariant
ideal in A then for any f ∈ (A/I)G there is some n and some function g ∈ AG so that the image of g in
(A/I)G = fp

n .

Proof. Because f is G-invariant, it spans a 1-dimensional subrepresentation of A/I . Because I is G-
invariant, we can lift this to a representation I + k · f inside of A. Let V be a finite-dimensional subrep-
resentation of I + f · f containing f (representations of affine algebraic groups are always locally finite
so such a V must exist). Then we have a short exact sequence of G-representations

0 → V ∩ I → V → k · f → 0.

From this we see that in V ∨, the function θ which sends f to 1 and sends V ∩ I to zero is G-invariant.
Because G is geometrically reductive, there is some g ∈ (Sympn

V )G such that g(θ) = 1. Since the
image of Sympn

V in A lies in k · fpn

+ I , the condition g(θ) = 1 forces g = fp
n mod I . It is also clear

that the image of g lies in AG, so we’re done.

Definition 2.4. If X = SpecA is an affine variety over k acted on by G then the GIT quotient X // G
is SpecAG.

Theorem 2.5 (Nagata). If G is geometrically reductive then X // G is an affine variety.

Proof. The main difficulty is verifying that X // G is finite type over k. First, note that because A
is finitely generated (and the action of G on A is locally finite) we can find some finite-dimensional G-
subrepresentation V containing a set of generators ofA. Then Sym∗ V → A is aG-equivariant surjective
map, so it actually suffices to prove the following: let B be a finitely-generated, non-negatively graded
ring such that B0 = k and the action of G on B preserves the grading. Then

1. BG is finitely generated.
2. If M is a Noetherian B-module with a compatible G-action, then MG is Noetherian over BG.

If we take these statements for granted, then we’re done: A is a quotient of B = Sym∗ V , so AG is
Noetherian over BG. Since BG is finitely generated over k, this implies that AG is finitely generated,
too.

To prove 1, we can use Noetherian induction to reduce to the case when BG is an integral domain
and B is torsion-free as a BG module (i.e., every f ∈ BG is a non-zero divisor in B). Now we procede
by induction on dimension: if every homogeneous element of BG is a unit then B = B0 = k and we’re
done. Otherwise let f ∈ BG be a homogeneous non-unit; because f is a non-zero divisor in B we know
that B/fB is codimension 1 in B, so by induction (B/fB)G is finitely generated. By Lemma 2.3 we
know that [(B/fB)G]p

n ⊆ BG/(fB)G ⊆ (B/fB)G for some n, so it follows thatBG/(fB)G is finitely
generated too. By [8, Tag 07Z4], to check thatBG is finitely generated as a ring, it suffices to check that its
ideal I+ of positively-graded elements is finitely generated as an ideal. Since f is aG-invariant non-zero
divisor, (fB)G = f(BG), so I+ is generated by f plus lifts of the generators of I+ in BG/(fB)G.

To prove 2, we can apply a devissage argument to reduce to the the case when M is of the form B/p
for a G-invariant prime ideal p. Let K be the field of fractions of B/p, let K0 be the field of fractions of
BG/pG, and let L be the field of fractions of (B/p)G. Because B is finitely generated over k, there is a
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finite transcendence basis t1, . . . tn so that K is finite over K0(t1, . . . tn). By Lemma 2.3, L is algebraic
over K0, so L ∩K0(t1, . . . , tn) = K0. We then see that

[L : K] = [LK0(t1, . . . , tn) : K0(t1, . . . , tn)] ≤ [K : K0]

is a finite field extension. By 1, we know that BG is finitely generated over a field, so the same is true of
BG/pG, so its integral closure in L is finite over BG/pG. Lemma 2.3 implies that (B/p)G is contained
in this integral closure, so because BG/pG is Noetherian we see that it must be finitely generated as a
BG-module.

Additional details can be found in [5, Theorem A.1.1].

Lemma 2.6. Let Iα be G-stable ideals in A. If f ∈ (
∑

α Iα)
G then fpn ∈

∑
α I

G
α for some n (which

depends on f ).

Proof. Any given f is contained in a finite sum I1+ . . .+ Ik, and by induction we can reduce to the case
where k = 2. Suppose f = F1 + F2 where F1 ∈ I1 and F2 ∈ I2. Then mod I1 ∩ I2 this decomposition
is unique, so because f is G-invariant, F1 and F2 must both be G-invariant mod I1 ∩ I2. Applying
Lemma 2.3 we can find some g1 and g2 inAG so that gi = F pn

i mod I1∩ I2. Note that this automatically
implies that gi ∈ IGi . Now

fp
n

= (F1 + F2)
pn

= F pn

1 + F pn

2 = g1 + g2 mod I1 ∩ I2.

In other words, fpn

= g1 + g2 + r, where r ∈ I1 ∩ I2. Since fpn , g1, and g2 are all G-invariant, r must
be too, so fpn

= (g1 + r) + g2 is in IG1 + IG2 .

Lemma 2.7. IfX = SpecA is an affine variety then the natural projection π : X → X//G is surjective.

Proof. First suppose that A is an integral domain. Then for any maximal ideal m ⊆ AG if Am = A then
there are some m1, . . . ,mk such that 1 ∈

∑
iAmi. Lemma 2.6 implies 1pn

= 1 ∈
∑

i(Ami)
G, and

since A is integral we know (Ami)
G = AGmi. But this implies 1 ∈ m, which is a contradiction.

Now if A is an arbitrary finitely generated k-algebra, we can form the primary decomposition of the
zero ideal: 0 = ∩iqi. But then 0 = ∩i(qi ∩AG), and since m is prime this implies that some qi ∩AG is
contained in m. If pi is the radical of qi then pi ∩AG is the radical of qi ∩AG, so pi ∩AG is contained
in m. Then A/pi is an integral domain and the image of m in AG/(pi ∩ AG) is a maximal ideal, so its
extension to A/pi is proper in A/pi by the above. This implies that Am is proper, too.

Lemma 2.8. IfX = SpecA is an affine variety then the points ofX //G are in bijection with the closed
orbits of G in X .

Proof. First note that if f ∈ AG and O, O′ are twoG-orbits ofX with O ⊆ O′ then f |O = 0 if and only
if f |O′ = 0. This follows because the value of f when restricted to any G-orbit is constant, and if f is
constant on a set, then it must also be constant on its closure. Let’s say that a G-stable closed subscheme
Z ⊆ X is “replete” if for any O and O′ as above, O ⊆ Z implies O′ ⊆ Z. Evidently, the preimage of
any closed subscheme of X // G under π must be replete.

Now note that every nonempty replete subscheme Z contains a closed orbit: since Z is G-stable and
non-empty it must contain some G-orbit, and since Z is closed it must contain the closure of this orbit.
But the closure of any G-orbit contains a closed orbit (any orbit with minimal dimension in the closure
works). Since Lemma 2.7 implies that π is surjective we see that the preimage of any point of X // G
contains a closed orbit.

Now we claim that if O1 and O2 are distinct closed orbits in X then their images in X // G must be
disjoint. If not, let x ∈ X // G be a point in the intersection, with corresponding maximal ideal m. Then
there is a G-invariant function f defined on O1 ⊔ O2 so that f |O1 = 0 and f |O2 = 1. Lemma 2.3 tells
us that there is some g ∈ AG whose restriction to O1 ⊔ O2 is fpn

= f . Because g|O2 ̸= 0 we see that
g ̸∈ m, but because g|O1

= 0 we see that m + (g) ̸= AG. This contradicts the maximality of m, so we
conclude that π(O1) ∩ π(O2) = ∅.
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Now we see that there is a map from points of X // G to the closed orbits of X which sends each
point to the unique closed G-orbit in its preimage under π. The preimages of distinct points are disjoint,
so this map is injective, and if O is a closed orbit then the preimage of any y ∈ π(O) contains O (it must
contain some closed orbit O′, and if O′ ̸= O then π(O) ∩ π(O′) would be nonempty).

2.2 Gm actions
Although the results of this section are originally due to Bialynicki-Birula, we adopt the perspective
introduced by Drinfeld in [3].

Definition 2.9. Let Z be a k-scheme with an action of Gm. Then the attracting locus of Z is the space
Z+ which represents the functor

Hom(S,Z+) = HomGm(S ×A1, Z)

where Gm acts trivially on S and by the usual action on A1.

Definition 2.10. Let Z be a k-scheme with an action of Gm. Then the fixed locus of Z is the space Z0

which represents the functor
Hom(S,Z0) = HomGm(S,Z)

where A1 acts trivially on S.

Theorem 2.11 (Bialynicki-Birula). Let Z be a k-scheme with an action of Gm. Then Z+ and Z0 are
both representable. The inclusion of Z0 into Z is a closed embedding. In the diagram below, q+ is affine
and p+ is a locally closed embedding on each connected component of Z+.

Z+

Z Z0

p+ q+

Proof. We’ll prove this result under the assumption that Z is affine, since this is the case that will be
relevant for us later.

Let I− be the ideal generated by negatively graded homogeneous elements and let A+ = A/I−.
Then we claim that Z+ = SpecA+. To see this, note that if S = SpecB is affine then

HomGm(S ×A1, Z) = HomgrRing(A,B ⊗k k[x])

= HomgrRing+(A+, B ⊗k k[x])

= HomRing(A
+, B),

where we’ve used the fact that every element ofB⊗k k[x] is non-negatively graded so every graded map
from A to B ⊗k k[x] factors through A+ and the functor B 7→ B ⊗k k[x] is right-adjoint to the forgetful
functor from non-negatively graded rings to rings.

By a similar argument, if we let I0 be the ideal generated by the homogeneous elements with nonzero
graded degree and set A0 = A/I0 then SpecA0 represents Z0. From our constructions of Z+ and Z0

we see that we get closed embeddings i+ : Z0 → Z+ and p+ : Z+ → Z (so in particular p+ is not just
locally closed but a closed embedding).

To construct q+, note that A+ = (A+)Gm ⊕ I+ as a k-vector space (where I+ is the ideal generated
by positively-graded elements). The natural projection fromA+ toA0 then induces an isomorphism from
(A+)Gm to A0. The inverse of this map gives an inclusion A0 ↪→ A+, which induces q+ : SpecA+ →
SpecA0. From the construction of q+ we see that q+ ◦ i+ = idZ0 . It’s routine to check that the map
q+ that we’ve defined agrees with the map from Z+ to Z0 induced by the Gm-equivariant inclusion of 0
into A1.

Lemma 2.12. Let Z be a k-scheme with an action of Gm. If x is a k-point of Z0 then Tx(Z+) is the
subspace of TxZ given by the sum of the non-negative weight spaces.
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Proof. If we let X = Spec k[ε]/ε2, note that the following diagram commutes:

Gm − Sch /k Gm − Sch /k

Sch /k Sch /k

−×A1 −×A1

−×X

−×X

Passing to right-adjoints gives (TZ)+ = T (Z+) for all Z ∈ Gm − Sch /k. If x is a k-point of Gm,
then the inclusion of x into Z is Gm-equivariant, so we get TxZ = x ×Z TZ as a fiber product in
Gm − Sch /k. Since (−)+ is right-adjoint, it commutes with limits and we see that

(TxZ)
+ = x×Z+ (TZ)+ = x×Z+ T (Z+) = Tx(Z

+).

Our claim then reduces to showing that for a finite-dimensional Gm-representation V with associated
Gm-vector scheme V we have (V )+ = V ≥0, where V ≥0 is the subrepresentation generated by the non-
negative weight spaces. But V = Spec SymV ∗, so by our explicit construction for affine schemes in
Theorem 2.11 we have (V )+ = Spec SymV ∗/I−. Since V = V ≥0 ⊕ V <0 we see that

SymV ∗ = Sym(V ≥0)∗ ⊗ Sym(V <0)∗

and SymV ∗/I− = Sym(V ≥0)∗ as desired.

Definition 2.13. By the universal property characterizing Z+, we know that the idenitity map of Z+

induces a Gm-equivariant map α : A1 × Z+ → Z+, where Gm only acts on A1 in the source. The
following is a commutative diagram of Gm-schemes:

0× Z+ A1 × Z+ T (A1 × Z+)

Z0 Z+ T (Z+)

αq+

i+

It induces a Gm-equivariant map on fiber products dα : T0A
1 × TZ+ → TZ0Z+. Identifying T0A1

with k, we get the tangent vector ξ ∈ T0A
1 corresponding to 1 ∈ k. We can then define a map Λ : Z+ →

TZ0Z+ as dα ◦ (ξ, s0), where s0 is the zero section Z+ → TZ+.

Lemma 2.14. Let π : TZ0Z+ → Z0 be the projection and letΛ be as in Definition 2.13. Then π◦Λ = q+.

Proof. If π′ : T0A
1 × TZ+ → 0 × Z+ is the projection map then by construction π ◦ dα = q+ ◦ π′.

Since π′ ◦ (ξ, s0) = idZ+ the result follows.

Lemma 2.15. The image of Λ lies inside the weight-one subbundle of TZ0Z+.

Proof. Since dα is linear in tangent directions and Gm equivariant, where Gm only acts on the A1 factor
in the source,

λ · Λ(z) = dα(λξ, s0(z)) = λdα(ξ, s0(z)) = λΛ(z).

2.2.1 A filtration on Z+

The results of this section seem to be new, but the main ideas of the arguments are largely borrowed from
[3]. Conversations with Sanath Devalapurkar were helpful for formulating Definition 2.19.

Let A1
n be the n-th formal neighborhood of zero (i.e. Spec k[ε]/εn+1). This a closed Gm-subscheme

of A1 with the standard Gm action. The following definition appears in [3, Subsection 4.2].

Definition 2.16. Write Z+
n for the mapping space HomGm(A1

n, Z). In other words, Hom(S,Z+
n ) =

HomGm(A1
n × S,Z).
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Remark 2.17. I do not know whetherZ+
n is representable by a scheme ifZ is a scheme. It seems unlikely

to me.

Proposition 2.18. Let Z be a scheme smooth over k. Then the restriction map Z+ → Z+
n is formally

smooth.

Proof. This follows from “standard arguments”, as in [3, Proposition 1.4.20]. To elaborate: we want to
show that given any diagram as below with S → S a square-zero extension, we can find a dashed arrow
making the diagram commute.

S Z+

S Z+
n

In other words, given Gm-equivariant maps f : S ×A1 → Z and g : S ×A1
n → Z we want to find a

Gm equivariant arrow f : S ×A1 → Z as in the diagram below.

S ×A1
n S ×A1

S ×A1
n S ×A1

Z

f

g

f

In other words, writing X = S ×A1 ⊔S×A1
n
S ×A1

n, we want to show that the restriction map

MapsGm(S ×A1, Z) → MapsGm(X,Z)

is surjective. Since the map X → S ×A1 is a square-zero extension and Z is smooth, we know that

Maps(S ×A1, Z) → Maps(X,Z)

is surjective, and the fiber over g in Maps(X,Z) is a torsor for H0(X; g∗ΘZ ⊗ JX), where JX is the
ideal definingX in S×A1 (considered as a sheaf overX because the extension is square-zero). Because
Gm is linearly reductive (true in any characteristic!) we can apply Corollary A.8 to see that

MapsGm(S ×A1, Z) → MapsGm(X,Z)

is surjective, too.

Definition 2.19. Given a Gm-scheme Z, define Z0,≥k to be the fiber product

Z0,≥k Z+

Z0 Z+
k−1

⌟

Proposition 2.20. Let Z be affine. Then the map Z0,≥k → Z+ is a closed embedding.

Proof. The map Z0 → Z+
k−1 is a split monomorphism, so the map Z0,≥k → Z+ must also be a

monomorphism. If S = SpecB and Z = SpecA, then an S-point of Z+ is a map

φ ∈ HomgrRing(A,B ⊗ k[x]) = HomgrRing(A
+, B ⊗ k[x]).

Let’s write φ(a) =
∑

n φn(a)x
n. The S-point lies in Z0,≥k(S) when the reduction mod xk of φ is

concentrated in degree zero. In other words, φi = 0 for 0 < i < k. But maps φ satisfying this condition
are exactly those that factor through A+/Ik, where Ik is the ideal generated by homogeneous elements
of A+ concentrated in degrees d with 0 < d < k.
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Remark 2.21. The assumption that Z is affine in the above proposition can probably be removed by
analyzing jet schemes.

Corollary 2.22. Let Z be a smooth affine Gm-scheme. Then Z0,≥k is smooth over Z0.

There is an alternative description of Z0,≥k as an equivariant mapping space which will be useful.

Definition 2.23. LetCk be the pushoutA1⊔A1
k−1

∗. By Proposition B.10 we see thatCk is aGm-scheme.
Explicitly, Ck = Spec k[tk, tk+1, tk+2, . . .].

Example 2.24. C1 is A1. C2 is the cuspidal cubic Spec k[t2, t3].

Proposition 2.25. Z0,≥k = MapsGm(Ck, Z).

Proof. This follows from Corollary B.11.

Proposition 2.26. Suppose X → Y is a Gm-equivariant closed embedding. Then

X0,≥k = X ×Y Y 0,≥k.

Here X0,≥k maps to X via the composite of the map X0,≥k → X+ and p+ : X+ → X . Similarly,

X+ = X ×Y Y +

and
X0 = X ×Y Y 0

Proof. Note thatX = MapsGm(Gm, X) and the mapX0,≥k → X is induced from the mapGm → Ck.
This map is universally schematically dominant as a map over the base field k, so the result follows
from Corollary B.6. The statements about X+ and X0 follow similarly by considering the universally
schematically dominant maps Gm → A1 and Gm → ∗, respectively.

2.2.2 Linear Algebraic Groups with Gm Actions

The results in this section are also new, but they’re mostly an extension of the ideas in [2, Section 2.1].
To elaborate: there is substantial overlap in the results of our Proposition 2.32 and [2, Proposition 2.1.8]
(in loc. cit. they assume that the Gm action on G is “inner”, but they work over a general ring while we
only work over fields). In loc. cit. they also prove the result “by hand”, while we appeal to the general
theory of Bialynicki-Birula decompositions (the conceptual contents of the proofs are basically identical).
What’s new is that we then go on to extend the results of Proposition 2.32 to the subgroups G≥k, which
we define using the ideas from the previous section.

Definition 2.27. A Gm-algebraic group is a group object in the category of affine schemes of finite type
over k.

Proposition 2.28. IfG is aGm-algebraic group, thenG0,G+, andG0,≥k are all linear algebraic groups.
If G is smooth then these groups are all smooth.

Proof. The functors Z 7→ Z0 and Z 7→ Z+ are both right adjoints, so they send group objects to group
objects. The functor Z 7→ Z0,≥k can be expressed as a limit of right adjoints, so it also preserves group
objects. When G is smooth, the smoothness of G0 and G+ is shown in [3, Proposition 1.4.20]. Then the
smoothness of G0,≥k follows from Corollary 2.22.

Definition 2.29. We say that a Gm-scheme Z is attractive if Z = Z+.

Note that the full subcategory of attractive Gm-schemes is closed under the formation of products.

Lemma 2.30. The functor Z 7→ Z //Gm preserves products when restricted to attractive affine schemes.

Proof. For any graded rings A and B, we have an inclusion A0 ⊗B0 → (A⊗B)0. When A and B are
both non-negatively graded, this map is an isomorphism.
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Definition 2.31. LetG be aGm-algebraic group. DefineG++ to be the kernel of the map q+ : G+ → G0

(note that from the construction in Theorem 2.11 q+ is the map from G+ to G+ //Gm).

Proposition 2.32. LetG be an attractive linear algebraic group. Then there is a canonical decomposition

G ∼= G++ ⋊G0

G++ is connected, attractive, and (G++)0 = ∗. If G is smooth then G++ and G0 are both smooth.

Proof. The inclusionG++ → G is a closed embedding by definition, so by Proposition 2.26 we see that

(G++)+ = G++ ×G G
+ = G++

since by assumptionG = G+. This shows thatG++ is attractive. The lower square in the diagram below
is a pullback by definition, and the upper square is a pullback by Proposition 2.26. The composite right
vertical arrow is an isomorphism, so (G++)0 = ∗.

(G++)0 G0

G++ G

∗ G0

q+
⌟

⌟

Now we know that G++ //Gm = (G++)0 = ∗, so by Lemma 2.8 we see that every Gm-orbit of G++

contains the identity in its closure. This shows that G++ is connected. The fact that G = G++ ⋊ G0

follows from the fact thatG++×GG
0 = ∗ as in the diagram above. The smoothness ofG0 follows from

[3, Proposition 1.4.20]. The smoothness ofG++ follows from the fact that q+ is smooth by base-change;
the smoothness of q+ is also shown in [3, Proposition 1.4.20].

Lemma 2.33. Let G be an attractive Gm-algebraic group. Then

(G++)0,≥k = (G0,≥k)++

Proof. TODO: Write this

Definition 2.34. In light of Lemma 2.33, define G≥k = (G0,≥k)++ = (G++)0,≥k.

Representation Theory Now we give a Tannakian description of the group schemesG≥k which will
be useful both for understanding their structure theory and their actions on Gm-schemes.

Definition 2.35. Let V be a graded vector space. Then GL(V ) naturally has the structure of a Gm-
algebraic group: by composing the grading map Gm → GL(V ) with the adjoint action of GL(V ) on
itself, we get an action of Gm on GL(V ) by homomorphisms. Call this the standard Gm structure on
GL(V ).

Definition 2.36. A graded representation of a Gm-algebraic group G is a graded vector space V and
a map ρ : G→ GL(V ) of Gm-algebraic groups, where GL(V ) has the standard Gm structure.

Lemma 2.37. A graded representation of a Gm-algebraic group G is the same as a representation of
G⋊Gm.

Proof. TODO: write this

Definition 2.38. A graded representation of a Gm-algebraic group G is faithful if ker ρ = ∗.

Lemma 2.39. Every Gm-algebraic group has a faithful Gm-representation.

Proof. TODO: write this
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Definition 2.40. Let V be a graded vector space. Then let τ≥iV be direct sum of the weight subspaces
of V with weight at least i.

Proposition 2.41. Let V be a graded vector space and letGL(V ) have the standard Gm structure. Then
• GL(V )+ is the subgroup of linear transformations that preserve every τ≥iV .
• GL(V )≥k is the subgroup of linear transformations that act trivially on each subquotient τ≥iV/τ≥i+kV .

Proof. TODO: write this

Theorem 2.42 (Tannakian description of G≥k). Let G be attractive. Then G≥k is the largest subgroup
of G so that for every graded representation V , the action of G≥k is trivial on τ≥iV/τ≥i+kV .

Proof. TODO: write this

Corollary 2.43. G≥k is unipotent for every k ≥ 1.

Proof. Let V be a faithful graded representation of G. Then as in the proof of Theorem 2.42 we see that
G≥k is a closed subgroup ofGL(V )≥k. SinceGL(V )≥k is unipotent this implies thatG≥k is unipotent,
too.

The following corollary will not be used in the remainder of the text.

Corollary 2.44. If G is a Gm-algebraic group which is both attractive and reductive, then Gm acts
trivially on G.

Proof. By Proposition 2.32 and Corollary 2.43 we see thatG++ is a smooth connected normal unipotent
subgroup of G. It must be trivial if G, so G = G0.

2.2.3 Equivariant Bialynicki-Birula Decompositions

This section is also new.

Definition 2.45. If G is a Gm algebraic group, then a G-equivariant Gm-scheme Z is a Gm scheme
with an action of G internal to the category of Gm-schemes. In other words, we require the action map
G× Z → Z to be Gm-equivariant.

Proposition 2.46. Let Z be a G-equivariant Gm-scheme. Then Z0 is a G0-equivariant scheme. If G is
attractive then Z+ is a G-equivariant Gm-scheme and Z0 is G-equivariant, where the G action factors
through the quotient map to G0 = G/G++. Moreover, the map q+ : Z+ → Z0 is G-equivariant.

Proof. TODO: write this

Definition 2.47. Let G be attractive and let Z be a G-equivariant Gm-scheme. Define a G-equivariant
Gm-scheme (A1 × Z+)s (“source”) as follows: as a Gm scheme, the action of Gm is by the defining
action on Z+ and by the inverse of the standard action on A1. Then G acts by the given action on Z+.
The action is Gm-equivariant because

gλ · [λ · (µ, z)] = gλ · (λ−1µ, λz)

= (λ−1µ, gλλz)

= (λ−1µ, λgz)

= λ · [g · (µ, z)]
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Definition 2.48. Let G be attractive and let Z be a G-equivariant Gm-scheme. Define a G-equivariant
Gm-scheme (A1 × Z+)t (“target”) as follows: as a Gm scheme, the action of Gm is trivial on Z+ and
by the inverse of the standard action on A1. Then G acts by the given action on Z+ after first twisting
by the action of A1 on G (which is well-defined because G is attractive). This action is Gm equivariant
because:

gλ · [λ · (µ, z)] = gλ · (λ−1µ, z)

= (λ−1µ, gλ
−1µλz)

= (λ−1µ, gµz)

= λ · [g · (µ, z)]

Proposition 2.49. There is a G ⋊ Gm-equivariant map αenh : (A1 × Z+)s → (A1 × Z+)t so that
αenh(µ, z) = (µ, α(µ, z)), where α : A1 × Z+ → Z+ is the action map from Definition 2.13.

Proof. First note that αenh is Gm-equivariant:

αenh(λ · (µ, z)) = αenh(λ
−1µ, λz)

= (λ−1µ, α(λ−1µ, λz))

= (λ−1µ, α(µ, z))

= λ · αenh(µ, z)

Now note that it’s G-equivariant, too:

αenh(g · (µ, z)) = αenh(µ, gz)

= (µ, α(µ, gz))

= (µ, gµα(µ, z))

= g · αenh(µ, z)

Lemma 2.50. Let x be in Z0. Then Stab(x) is again an attractive Gm-algebraic group and

Stab(x)0 = G0 ∩ Stab(x)

Stab(x)++ = G++

Proof. TODO: write this

Lemma 2.51. Let x be in Z0. Then we get a graded representation of Stab(x) on the vector space
V = T0,x(A

1 × Z+)t = T0A
1 × TxZ

+. The grading is such that T0A1 has weight −1 and TxZ+ has
weight 0. Also, Stab(x) acts trivially on T0A1 = V/τ≥0V .

Proof. TODO: write this

Definition 2.52. In the setting of Lemma 2.51, identifying T0A
1 with k, the quotient map gives a

Stab(x)-equivariant linear functional θ : V → k. We can form the standard affine space Aθ as in
Definition A.4, which acquires an action of Stab(x) by affine-linear transformations. Aθ comes with a
distinguished point a, which comes from the fact that V is split as a vector space (but note that a doesn’t
need to be preserved by the action of Stab(x)!).

Proposition 2.53. In the setting of Lemma 2.51, G≥2 acts trivially on Aθ. Also, the action of Stab(x)0
preserves a.

Proof. Since V = τ≥−1V/τ≥1V , we see from Theorem 2.42 that G≥2 must act trivially on V . Also,
by the Tannakian description of Stab(x)0 (TODO: write this) we know that its action on V preserves the
decomposition into weight spaces–so V = T0A

1 ⊕ TxZ
+ as a Stab(x)0 representation.
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Definition 2.54. In the spirit of Definition 2.13 and Proposition 2.49 we can define an equivariant map
Λenh which maps from Z+ to T0×Z0(A1 × Z+). In fact, Λenh factors through a map to {ξ} × TZ0Z+,
so the fiber at every x ∈ Z0 is Aθ. TODO: expand on this

2.3 Miscellaneous
In this section we collect a handful of results that are important in [1]. Our proof of Theorem 2.55
follows [6]. Theorem 2.57 and Lemma 2.58 are from [4, Section I.4]–although this paper has a running
assumption that all varieties are defined over a field of characteristic zero, the results from this section
do not depend on this assumption. Since we are especially interested in applying the results of [4] to the
case of integral schemes, we give proofs with this additional assumption for simplicity. In this setting the
arguments become much simpler, as indicated in the “Remarque” in Section I.4 of loc. cit.

Theorem 2.55 (Matsushima). If G is reductive then G/H is affine if and only if H is reductive.

Proof. The reverse direction follows from Nagata’s theorem since G/H = G // H . For the forward
direction let n = dimG and m = dimH . If π : G → G/H is the projection, then because G is etale-
locally a product ofH withG/H , we know by Artin vanishing forH thatRqπ∗Λ = 0 for all q > m (here
it’s important thatG/H is smooth). BecauseG/H is assumed to be affine, we can apply Artin vanishing
to conclude that Hp

et(G/H;Rqπ∗Λ) = 0 whenever p > n −m. Now a collapse happens in the Leray
spectral sequence and we get that

Hn
et(G; Λ) = Hn−m

et (G/H;Rmπ∗Λ).

Since G is reductive, we can use its Chevalley model plus the Artin comparison theorem to see that

Hn
et(G; Λ) = Hn

sing(GC; Λ) = Λ ̸= 0,

where we’ve used the fact that a complex reductive group deformation retracts onto its compact real form,
which is a smooth compact n-fold. This implies thatRmπ∗Λ must be nonzero, so some stalk of this sheaf
must be nonzero. But again by the fact that G is etale-locally a product over the base we have

(Rmπ∗Λ)x = Hm
et (H; Λ) ̸= 0.

IfH weren’t reductive, then we could quotient by its unipotent radical to realizeH as an Ak-bundle over
the affine algebraic group H/Ru(H). By Artin vanishing, this would contradict the fact that Hm

et (H; Λ)
is nonzero.

Example 2.56. Consider G = Gm and H = µp. Then the quotient is Gm which is affine but H may
not be reductive if you assume reductive groups to be smooth.

Theorem 2.57 (G-equivariant Zariski’s Main Theorem). LetX,Y be affineG-varieties and let φ : X →
Y be a quasi-finiteG-morphism. Then there is aG-variety Z so that φ factors as ψ ◦ i, where i : X → Z
is an open immersion, ψ : Z → Y is finite, and both i and ψ are G-equivariant.

Proof (when X and Y are integral). Let Z be the normalization of Y in X (see [8, Tag 035H]). Then Z
is a G-scheme since if f ∈ OX satisfies the equation xk + yk−1x

k−1 + . . .+ y0 = 0 with yi ∈ OY then
g · f satsifies the equation xk + (g · yk−1)x

k−1 + . . .+ g · y0 = 0. By [8, Tag 0AVK] Z is finite over Y
and by [8, Tag 02LR] the map X → Z is an open embedding.

Lemma 2.58 (Luna’s Lemma). Let φ : X → Y be a map of affine G-varieties which is quasi-finite,
sends closed orbits to closed orbits, and induces a finite map on GIT quotients. Then φ is finite.

Proof (when X and Y are integral). If the map φ //G : X //G→ Y //G is finite then every element of
OG

X is automatically integral over OY . In the notation of the previous proof we see that i //G is therefore
an isomorphism. If the image of i in Z has a non-empty closed complement, then we can find a closed
G-orbit T contained in the complement. Because i//G is an isomorphism, there must be an orbit T̃ which
is closed in X such that T is in the closure of i(T̃ ). Point-set topology shows that ψ(T ) is in the closure
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of ψ ◦ i(T̃ ) = φ(T̃ ), but by assumption φ(T̃ ) is closed, so ψ(T ) = φ(T̃ ). Since ψ(T ) = ψ ◦ i(T̃ ) and
ψ is finite we see that T and i(T̃ ) must have the same dimension, contradicting the fact that T is in the
closure of i(T̃ ).

3 Whittaker Induction
In this section we follow [1, Sections 3.4-3.6]. For simplicity, we impose the assumption of evenness in
our definitions and proofs in this section. Since one is mainly interested in hyperspherical varieties with
a “distinguished polarization” (see Definition 4.4), which automatically implies evenness, this is not a
terribly restrictive assumption. We recommend that readers interested in the odd case consult [1].

Definition 3.1. Consider a map H × SL2 → G (in particular, H lies in the centralizer of SL2) and a
Hamiltonian H-space S. Suppose the map SL2 → G is even, which means that −1 ∈ SL2 is in the
kernel. Then the Whittaker induction of S is h-indGHU Sf .

Definition 3.2. A graded Hamiltonian G-space X has property h if
• X is affine.
• X has a unique closed orbit X0 under the action of G×Gm.
• The image of X0 under µ is contained in the nilpotent cone in g∗

• The Gm action on X is “neutral”. Namely, for all x ∈ X0 it must be possible to extend µ(x) to
an sl2-triple so that x · λ = x · λh. Additionally, the cocharacter πx : Gm → G×Gm that sends
λ 7→ (λ−h, λ) should act by simple scaling on the fiber of the symplectic normal bundle of X0 in
X .

Lemma 3.3. LetM be a graded HamiltonianG-space with property h. Then the unique closedG×Gm

orbit M0 is actually a single G-orbit.

Proof. By the neutrality assumption, at every point x ∈ M0 the Gm action is given by a cocharacter of
G.

Lemma 3.4. Ignoring symplectic structures, whenS is a linear graded HamiltonianH-spacew-indGH S =
V ×H G where V = S ⊕ (h⊥ ⊕ ge). The grading is such that Gm acts by the given action on S, it acts
by weight 2+ i on the part of ge with weight i with respect to h, and Gm acts onG by left multiplication
by λh.

Proof. By Lemma 1.18 we know that w-indGH = (Sf ×(h+u)∗ g
∗)×HU G. The theory of Slodowy slices

says that (Sf ×(h+u)∗ g∗) = (Sf ×h∗ ge)× U .

Lemma 3.5. If H × SL2 → G is Whittaker data where H is reductive and S is a linear graded Hamil-
tonian H-space then w-indGH S satisfies property h.

Proof. WhenH is reductive,H\G is affine. By Lemma 3.4, we see thatw-indGH S is a vector bundle over
H\G, so it is affine, too. Under the Gm action on V , every nonzero element gets contracted to zero, so
H\G = X0 is the unique closedG×Gm orbit in w-indGH S. The image ofX0 under the moment map is
conjugate to f , and the action of Gm is given by scaling by λh. The fiber of the symplectic normal bundle
to X0 at any point is given by S, which is acted on by linear scaling under (λ−h, λ) ⊆ G×Gm.

Lemma 3.6. If M1 and M2 are graded Hamiltonian G-spaces with property h and φ : M1 → M2 is a
map that is etale and an isomorphism on the closed orbits then φ is an isomorphism.

Proof. It suffices to show that φ is finite; given this φ is finite etale, so it’s a covering map, and its fibers
consist of a single point because it’s an isomorphism on the closed orbits. To check finiteness, we can
apply Lemma 2.58: both the source and the target are affine by property h, φ is quasi-finite because it is
etale, it carries closed orbits to closed orbits by assumption, and since each GIT quotient is a point the
map on GIT quotients is finite.
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Lemma 3.7. IfM is a graded HamiltonianG-space with property h and x ∈M0 is a point in the closed
orbit, then TxM0 ∩ TxM⊥

0 = gf/h, where f is the image of x under the moment map (here we identify
g and g∗ using an invariant bilinear form) and h is the Lie algebra of the stabilizer of x.

Proof. By Lemma 3.3 we know that g surjects onto the tangent space of M0 at x via the map ξ (Defi-
nition 1.5), and the kernel is exactly h. It remains to determine which X ∈ g/h pair to zero with every
other element under the symplectic form. But

ωx(ξX , ξY ) = ξY µX(x) = µ[Y,X](x) = ⟨f, [Y,X]⟩ = ⟨[X, f ], Y ⟩ .

This vanishes for all Y ∈ g if and only if X ∈ gf .

Theorem 3.8. IfM is a graded HamiltonianG-space with property h thenM is Whittaker-induced from
a linear Hamiltonian H-space.

Proof. Let M0 be the closed orbit and let x be a point in M0. Let H be the stabilizer of x (which is
reductive by Theorem 2.55). Let f be the image of x under the moment map; by the neutrality condition
there is an SL2-triple where Gm acts by λh at x. Let S be the fiber of the symplectic normal bundle of
M0 at x. Recall that x is fixed under the Gm action (λ−h, λ). By the Bialynicki-Birula theorem, there is
a contracting scheme Z+ for this Gm action, which maps to the fixed locus Z0 by q+. By Lemma 2.12
and the neutrality condition on the Gm action, we know that S automatically lies inside TxZ+.

LetM+ be the fiber of q+ at x (i.e. the points ofM that contract to x under the Gm action). Note the
slight mismatch between this notation (which matches the notation in [1]) and the notation of Section 2.2
(according to which M+ would denote what we call Z+ here). M+ is stable under the HU action by
Proposition 2.46 because HU is attractive for the action of λh.

If ΛZ : Z+ → TZ0Z+ is as in Definition 2.13, then we claim that M+ can be expressed as the
pullback in the upper square of the following diagram:

M+ Z+

TxZ
+ TZ0Z+

x Z0

ΛZΛ
⌟

π
⌟

This follows because the bottom square is a pullback by definition and the outer rectangle is a pullback
by Lemma 2.14. We therefore get a map Λ : M+ → TxZ

+ as indicated in the diagram. It must land in
the weight-one subspace of TxZ+ by Lemma 2.15. We claim that the weight-one subspace is exactly S.
Clearly S is in the weight-one subspace by the neutrality condition on the Gm action, so it remains to see
the other inclusion.

By the neutrality condition, TxM0 = g/h is a Gm-stable subspace that Gm acts on by λh. This gives
a sequence of inclusions of Gm-stable subspaces:

0 ⊆ V1 ⊆ TxM0 ⊆ V ⊥
1 ⊆ TxZ

+

where V1 = TxM0 ∩ (TxM0)
⊥. Because Gm is linearly reductive we get a splitting of TxZ+ as a

Gm-representation into
TxM0 ⊕ V ⊥

1 /TxM0 ⊕ TxZ
+/V ⊥

1

Note that the weights of the Gm action on this subspace are non-positive, so because ω is acted
on by the squared action, all of the weights of TxM/V ⊥

1 are at least 2. By the evenness assumption,
all of the weights of g/h are even. So the subspace of weight one must be contained in V ⊥

1 /TxM0 =
(TxM0 + (TxM0)

⊥)/TxM0 = S.
Since we assume that the SL2-triple is even, we know that U = U≥2, so by Proposition 2.53 we see

that Λ is HU -equivariant, where U acts trivially on S and H acts by the usual action on TxZ+.
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We therefore get a map Λ :M+ → S. We further claim that this map realizesM+ as the fiber product

M+ S

g∗ (h+ u)∗

µ

Λ

This amounts to saying that dµ is injective on the weight ≥ 2 subspace of TxM . The kernel of dµ is given
by (TxM0)

⊥, which is a sum of TxM0 ∩ (TxM0)
⊥ and S. But the weights on both of these subspaces

are < 2. Now by dimension counting we get an iso on tangent spaces. TODO: Finish this out...

4 Statements of Results
In this section we state other important definitions and theorems from Sections 3.6 and 3.7 of [1].

Definition 4.1. A symplectic G-variety X is coisotropic if k(X)G is commutative with respect to the
Poisson bracket.

Proposition 4.2. If H is reductive then w-indGH S is coisotropic if and only if G/HU is spherical and S
is coisotropic for the generic stabilizer of G on T ∗Y .

Definition 4.3. A graded Hamiltonian G-variety X is hyperspherical if
• It satsifies property h.
• It is coisotropic.
• The stabilizer of a generic point of X is connected.

Definition 4.4. A hyperspherical variety admits a distinguished polarization if it is even and the sym-
plectic normal bundle to the closed orbit admits an H-stable splitting S = S+ ⊕ S−.

Lemma 4.5. If hyperspherical M admits a distinguished polarization then M = T ∗(X,Ψ), where
X = S+ ×HU G and Ψ = S+ ×HU ′

G, where U ′ = ker f . Moreover X has to be spherical and the
B-stablizer of a point in the open B orbit is connected.

A Affine Spaces
Here we collect some basic facts about affine spaces.

Definition A.1. An affine space is a torsor for a vector space.

The ring of polynomial functions on any vector space V has a grading by degree; associated to this
grading one can produce a filtration Fik[V ] = ⊕j≤ik[V ]j . If A is an affine space which is a torsor for
V , we can identify A with V by choosing a point a ∈ A. This then gives an identification of the ring of
functions on A and the ring of functions on V , and one can transport the grading and filtration on k[V ]
to k[A]. The grading on k[A] that one produces through this procedure is dependent on the choice of a,
but importantly the filtration does not depend on the choice of a.

Definition A.2. The filtration by degree on k[A] is the filtration defined above.

Definition A.3. The space Aff(A, k) of affine functionals on A is F1k[A].

One common source of affine spaces is the following construction

Definition A.4. Given a vector spaceV and a nonzero linear functional θ : V → k, the fiberAθ = θ−1(1)
is an affine space over the vector space Vθ = ker θ, where the action of Vθ on Aθ is given by the addition
map of V . Call such an affine space standard.

Lemma A.5. Splittings of a nonzero linear functional θ : V → k are in bijection with points of the
standard affine space Aθ.
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Proof. The splitting is determined by the image of 1, which must lie in θ−1(1) = Aθ.

In fact every affine space can be functorially realized as a standard affine space.

Proposition A.6. Given an affine spaceA which is a torsor for a finite dimensional vector space V , there
is a canonical linear embedding ∆ : V → Aff(A, k)∨ which realizes V as a hyperplane in Aff(A, k)∨.
There is a canonical affine embedding ev : A → Aff(A, k)∨ and a canonical linear functional θ :
Aff(A, k)∨ → k so that (∆, ev) identifies (V,A) with the standard affine space (Vθ, Aθ).

Proof. Inside the space of affine functionals F1k[A] there is the subspace of constant functionals k =
F0k[A]. The embedding k → Aff(A, k) induces a map Aff(A, k)∨ → k∨. Identifying k with its dual
gives the map θ : Aff(a, k) → k. Spelling this out, for any λ ∈ k and any ξ ∈ Aff(A, k)∨, we have
ξ · fλ = θ(ξ)λ (where fλ is the constant function with value λ).

The embedding ∆ : V → Aff(A, k)∨ sends v ∈ V to the difference operator ∆v (so

∆vf = f(p+ v)− f(p),

which is independent of the choice of point p ∈ A) and the embedding ev : A → Aff(A, k)∨ sends
a ∈ A to the evalutation operator eva (so eva f = f(a)). Since the functions for which ∆v vanishes for
all v are exactly the constant functions, we see that ∆ identifies V with ker θ. Clearly θ(eva) = 1, so by
dimension counting we see that ev identifies A with Aθ. It remains to note that eva +∆v = eva+v .

Since all of the above constructions are functorial, we can perform them in families. Working over
BG and combining Proposition A.6 and Lemma A.5 we get the following proposition

Proposition A.7. If A is a finite-dimensional affine space with a G action then the fixed points AG are
in bijection with the G-equivariant splittings of θ : Aff(V, k)∨ → k.

Corollary A.8. If G is linearly reductive then every G-affine space A has a fixed point.

Proof. By local-finiteness considerations we can reduce to the case when A is finite-dimensional. Then
by Proposition A.7 we see that the obstruction to the existence of a fixed point is given by the class of the
extension

0 → V
∆−→ Aff(V, k)∨

θ−→ k → 0

in Ext1Rep(G)(k, V ). But if G is linearly reductive this Ext group vanishes.

B Mapping Spaces
Here we collect some basic facts about mapping spaces. Let’s work over a base ring k which is not
necessarily a field. Although we will only be interested in the case when k is a field, we feel that it
clarifies the nature of the arguments to work in this more general situation.

Definition B.1. A map of schmes f : X → Y is schematically dominant if the schematic image of f
is equal to Y .

Proposition B.2. Let f : X → Y be a map of schemes. The following are equivalent
1. f is schematically dominant.
2. f satisfies the left lifting property with respect to closed embeddings.

Proof. First suppose f is schematically dominant. Then for any closed embeding Z →W and compati-
ble maps X → Z, Y →W , we need to find a lift from Y to Z.

X

Y ×W Z Z

Y W

f
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Since f factors through the closed embedding Y ×W Z → Y , we see that the map Y ×W Z → Y must
be an isomorphism. This gives the lift from Y to Z.

On the other hand, suppose that f satisfies the left lifting property with respect to closed embeddings.
Then we can lift against the inclusion of the schematic image of f into Y as in the diagram below.

X Im f

Y Y
idY

f

This shows that Im f = Y .

Definition B.3. A map of schemes f : X → Y is universally schematically dominant if it remains
schematically dominant after any change of base.

Proposition B.4. Suppose f : X → Y is universally schematically dominant and g : Z →W is closed.
Then Maps(Y,Z) = Maps(Y,W )×Maps(X,W ) Maps(X,Z).

Proof. We’ll check equality on S-points for all S. We need to show that every diagram as below admits
a lift:

S ×k X Z

S ×k Y W

This follows since Z →W is closed and S ×k X → S ×k Y is schematically dominant.

This proposition has a G-equivariant upgrade, based on the following

Lemma B.5. Let X,Y, Z be G-schemes. Let f : X → Y and g : Y → Z be maps such that g is a
monomorphism. Then if g is G-equivariant and g ◦ f is G-equivariant, so is f .

Proof.
G×X X

G× Y Y

G× Z Z

We want to check that the upper square in this diagram commutes. Since g is a monomorphism, we can
check this after composition with g. The lower square and the outer rectangle commute because g and
g ◦ f are G-equivariant, giving the desired result.

Corollary B.6. In the setting of Proposition B.4, if X,Y, Z,W are G-schemes and f and g are G-
equivariant, then we also have MapsG(Y,Z) = MapsG(Y,W )×MapsG(X,W ) MapsG(X,Z).

Proof. We need to check that if S ×k Z and S ×k Y are G-equivariant then the lift constructed in
the proof of Proposition B.4 is G-equivariant. Since Z → W is a monomorphism this follows from
Lemma B.5.

18



Pushouts The inclusion of affine schemes into schemes doesn’t preserve pushouts in general; however,
there are special circumstances when this is true. The following is due to Schwede:

Theorem B.7. [7, Theorem 3.4] Let X,Y, Z be affine schemes with maps f : Y → X , g : Y → Z.
If f is a closed embedding then the pushout X ⊔Y Z in the category of schemes exists, and is equal
to the pushout in the category of affine schemes. More explicitly, if X = SpecA, Z = SpecB, and
Y = SpecC, then X ⊔Y Z = SpecA×C B.

Lemma B.8. In the setting of Theorem B.7, let W be another affine scheme. If either Y is flat over k or
W is flat over k, then

(X ⊔Y Z)×W = (X ×W ) ⊔(Y×W ) (Z ×W )

Proof. Since A→ C is surjective we have the following exact sequence of k-modules

0 → A×C B → A⊕B → C → 0

Writing R = OW , if either R or C is flat over k then this induces an exact sequence

0 → (A×C B)⊗R→ (A⊗R)⊕ (B ⊗R) → (C ⊗R) → 0

which shows that
(A×C B)⊗R = (A⊗R)×C⊗R (B ⊗R)

as desired.

Proposition B.9. In the setting of Theorem B.7, if Y is flat over k then for any scheme W we get
Maps(X ⊔Y Z,W ) = Maps(X,W )×Maps(Y,W ) Maps(Z,W ).

Proof. It suffices to check that the S-points are the same whenever S = SpecR is an affine scheme. But
by Lemma B.8 we know that (X⊔Y Z)×S = (X×S)⊔Y×S (Z×S), so this follows from the universal
property of the pushout.

This proposition also has a G-equivariant upgrade.

Proposition B.10. Let G be a group scheme flat over k. In the setting of Theorem B.7, if X,Y, Z are
G-schemes and f, g are G-equivariant, then the pushout X ⊔Y Z exists in the category of G-schemes
(and the underlying scheme is the usual pushout X ⊔Y Z).

Proof. By Lemma B.8 we see that

G× (X ⊔Y Z) = (G×X) ⊔G×Y (G× Z)

so the action maps ofX andZ define an action map onX⊔Y Z. Given anyG-schemeW with equivariant
maps fromX andZ which agree on Y , we get a map of schemesX⊔Y Z →W by the universal property
of the pushout. To check that the following diagram commutes

(G×X) ⊔G×Y (G× Z) X ⊔Y Z

G×W W

it suffices to check after precomposing with the inclusions of G × X and G × Z into the pushout. But
then the diagram commutes by the equivariance of the maps X →W and Z →W .

Corollary B.11. In the setting of Proposition B.10, if Y is flat over k then for any G-scheme W we have
MapsG(X ⊔Y Z,W ) = MapsG(X,W )×MapsG(Y,W ) MapsG(Z,W ).

Proof. Combine proposition B.10 and Proposition B.9.
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