APM384 Partial Differential Equations

Fall 2018

$$\begin{cases} u_{tt} = c^2 u_{xx} & 0 < x < L \\ u(0, t) = u(L, t) = 0 & t > 0 \end{cases}$$

$$\begin{cases} u_{tt} = c^2 u_{xx} & 0 < x < L \\ u(0, t) = u(L, t) = 0 & t > 0 \end{cases}$$

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(c\sqrt{\lambda_n}t\right) + B_n \sin\left(c\sqrt{\lambda_n}t\right) \right) \sin\left(\sqrt{\lambda_n}x\right)$$

$$\begin{cases} u_{tt} = c^2 u_{xx} & 0 < x < L \\ u(0, t) = u(L, t) = 0 & t > 0 \end{cases}$$

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(c\sqrt{\lambda_n}t\right) + B_n \sin\left(c\sqrt{\lambda_n}t\right) \right) \sin\left(\sqrt{\lambda_n}x\right)$$

• Frequencies:
$$c\sqrt{\lambda_n} = \frac{n\pi c}{L}$$

Wave Equation

$$\begin{cases} u_{tt} = c^2 u_{xx} & 0 < x < L \\ u(0, t) = u(L, t) = 0 & t > 0 \end{cases}$$

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(c\sqrt{\lambda_n}t\right) + B_n \sin\left(c\sqrt{\lambda_n}t\right) \right) \sin\left(\sqrt{\lambda_n}x\right)$$

• Frequencies:
$$c\sqrt{\lambda_n} = \frac{n\pi c}{L}$$

1 What do we hear when someone plucks this string?

$$\begin{cases} u_{tt} = c^2 u_{xx} & 0 < x < L \\ u(0, t) = u(L, t) = 0 & t > 0 \end{cases}$$

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(c\sqrt{\lambda_n}t\right) + B_n \sin\left(c\sqrt{\lambda_n}t\right) \right) \sin\left(\sqrt{\lambda_n}x\right)$$

• Frequencies:
$$c\sqrt{\lambda_n} = \frac{n\pi c}{L}$$

- 1 What do we hear when someone plucks this string?
- If we had perfect hearing, could we tell the length L of the string?

$$\begin{cases} u_{tt} = c^2 \Delta u, & x \in \Omega \\ u = 0, & x \in \partial \Omega \end{cases}, \quad t > 0$$

Wave Equation

$$\begin{cases} u_{tt} = c^2 \Delta u, & x \in \Omega \\ u = 0, & x \in \partial \Omega \end{cases}, \quad t > 0$$

B How do we find the frequencies?

Wave Equation

4

$$\begin{cases} u_{tt} = c^2 \Delta u, & x \in \Omega \\ u = 0, & x \in \partial \Omega \end{cases}, \quad t > 0$$

B How do we find the frequencies?

$$u(x, y, t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(c\sqrt{\lambda_n}t\right) + B_n \sin\left(c\sqrt{\lambda_n}t\right) \right) \varphi_n(x, y)$$

where λ_n and φ_n are eigenvalues and eigenfunctions of

$$\begin{cases} -\Delta \varphi = \lambda \varphi & \text{ if } x \in \Omega \\ \varphi = 0 & \text{ if } x \in \partial \Omega \end{cases}$$

Wave Equation

$$\left\{ egin{array}{ll} u_{tt} = c^2 \Delta u, & x \in \Omega \ u = 0, & x \in \partial \Omega \end{array}
ight., t > 0$$

B How do we find the frequencies?

$$u(x, y, t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(c\sqrt{\lambda_n}t\right) + B_n \sin\left(c\sqrt{\lambda_n}t\right) \right) \varphi_n(x, y)$$

where λ_n and φ_n are eigenvalues and eigenfunctions of

$$\begin{cases} -\Delta \varphi = \lambda \varphi & \text{ if } x \in \Omega \\ \varphi = 0 & \text{ if } x \in \partial \Omega \end{cases}$$

4 What determines λ_n ?

Weyl 1911. Area of drumhead is determined by eigenvalues:

$$\mathsf{Area}(\Omega) = \lim_n rac{\lambda_n}{4\pi^2 n}$$

Weyl 1911. Area of drumhead is determined by eigenvalues:

$$\mathsf{Area}(\Omega) = \lim_n rac{\lambda_n}{4\pi^2 n}$$

O Perimeter is also determined by eigenvalues

Weyl 1911. Area of drumhead is determined by eigenvalues:

$$\mathsf{Area}(\Omega) = \lim_n rac{\lambda_n}{4\pi^2 n}$$

• Perimeter is also determined by eigenvalues

 If the domain is multiply-connected, the eigenvalues indicate the number of holes.

Mark Kac 1966. Coined the problem "Can one hear the shape of a drum?"

Mark Kac 1966. Coined the problem "Can one hear the shape of a drum?"

Gordon, Webb, Wolpert 1992. Showed that in 2D we **can't** hear the shape of a drum.

Sunada 1984. Group Theory \rightarrow Manifolds

Sunada 1984. Group Theory \rightarrow Manifolds **Bérard 1989.** New proof of Sunada's result Sunada 1984. Group Theory \rightarrow Manifolds

Bérard 1989. New proof of Sunada's result

Gordon, Webb, Wolpert 1992. Showed that in 2D we can't hear the shape of a drum.

Sunada 1984. Group Theory \rightarrow Manifolds

Bérard 1989. New proof of Sunada's result

Gordon, Webb, Wolpert 1992. Showed that in 2D we can't hear the shape of a drum.

Even though the problem has been solved, there is still ongoing research.

 It is known that if the domain has the same eigenvalues as a disk, then it must be a disk.

Zelditch 2000. Showed that there is a class of convex set (with analytic boundary and two axes of symmetry) for which the eigenvalues of the Laplacian determine the domain.