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Can you hear the shape of a drum?

Wave Equation{
utt = c2uxx 0 < x < L
u(0, t) = u(L, t) = 0 t > 0
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1 What do we hear when someone plucks this string?
2 If we had perfect hearing, could we tell the length L of the

string?
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Can we hear the shape of a drum?

Wave Equation{
utt = c2∆u, x ∈ Ω , t > 0
u = 0, x ∈ ∂Ω

3 How do we find the frequencies?

u(x , y , t) =
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n=1

(
An cos

(
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)
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(
c
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where λn and ϕn are eigenvalues and eigenfunctions of{
−∆ϕ = λϕ if x ∈ Ω
ϕ = 0 if x ∈ ∂Ω

4 What determines λn?
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Can we hear the shape of a drum?

Weyl 1911. Area of drumhead is determined by eigenvalues:

Area(Ω) = lim
n

λn
4π2n

Perimeter is also determined by eigenvalues

If the domain is multiply-connected, the eigenvalues indicate
the number of holes.
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Can we hear the shape of a drum?

Milnor 1964. Showed a pair of 16D tori with
different shape, but same eigenvalues

Mark Kac 1966. Coined the problem “Can
one hear the shape of a drum?”

Gordon, Webb, Wolpert 1992. Showed
that in 2D we can’t hear the shape of a drum.

Figure 7. Geodesics are curves that do not de-
viate from the direction in which they are trav-
eling. Geodesics of a sphere are great circles. 

frequencies (and even then only to a fi-
nite degree of accuracy). There is no fi-
nite set of measurements (like the 
length of the vibrating string above) 
that completely captures the shape of a 
general planar region, so one cannot 
expect a finite sequence of frequencies 
to contain much information about the 
shape of the region. 

Can One Hear the Shape of a Manifold? 
When a problem appears intractable, 
mathematicians often generalize the 
problem; by relaxing their expectations, 
they may succeed in solving an easier but 
related problem, and the techniques used 
may shed light on the original problem. 
Thus mathematicians almost irrunediate-
Iy asked: Can one hear the shape of a Rie-
mannian manifold? A manifold is a 
curved surface small pieces of which look 
roughly like small pieces of a Euclidean 
space. For example, the surface of a 
doughnut is a manifold: A small enough 
piece of the surface looks like a (slightly 
warped) fragment of the Euclidean plane, 
even though the space as a whole is quite 
different from the plane. A Ril?lrwnnian 
manifold is a manifold endowed with a 
way of measuring distances and angles. 
(The apparatus for such measurements is 
somewhat technical. The key idea, how-
ever, is tllat for each point p of the mani-
fold M, there is a tangl?l1t space to M at p, 
which can be viewed as the collection of 
instantaneous velocity vectors of curves 
in M passing through the point p. This 
tangent space is an ordinary Euclidean 
space, so the angle between two cwves in 
M that intersect at p can be defined as the 
usual Euclidean angle between thei.r in-
stantaneous velOCity vectors at p. Sin1ilar-
ly, the length of a curve in a manifold can 
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be defined by integrating the ordinary 
Euclidean lengths of its instantaneous ve-
locity vectors.) Any Riemannian mani-
fold has a wave equation, so it makes 
sense to ask: Can one hear the shape of a 
Riemannian manifold? Of course, if the 
answer is "yes," this is a harder problem 
than the original one, since a drumhead is 
a special case of a Riemannian manifold; 
it may be, however, that the answer is 
"no," in which case the more general 
problem offers wider scope for seeking 
counterexamples. Two manifolds that 
have the same spectrum, and hence the 
same set of vibration frequencies, are said 
to be isospectral. 

In 1964, John Milnor of the State Uni-
versity of New York at Stony Brook an-
swered the more general question nega-
tively by exhibiting a pair of isospech'al 
16-dirnensional manifolds. Milnor's ex-
amples are constructed by gluing to-
gether opposite faces of a cleverly cho-
sen 16-dimensional "parallelogram" to 
produce flat tori. A two-dimensional 
analogue, a flat 2-torus, can be con-
structed by taking a parallelogram in the 
plane, gluing the top and bottom edges 
together, and then gluing the left and 
right edges together. Topologically, the 
resulting surface is the same as the sur-
face of a doughnut. Indeed, the dough-
nut surface may be constructed by first 
gluing together the top and bottom 
edges of a rectangle to form a cylinder, 
and then bending the ends of the cylin-
der (formerly the left and right edges of 
the rectangle) around and gluing them 
together (see Figure 6). Of course, if this 
procedure is carried out in three-dimen-
sional space, as in Figure 6, the local 
geomehy (lengths and angles) must be 
deformed a bit during the second step 
(the red arrows in Figure 5), but topolo-
gy overlooks such distortions. 

A flat torus would result if we per-
formed the second gluing without alter-
ing the geometry of the surface; this feat 
cannot be performed in three-dimen-
sional space, but in four-dimensional 
space there is enough room to do so. 
The term "flat" refers to the fact that 
now the local geometry (not merely the 
local topology) is that of the Euclidean 
plane--Iocally, lengths and angles mea-
sured on the flat torus are the same as 
they would have been in the original 
planar parallelogram before the gluing 
was done. Perhaps the easiest way to vi-
sualize a flat torus is to imagine a child's 
video game in which spaceships flying 
off tl1e right side of the screen reappear 
at the same height on the left edge of 
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Figure 8. Closed geodesic on a torus "wraps 
around" and closes up. Note that the torus pic-
tured is not "flat," as the second gluing dis· 
torts local geometry; the picture only aids in 
visualizing how the closed geodesic "sits" in 
the toms. A closed geodesic on a flat torus is 
best visualized with a "round trip" of a video 
game space ship, as in the top image. The lisl 
of vibration frequencies of any vibrating man-
ifold is closely related to the list of lengths of 
its closed geodesics. By constmcting two dif-
ferent 16-dimensional tori with identical lists 
of closed geodesics, John Milnor was able to 
exhibit isospectral (geometrically different bul 
vibrationally equivalent) manifolds. 

the screen, and spaceships flying off the 
top of the screen reappear at the bottom 
of the screen. Effecbvely, the top of the 
screen has been glued to the bottom and 
the left edge to the right edge, but no 
geometric distortion has been intro-
duced, since locally, lengths and angles 
on the screen are just as they would be 
in the Euclidean plane. 

A geodesic on a Riemannian manifold 
is the natural analogue of a straight line 
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analogue, a flat 2-torus, can be con-
structed by taking a parallelogram in the 
plane, gluing the top and bottom edges 
together, and then gluing the left and 
right edges together. Topologically, the 
resulting surface is the same as the sur-
face of a doughnut. Indeed, the dough-
nut surface may be constructed by first 
gluing together the top and bottom 
edges of a rectangle to form a cylinder, 
and then bending the ends of the cylin-
der (formerly the left and right edges of 
the rectangle) around and gluing them 
together (see Figure 6). Of course, if this 
procedure is carried out in three-dimen-
sional space, as in Figure 6, the local 
geomehy (lengths and angles) must be 
deformed a bit during the second step 
(the red arrows in Figure 5), but topolo-
gy overlooks such distortions. 

A flat torus would result if we per-
formed the second gluing without alter-
ing the geometry of the surface; this feat 
cannot be performed in three-dimen-
sional space, but in four-dimensional 
space there is enough room to do so. 
The term "flat" refers to the fact that 
now the local geometry (not merely the 
local topology) is that of the Euclidean 
plane--Iocally, lengths and angles mea-
sured on the flat torus are the same as 
they would have been in the original 
planar parallelogram before the gluing 
was done. Perhaps the easiest way to vi-
sualize a flat torus is to imagine a child's 
video game in which spaceships flying 
off tl1e right side of the screen reappear 
at the same height on the left edge of 
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Figure 8. Closed geodesic on a torus "wraps 
around" and closes up. Note that the torus pic-
tured is not "flat," as the second gluing dis· 
torts local geometry; the picture only aids in 
visualizing how the closed geodesic "sits" in 
the toms. A closed geodesic on a flat torus is 
best visualized with a "round trip" of a video 
game space ship, as in the top image. The lisl 
of vibration frequencies of any vibrating man-
ifold is closely related to the list of lengths of 
its closed geodesics. By constmcting two dif-
ferent 16-dimensional tori with identical lists 
of closed geodesics, John Milnor was able to 
exhibit isospectral (geometrically different bul 
vibrationally equivalent) manifolds. 

the screen, and spaceships flying off the 
top of the screen reappear at the bottom 
of the screen. Effecbvely, the top of the 
screen has been glued to the bottom and 
the left edge to the right edge, but no 
geometric distortion has been intro-
duced, since locally, lengths and angles 
on the screen are just as they would be 
in the Euclidean plane. 

A geodesic on a Riemannian manifold 
is the natural analogue of a straight line 
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Can we hear the shape of a drum?

Sunada 1984. Group Theory → Manifolds
2 1 1 2 
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Figure 11. Eight elements-including the identity element, the operation that does nothing-
are included in the group of symmetries of a square. The figure depicts the effects of the non-
identity elements. 

tions of permutation representations and 
linear representations of groups. Given a 
group G, a permutation representation of 
G on a set X is a rule that assigns to each 
element g of G a permutation gof the 
se t X. The permuta tions must be as-
signed in such a way that composition 
of the permutations assigned to any two 
group elements g and h in G has the 
same effect as the permutation assigned 
!.OJ.:he g::oup product of g and h, that is, 
g II = gh. A linear represen tation of G of 
degree n is a rule that to each 
g in G an n x Il matrix g in such a way 
that the matrix assigned to a product of 
any two elements g and h in G is jus t 
the product of the matrices 
the group plDduct oj g anci h: gTi = gn 
Since the mahoices g and H multiply in 
essentia lly the same way the orig inal 
group elements g and h did , it might 
seem that little has been ga ined. Matrix 
theory, however, is a very w ell-devel-
oped branch of mathema ti cs tha t af-
fords some powerful tools; thus view-
ing group elements as ma trices and 
using the rich theory of matrices may 
permit one to notice things that might 
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have escaped detection othervvise. This 
philosophy of enrichment of structure 
is a recurrent theme in ma thematics. 

Given a permutation representation 
of a group G on a set X of n elements, it 
is easy to construct a linear representa-
tion of G of degree 11 . For example, if X 
has three elements, i, j and k, we label 
the unit vectors in the direc tions of the 
axes of three-dim ensional space by 
i=(l,O,O), j= (O,l ,O) and k=(O,O,l). An ele-
ment g of G can be realized as a permu-
ta tion gof the se t X, hence as a re-
arrangement of the coordinate axes of 
3-space. This rearrangement of coordi-
nates determines a linear transformation 
of 3-space (a way of mapping 
to itself linearly), hence a 3 x 3 ma h'i x g. 
Indeed, a matrix is perhaps best viewed 
as a wa y of encoding s uch a linear 
transformation rela tive to a fi xed choice 
of coordinates. This transi tion from a 
permutation representation of G to a lin-
ear representation of G seems rather in-
nocuous, but an interes ting phenome-
non can occur: It can happen that two 
different permutation representations of 
G can give rise to linear representations 

that are essentially the same. This phe-
nomenon- inequivalent permuta ti on 
representations giving rise to equ ivalent 
linear representations- is essenti al to 
Sunada's technique. Although a little in-
genuity is required to find inequivalent 
permuta tion tha t give 
rise to equivalent linear representations, 
nwnber theorists had already construct-
ed examples while studying a very dif-' 
fe rent but analogous problem, Al-
though we cannot indicate here why 
Sunada's method produces isospectrilJ 
manifolds, we will illus trate by means 
of an example, 

One Can' t Hear the Shape of a Drum 
Although Sunada 's technique had been 
avail able for nearly a decade, it was be-
lieved that it shed no light directly on 
Kac's original question, since the spaces 
manufactured by the method could not 
be regions in the Euclidean plane. In 
1989, however, Pierre Berard of the Insti-
tut Fourier in Grenoble, France, discov-
ered a new proof of SlUlada's theorem 
that permitted w ider application of the 
method . In 1990, the authors and Scott 
Wolpert used Berard's d iscovery to con-
struct a pair of isospectraJ planar regjon5 
that are no t geometrically congruent, 
thereby answering Kac's question: One 
cannot hear the shape of a drum, 

The group G we use is one used by 
Rob er t Broo ks of the University of 
Southern California and by Peter 1')USCI 

of the Ecole Polytedmigue Fc2derale in 
Lau sa nne, Sw itze rland, to construct 
isosp"ctra l surfaces, Thl' group G con-
tains three special elements, a., and ,(, 
and all the elements of G can be ob-
tained by taking products of ex, and y 
Linear algebra furnishes a natural way 
in which G permutes the elements of 
the set X=!l ,2, ... ,7l, which we shall 
describe pictorially; the permutation 
associated to an element g of G will be 
written as g,The way elements of G 
permute the n umbers 1, 2" . ,,7 can be 
represented by a Cnyl!?1j graph, a set of 
points labeled by the numbers 1, 2, ... ,7, 
joined toge the r by various edges 
marked by a., and y, The Ca yley 
graph faithfully encod c's all the infor-
mation about the permutations a, 
and y. The Cayley graph that encodes 
our permutati on representation is de-
picted in Figure 12. The edges are colol 
coded for convenience: red = a., green 
= and blue = y As an example of how 
the Cayley graph is used, the fact that 
the points labeled 2 and 6 are joined by 
an edge marked ex expresses the fa ct 
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Bérard 1989. New proof of Sunada’s result
Gordon, Webb, Wolpert 1992. Showed that in 2D we can’t
hear the shape of a drum.
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 15. When the Cayley graphs in Figures 12 and 13 are used as patterns for gluing together 
copies of the model triangle T, two different planar regions, 0, and 0" result. We wish to show 
that these two drumheads of different shape have th e same vibration frequencies. 

[  

angle L as a copy of the model triangle 
T, and we identify the right-hand trian-
gle R with L by reflection through the 
COJ1UllOn edge. By successively flippiJ.'g 
triangles in this way, we can identify 
any triangle in 0 -1 or O2 with the model 
h-iangle T. We can think of the process of 
relating any h-iangle in 0 1 or O2 to any 
other triangle as "origClmi": We are just 
folding all the triangles back onto a sin-
gle model triangle. 

Consider now a wilveform <p (phi' 
a given frequency on the region 0 1 [)f 
Figure 15. Such a solution of the spatial 
equation can be viewed as a snapsho -of 
0 1 while vibratffig. Consider the portion 
of the graph of the function <p which lif's 
above just the triangle labeled A in Fig-
ure 17; we will denote this piece of the 
graph of <p by A. Similarly, denote by B 
the part of the function <p defined on tri-
angle B in Figure 17, Clnd so fmth. Each 
of A, B, C ...,G is a hmction on a single 
triangle (indeed , by origami each can be 

y 

z. 
I 

I 
I, 

(i' ') '1 

x 
Figure 16. Transplantation is used to demonstrate that planar regions OJ and 0 2 have the same vi-
bration frequencies. Transplantation depends on the reflection principle: A wavefornl on trian-
gle L can be extended to tri angle R as the negative of the mirror reflection of the wavefonn on L. 
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viewed as a function defined on the 
model triangle), and the graph of <p is 
just the graphs of the functions A , B, 
C .. .,G glued together along the inter-
faces betvveen the triangles. In particular, 
since the waveform is a smooth func-
tion, the values of the functions A (on 
triangle A) and B (on triangle B) must 
coincide along their common (red) (X 

edges. Also, notice that since the bOLmd-
ary of 0 1 remains fixed during the vi-
bration, the function A is zero on the 
(blue) 'I edge of h-iangle A, for example. 

We now seek to transplant <p to a 
waveform of the same frequency on O2, 
We have seen that we can add and sub-
tract waveforms to produce other wave-
forms. Consider the fLUxtion \jI (psi) on 
the region O2 described in Figure 17. 
This fw-.ction \jI is specified by ind ica ling 
a function on each of the triangles form-
ing O2; thus, for instance, on the topmost 
triangle in O2 in Figure 17 (the one la-
beled 7 in O2 in Figure 15), \jI is the hmc-

hon B - C + 0 , a superposition of the 
hmctions B, - C and O. On each of the 
individual triangles forming O2, \jI is 
certainly a valid waveform (ignoring 
boundary conditions), since it is a sum 
of waveforms on the model triangle. To 
see that \jI is a valid waveform on the 
whole of D2 satisfying the boundary 
conditions, we must check two asser-
tions: First, the seven "pieces" of \jI 
must fit together smoothly at the inter-
faces between triangles, and second, 
the function \jI must be zero on the 
boundary of O2, 

Both of these assertions can be veri-
fied by inspecting the relations of the 
seven fLmctions arising from the struc-
ture of °I' as depicted in Figure 17. For 
example, let us check that the function 
B - C + 0 on the topmost triangle of 
D2 in Figure 17 (triangle 7 of D2 in Fig-
ure 15) and the function A + C + E on 
its ne ighboring triangle (triangle 5 of 
O2 in Figure 15) fit together smoothly 
along their common interface, the red 
(a.) edge separating the two triangles. 
Reference to 0] in Figure 17 shows thilt 
triangles A and B share a common red 
edge, so the functions A and B must be 
identical on the red edge; sirnilarly, tri-
angles D and E of 0 1 in Figure 17 share 
a common red edge, so the functions 
o and E mllst coincide on the red edge, 
Thus A + E and B + 0 will agree on the 
red interface between triangles 7 and 5 
of O2 in Figme 15. Bu t note tha t the 
function C is zero on the red edge of 
the model triangle. Indeed, in 0 1 in 
Figure 17, the red edge of triangle C is a 
boundary edge, so any waveform of DJ 
must be zero on the entire edge, since 
the boundary stays fixed throughout 
the vibration. This means that if we 
imagine the waveform C on triangle 5 
of 0 -2 in Figure 15, in order to continue 
it smoothly across the red edge to a 
wavefollll on hiangle 7, we must put the 
n.mction -C on h-iangle 7 in accordance 
with the reflection principle (refer again 
to Figure 16). Since B + °(on h-iangle 7 of 
O2) agrees with A + E (on triangle 5 of 
O2) on their common red edge, and since 
-C (on h-iangle 7 of O2) agrees with C (on 
triangle 5 of O2) on the common red 
edge (where both are zero) , it follows 
that B - C + 0 (on triangl e 7 of O2) and 
A + C + f: (on triangle 5 of O2) join to-
gethe r smoothly across the red ex edge 
shared by triangles 7 and 5. It is easy 
now to check in the same way that the 
seven pieces of \jI fit together smoothly 
across all interfaces between triangles of 
O2, so the first assertion is veri fied. 
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Can we hear the shape of a drum?

Sunada 1984. Group Theory → Manifolds

Bérard 1989. New proof of Sunada’s result

Gordon, Webb, Wolpert 1992. Showed that in 2D we can’t
hear the shape of a drum.
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 15. When the Cayley graphs in Figures 12 and 13 are used as patterns for gluing together 
copies of the model triangle T, two different planar regions, 0, and 0" result. We wish to show 
that these two drumheads of different shape have th e same vibration frequencies. 
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angle L as a copy of the model triangle 
T, and we identify the right-hand trian-
gle R with L by reflection through the 
COJ1UllOn edge. By successively flippiJ.'g 
triangles in this way, we can identify 
any triangle in 0 -1 or O2 with the model 
h-iangle T. We can think of the process of 
relating any h-iangle in 0 1 or O2 to any 
other triangle as "origClmi": We are just 
folding all the triangles back onto a sin-
gle model triangle. 

Consider now a wilveform <p (phi' 
a given frequency on the region 0 1 [)f 
Figure 15. Such a solution of the spatial 
equation can be viewed as a snapsho -of 
0 1 while vibratffig. Consider the portion 
of the graph of the function <p which lif's 
above just the triangle labeled A in Fig-
ure 17; we will denote this piece of the 
graph of <p by A. Similarly, denote by B 
the part of the function <p defined on tri-
angle B in Figure 17, Clnd so fmth. Each 
of A, B, C ...,G is a hmction on a single 
triangle (indeed , by origami each can be 

y 

z. 
I 

I 
I, 

(i' ') '1 

x 
Figure 16. Transplantation is used to demonstrate that planar regions OJ and 0 2 have the same vi-
bration frequencies. Transplantation depends on the reflection principle: A wavefornl on trian-
gle L can be extended to tri angle R as the negative of the mirror reflection of the wavefonn on L. 
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viewed as a function defined on the 
model triangle), and the graph of <p is 
just the graphs of the functions A , B, 
C .. .,G glued together along the inter-
faces betvveen the triangles. In particular, 
since the waveform is a smooth func-
tion, the values of the functions A (on 
triangle A) and B (on triangle B) must 
coincide along their common (red) (X 

edges. Also, notice that since the bOLmd-
ary of 0 1 remains fixed during the vi-
bration, the function A is zero on the 
(blue) 'I edge of h-iangle A, for example. 

We now seek to transplant <p to a 
waveform of the same frequency on O2, 
We have seen that we can add and sub-
tract waveforms to produce other wave-
forms. Consider the fLUxtion \jI (psi) on 
the region O2 described in Figure 17. 
This fw-.ction \jI is specified by ind ica ling 
a function on each of the triangles form-
ing O2; thus, for instance, on the topmost 
triangle in O2 in Figure 17 (the one la-
beled 7 in O2 in Figure 15), \jI is the hmc-

hon B - C + 0 , a superposition of the 
hmctions B, - C and O. On each of the 
individual triangles forming O2, \jI is 
certainly a valid waveform (ignoring 
boundary conditions), since it is a sum 
of waveforms on the model triangle. To 
see that \jI is a valid waveform on the 
whole of D2 satisfying the boundary 
conditions, we must check two asser-
tions: First, the seven "pieces" of \jI 
must fit together smoothly at the inter-
faces between triangles, and second, 
the function \jI must be zero on the 
boundary of O2, 

Both of these assertions can be veri-
fied by inspecting the relations of the 
seven fLmctions arising from the struc-
ture of °I' as depicted in Figure 17. For 
example, let us check that the function 
B - C + 0 on the topmost triangle of 
D2 in Figure 17 (triangle 7 of D2 in Fig-
ure 15) and the function A + C + E on 
its ne ighboring triangle (triangle 5 of 
O2 in Figure 15) fit together smoothly 
along their common interface, the red 
(a.) edge separating the two triangles. 
Reference to 0] in Figure 17 shows thilt 
triangles A and B share a common red 
edge, so the functions A and B must be 
identical on the red edge; sirnilarly, tri-
angles D and E of 0 1 in Figure 17 share 
a common red edge, so the functions 
o and E mllst coincide on the red edge, 
Thus A + E and B + 0 will agree on the 
red interface between triangles 7 and 5 
of O2 in Figme 15. Bu t note tha t the 
function C is zero on the red edge of 
the model triangle. Indeed, in 0 1 in 
Figure 17, the red edge of triangle C is a 
boundary edge, so any waveform of DJ 
must be zero on the entire edge, since 
the boundary stays fixed throughout 
the vibration. This means that if we 
imagine the waveform C on triangle 5 
of 0 -2 in Figure 15, in order to continue 
it smoothly across the red edge to a 
wavefollll on hiangle 7, we must put the 
n.mction -C on h-iangle 7 in accordance 
with the reflection principle (refer again 
to Figure 16). Since B + °(on h-iangle 7 of 
O2) agrees with A + E (on triangle 5 of 
O2) on their common red edge, and since 
-C (on h-iangle 7 of O2) agrees with C (on 
triangle 5 of O2) on the common red 
edge (where both are zero) , it follows 
that B - C + 0 (on triangl e 7 of O2) and 
A + C + f: (on triangle 5 of O2) join to-
gethe r smoothly across the red ex edge 
shared by triangles 7 and 5. It is easy 
now to check in the same way that the 
seven pieces of \jI fit together smoothly 
across all interfaces between triangles of 
O2, so the first assertion is veri fied. 
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Can we hear the shape of a drum?

Sunada 1984. Group Theory → Manifolds

Bérard 1989. New proof of Sunada’s result

Gordon, Webb, Wolpert 1992. Showed that in 2D we can’t
hear the shape of a drum.
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 15. When the Cayley graphs in Figures 12 and 13 are used as patterns for gluing together 
copies of the model triangle T, two different planar regions, 0, and 0" result. We wish to show 
that these two drumheads of different shape have th e same vibration frequencies. 
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angle L as a copy of the model triangle 
T, and we identify the right-hand trian-
gle R with L by reflection through the 
COJ1UllOn edge. By successively flippiJ.'g 
triangles in this way, we can identify 
any triangle in 0 -1 or O2 with the model 
h-iangle T. We can think of the process of 
relating any h-iangle in 0 1 or O2 to any 
other triangle as "origClmi": We are just 
folding all the triangles back onto a sin-
gle model triangle. 

Consider now a wilveform <p (phi' 
a given frequency on the region 0 1 [)f 
Figure 15. Such a solution of the spatial 
equation can be viewed as a snapsho -of 
0 1 while vibratffig. Consider the portion 
of the graph of the function <p which lif's 
above just the triangle labeled A in Fig-
ure 17; we will denote this piece of the 
graph of <p by A. Similarly, denote by B 
the part of the function <p defined on tri-
angle B in Figure 17, Clnd so fmth. Each 
of A, B, C ...,G is a hmction on a single 
triangle (indeed , by origami each can be 

y 

z. 
I 
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I, 
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x 
Figure 16. Transplantation is used to demonstrate that planar regions OJ and 0 2 have the same vi-
bration frequencies. Transplantation depends on the reflection principle: A wavefornl on trian-
gle L can be extended to tri angle R as the negative of the mirror reflection of the wavefonn on L. 
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viewed as a function defined on the 
model triangle), and the graph of <p is 
just the graphs of the functions A , B, 
C .. .,G glued together along the inter-
faces betvveen the triangles. In particular, 
since the waveform is a smooth func-
tion, the values of the functions A (on 
triangle A) and B (on triangle B) must 
coincide along their common (red) (X 

edges. Also, notice that since the bOLmd-
ary of 0 1 remains fixed during the vi-
bration, the function A is zero on the 
(blue) 'I edge of h-iangle A, for example. 

We now seek to transplant <p to a 
waveform of the same frequency on O2, 
We have seen that we can add and sub-
tract waveforms to produce other wave-
forms. Consider the fLUxtion \jI (psi) on 
the region O2 described in Figure 17. 
This fw-.ction \jI is specified by ind ica ling 
a function on each of the triangles form-
ing O2; thus, for instance, on the topmost 
triangle in O2 in Figure 17 (the one la-
beled 7 in O2 in Figure 15), \jI is the hmc-

hon B - C + 0 , a superposition of the 
hmctions B, - C and O. On each of the 
individual triangles forming O2, \jI is 
certainly a valid waveform (ignoring 
boundary conditions), since it is a sum 
of waveforms on the model triangle. To 
see that \jI is a valid waveform on the 
whole of D2 satisfying the boundary 
conditions, we must check two asser-
tions: First, the seven "pieces" of \jI 
must fit together smoothly at the inter-
faces between triangles, and second, 
the function \jI must be zero on the 
boundary of O2, 

Both of these assertions can be veri-
fied by inspecting the relations of the 
seven fLmctions arising from the struc-
ture of °I' as depicted in Figure 17. For 
example, let us check that the function 
B - C + 0 on the topmost triangle of 
D2 in Figure 17 (triangle 7 of D2 in Fig-
ure 15) and the function A + C + E on 
its ne ighboring triangle (triangle 5 of 
O2 in Figure 15) fit together smoothly 
along their common interface, the red 
(a.) edge separating the two triangles. 
Reference to 0] in Figure 17 shows thilt 
triangles A and B share a common red 
edge, so the functions A and B must be 
identical on the red edge; sirnilarly, tri-
angles D and E of 0 1 in Figure 17 share 
a common red edge, so the functions 
o and E mllst coincide on the red edge, 
Thus A + E and B + 0 will agree on the 
red interface between triangles 7 and 5 
of O2 in Figme 15. Bu t note tha t the 
function C is zero on the red edge of 
the model triangle. Indeed, in 0 1 in 
Figure 17, the red edge of triangle C is a 
boundary edge, so any waveform of DJ 
must be zero on the entire edge, since 
the boundary stays fixed throughout 
the vibration. This means that if we 
imagine the waveform C on triangle 5 
of 0 -2 in Figure 15, in order to continue 
it smoothly across the red edge to a 
wavefollll on hiangle 7, we must put the 
n.mction -C on h-iangle 7 in accordance 
with the reflection principle (refer again 
to Figure 16). Since B + °(on h-iangle 7 of 
O2) agrees with A + E (on triangle 5 of 
O2) on their common red edge, and since 
-C (on h-iangle 7 of O2) agrees with C (on 
triangle 5 of O2) on the common red 
edge (where both are zero) , it follows 
that B - C + 0 (on triangl e 7 of O2) and 
A + C + f: (on triangle 5 of O2) join to-
gethe r smoothly across the red ex edge 
shared by triangles 7 and 5. It is easy 
now to check in the same way that the 
seven pieces of \jI fit together smoothly 
across all interfaces between triangles of 
O2, so the first assertion is veri fied. 
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Can we hear the shape of a drum?

Sunada 1984. Group Theory → Manifolds

Bérard 1989. New proof of Sunada’s result

Gordon, Webb, Wolpert 1992. Showed that in 2D we can’t
hear the shape of a drum.
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 12, Cayley graphs encode the way a 
group is applied to a set of numbers through 
permutation, In this example, a group con-
sisting of products of three elements, Ct., and 
I' permutes the set X (numbers 1 through 7). 
Red indicates an Ct. permutation, which 
switches 3 and 7 and 2 and 6. Green is a per-
mutation, which switches 3 and 5 and 2 and 4. 
Blue denotes a y permutation, switching 5 
and 6 and 1 and 2. Some numbers remain un-
moved by a given permutation, For example, 
because there is no bl ue edge emanating 
from either 3 or 4, the '( permutation leaves 
these points unmoved, 

that the permutation ex interchanges 2 
and 6, The fact that there is no yedge 
emanating from the point in the graph 
labeled 3, on the other hand, expresses 
that the permutation -:y leaves 3 un-
moved, There is another permutation 
representation of G whose Cayley 
graph is depicted in Figure 13; it is sim-
ilar to the graph arising from our first 
permutation representation, but the 
edge markings are different. 

As described above, one can associate 
to each permutation representation a lin-
ear representation, in this case by 7 x 7 
matrices. The two permutation represen-
tations are not the same, since their Cay-
ley graphs differ. It turns out, however, 
that the two linear representations asso-
ciated to our permutation re presenta-
tions are equivalent l This means that we 
can use the permutation representations 
to construct isospectral regions in the 
plane by S'Lmada's method, as follows, 

We begin with the "model" triangle T 
in Figure 14; its edges are labeled by u, 
and y, and are color-coded like the Cay-
ley graphs, We will construct a region 0) 
by gluing together along their edges sev-
en copies of the triangle T (labeled by the 
elements 1, 2,,, ,,7 of X) according to the 

pattern of the Cayley graph of Figure 12, 
We begin with the hiangle labeled 7, a 
copy of the model triangle correspond-
ing to the vertex 7 of the Cayley graph in 
Figure 12, In this graph, 7 is joined to 3 
by an edge labeled u, so we reflect the 
triangle 7 through its u edge and label 
the resulting "flipped-over" triangle 3 
Figtrre 14 shows the first few steps of this 
construction, whereas Figure 15 depicts 
the polygonal region 0 I that resul ts 
when we have worked our way through 
the entire Figure 12 Cayley graph in this 
fashion, Similarly the Cayley graph in 
Figure 13 gives rise to a plane region D2, 

also shown in Figure 15, 

Transplantation of Waveforms 
We wish to show that the two plane re-
gions in Figure 15 vibrate at precisely the 
same frequencies, Since they are differ-
ent shapes, this will mean that one can-
not hear the shape of a dnun, Berard's 
proof of Sunada's theorem furnishes an 
explicit recipe for "transplanting" a 
waveform on the drum OJ to a wave-
form of the same frequency on D2• Al-
though the actual details of the recipe 
are too technical to describe here, once 
the recipe has been followed, it is easy to 
verify that what it produces is actually a 
valid waveform of the same frequency 
on O2, as we will show below, A wave-
form on O2 can also be transplanted to 
OJ, so the drums vibrate at precisely the 
same frequencies, 

To see how the transplantation 
works, we record some properties of 
stationary waveforms on a drumhead 
that are analogous to properties of the 
stationary waveforms we saw above on 
the vibrating string, First, a sum of solu-
tions or a constant multiple of a solu-
tion is again a solution. TI1USwe are free 
to combine waveforms of a given fre-
quency by superposition, Second, pos-

Figure 13. Cayley graph of a second permuta-
tion representation of G on the set X shows 
different effects of the Ct., and y permutations. 

sible waveforms (solutions of the spa-
tial equation (4)) obey a reflection prin-
Ciple: A waveform can be locally ex-
tended past a boundary edge as the 
negative of its mjrror reflection through 
the boundary edge, TIluS, for example, 
in Figure 16, a waveform (denoted g) on 
the left triangle L can be continued 
across the bOl.mdary edge as shown to 
yield an admissible waveform on the re-
gion made up of the two congruent tri-
angles L and R by specifying the value 
of the function at a point of the right-
hand triangle R to be the negative of its 
value at the corresponding "mirror im-
age" point of L. Thus the f'Lmction on 
the right-hand triangle is just -g In or-
der for this notation to make sense, we 
imagine the region folded along the 
common edge of both triangles, so that 
the right-hand triangle is flipped over 
and folded back on top of the left tricu"\-
gle; in other words, we view the left tri-

Figure 14. Using the Cayley graph as a guide, it is possible to construct isospectral regions 
based on the model triangle T.Its edges are labeled u, Pand y, and copies are adjoined to it by 
gluing new triangles along the appropriate edges. Starting from the top of the Cayley graph in 
Figure 12, the first triangle is labeled 7. Along its Ct. edge, a "mirror image" triangle labeled 3 is 
glued. Continuing, a triangle 5 is glued along the edge of 5. And so on. 
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Figure 15. When the Cayley graphs in Figures 12 and 13 are used as patterns for gluing together 
copies of the model triangle T, two different planar regions, 0, and 0" result. We wish to show 
that these two drumheads of different shape have th e same vibration frequencies. 
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angle L as a copy of the model triangle 
T, and we identify the right-hand trian-
gle R with L by reflection through the 
COJ1UllOn edge. By successively flippiJ.'g 
triangles in this way, we can identify 
any triangle in 0 -1 or O2 with the model 
h-iangle T. We can think of the process of 
relating any h-iangle in 0 1 or O2 to any 
other triangle as "origClmi": We are just 
folding all the triangles back onto a sin-
gle model triangle. 

Consider now a wilveform <p (phi' 
a given frequency on the region 0 1 [)f 
Figure 15. Such a solution of the spatial 
equation can be viewed as a snapsho -of 
0 1 while vibratffig. Consider the portion 
of the graph of the function <p which lif's 
above just the triangle labeled A in Fig-
ure 17; we will denote this piece of the 
graph of <p by A. Similarly, denote by B 
the part of the function <p defined on tri-
angle B in Figure 17, Clnd so fmth. Each 
of A, B, C ...,G is a hmction on a single 
triangle (indeed , by origami each can be 
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Figure 16. Transplantation is used to demonstrate that planar regions OJ and 0 2 have the same vi-
bration frequencies. Transplantation depends on the reflection principle: A wavefornl on trian-
gle L can be extended to tri angle R as the negative of the mirror reflection of the wavefonn on L. 
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viewed as a function defined on the 
model triangle), and the graph of <p is 
just the graphs of the functions A , B, 
C .. .,G glued together along the inter-
faces betvveen the triangles. In particular, 
since the waveform is a smooth func-
tion, the values of the functions A (on 
triangle A) and B (on triangle B) must 
coincide along their common (red) (X 

edges. Also, notice that since the bOLmd-
ary of 0 1 remains fixed during the vi-
bration, the function A is zero on the 
(blue) 'I edge of h-iangle A, for example. 

We now seek to transplant <p to a 
waveform of the same frequency on O2, 
We have seen that we can add and sub-
tract waveforms to produce other wave-
forms. Consider the fLUxtion \jI (psi) on 
the region O2 described in Figure 17. 
This fw-.ction \jI is specified by ind ica ling 
a function on each of the triangles form-
ing O2; thus, for instance, on the topmost 
triangle in O2 in Figure 17 (the one la-
beled 7 in O2 in Figure 15), \jI is the hmc-

hon B - C + 0 , a superposition of the 
hmctions B, - C and O. On each of the 
individual triangles forming O2, \jI is 
certainly a valid waveform (ignoring 
boundary conditions), since it is a sum 
of waveforms on the model triangle. To 
see that \jI is a valid waveform on the 
whole of D2 satisfying the boundary 
conditions, we must check two asser-
tions: First, the seven "pieces" of \jI 
must fit together smoothly at the inter-
faces between triangles, and second, 
the function \jI must be zero on the 
boundary of O2, 

Both of these assertions can be veri-
fied by inspecting the relations of the 
seven fLmctions arising from the struc-
ture of °I' as depicted in Figure 17. For 
example, let us check that the function 
B - C + 0 on the topmost triangle of 
D2 in Figure 17 (triangle 7 of D2 in Fig-
ure 15) and the function A + C + E on 
its ne ighboring triangle (triangle 5 of 
O2 in Figure 15) fit together smoothly 
along their common interface, the red 
(a.) edge separating the two triangles. 
Reference to 0] in Figure 17 shows thilt 
triangles A and B share a common red 
edge, so the functions A and B must be 
identical on the red edge; sirnilarly, tri-
angles D and E of 0 1 in Figure 17 share 
a common red edge, so the functions 
o and E mllst coincide on the red edge, 
Thus A + E and B + 0 will agree on the 
red interface between triangles 7 and 5 
of O2 in Figme 15. Bu t note tha t the 
function C is zero on the red edge of 
the model triangle. Indeed, in 0 1 in 
Figure 17, the red edge of triangle C is a 
boundary edge, so any waveform of DJ 
must be zero on the entire edge, since 
the boundary stays fixed throughout 
the vibration. This means that if we 
imagine the waveform C on triangle 5 
of 0 -2 in Figure 15, in order to continue 
it smoothly across the red edge to a 
wavefollll on hiangle 7, we must put the 
n.mction -C on h-iangle 7 in accordance 
with the reflection principle (refer again 
to Figure 16). Since B + °(on h-iangle 7 of 
O2) agrees with A + E (on triangle 5 of 
O2) on their common red edge, and since 
-C (on h-iangle 7 of O2) agrees with C (on 
triangle 5 of O2) on the common red 
edge (where both are zero) , it follows 
that B - C + 0 (on triangl e 7 of O2) and 
A + C + f: (on triangle 5 of O2) join to-
gethe r smoothly across the red ex edge 
shared by triangles 7 and 5. It is easy 
now to check in the same way that the 
seven pieces of \jI fit together smoothly 
across all interfaces between triangles of 
O2, so the first assertion is veri fied. 
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Can we hear the shape of a drum?

Figure 15 
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Can we hear the shape of a drum?
More isospectral domains

PDE (Math 3FF3) Eigenvalues April 2008 7 / 9
• Ω R � S N •



Can we hear the shape of a drum?

Even though the problem has been solved, there is still ongoing
research.

It is known that if the domain has the same eigenvalues as a
disk, then it must be a disk.

Zelditch 2000. Showed that there is a class of convex set (with
analytic boundary and two axes of symmetry) for which the
eigenvalues of the Laplacian determine the domain.
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