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1. The Prague Horloge. In the Old Town City Hall in Prague in the Czech
Republic, there is a remarkable astronomical clock that dates back to 1410. It is the
creation of clockmaker Mikulas of Kadan and mathematician Jan Sindel. A detailed
description of the clock can be found on line in the article The mathematics behind
Prague’s horloge by M. Krizek, A. Selcova and L. Somer in the journal Mathematical
Culture found online at www.global-sci.org. For our purposes, all we need to know
is that it is a 24-hour clock that chimes the hours on the hour. The operation of
the chime is governed by two related gears that determine the timing and number
of chimes. The smaller gear has gaps that are separated by distances proportional
to 1, 2, 3, 4, 3, 2. As this gear turns, it presents the sequence consisting of this
cycle of numbers repeated over and over:

1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, . . . .

The relevance of this sequence lies in the fact that we can break it into portions for
which the sum of the numbers in each give us all the positive integers consecutively:

(1)(2)(3)(4)(3 + 2)(1 + 2 + 3)(4 + 3)(2 + 1 + 2 + 3)(4 + 3 + 2) . . . .

This allows the gaps in the smaller gear to mesh with those in a larger gear (with
gaps separated by distances 1 up to 24 consecutively) to chime the hours succes-
sively.

By continuing further along the sequence, you can satisfy yourself that you can
include all the numbers in turn up to 24 by sums. How do you know that you can
continue to get every positive integer?

The key to understanding is the observation that when you get up to 14 =
2 + 3 + 4 + 3 + 2, you arrive at the end of one of the cycles. The number 15 will use
the next complete cycle. When we come to 16 = 15 + 1, we have to use a complete
and start the next. Then 17 = 15 + 2 takes us though a complete cycle (2, 3, 4,
5, 2, 1) plus 2. In effect, we are taken through the sequence of sums for 1, 2, 3, . . .
with complete cycles thrown in.

2. More general sequences. Are there other sequences with the same prop-
erty as the one on the foregoing section, that is periodic with the consecutive
positive integers given by sums of nonoverlapping consecutive portions. An easy
example is the sequence every entry of which is 1:

(1)(1 + 1)(1 + 1 + 1)(1 + 1 + 1 + 1)(1 + 1 + 1 + 1 + 1) . . . .

It is also easy to check that the sequence

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .

also works.
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We seem to be following a pattern. However, you can see that the sequence

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .

fails. Maybe you can perform a slight modification to find a sequence that works.

It does not seem to be an easy task to find other examples by trial and error,
and we need a more systematic way of proceeding. (You might want to stop and
think for a while before reading on.)

Let us go back to the sequence in section 1, whose cycle has the sum 15. We
begin with a sequence of 15 dashes:

−−−−−−−−−−−−−−−.

Now we count off the positive integers by the dashes:

−| − −| − −− | − −−−| − −−−− |.

We now come to 6. So we go back to the beginning (as though the dashes were in
a circle) and keep counting. We can also count 7, which takes us to a new solidus:

−| − −| − −− | − −−−| − −− | − −|.

The count of 8 = 2 + 6 takes us ”around the bend”, and does not require a solidus
in a new slot. Nor will we need a new solidus for any further integers; 7 is the
highest number that will require a new solidus.

Now just take for our cycle the number of dashes between the solidi: 1, 2, 3, 4,
3, 2 .

This suggests that, to find other Prague clock sequences, we can follow the dash
process with different numbers of dashes, corresponding to the sum of the numbers
in the generating cycles. Try this out for different sums.

3. Modular arithmetic.

The dash process might seem unwieldy, and we have a mathematical tool to ease
things. Return to the sequence that we started with, with sum 15. To achieve pieces
of the sequences to give the first four numbers, we see that we can provisionally
choose the numbers 1, 2, 3, 4, 5 for the cycle. So far, we are ok to achieve the sum
of 6:

(1)(2)(3)(4)(5)(1 + 2 + 3).

However, as things stand, we cannot get the next few numbers to add to 7, unless
we break up the 5, to get the cycle 1, 2, 3, 4, 3, 2.

To see where we break into a cycle, we have to look at the sums 1+2+3+ · · ·+n,
which we have to achieve by summing the sequence from the start for each n, modulo
15. (Recall, that a ≡ b (mod m) means that a− b is divisible by m; equivalently, it
means that a and b leave the same remainder when divided by m.)
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We have, modulo 15, that

1 = 1; 1 + 2 = 3; 1 + 2 + 3 + 4 = 10;

1 + 2 + 3 + 4 + 5 = 15 ≡ 0;

1 + 2 + 3 + 4 + 5 + 6 = 21 ≡ 6;

1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 ≡ 13;

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 ≡ 6;

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 ≡ 0.

The numbers 1, 3, 10, 0, 6, 13, 6 are the sums we must achieve after running through
complete cycles; in order, these are 0, 1, 3, 6, 10, 13, 15 and this accounts for the
differences 1, 2, 3, 4, 3, 2 that define the cycle.

Suppose now that the cycle is to have sum 5. Then we can work modulo 5, and
see that the sums possible counting from the beginning of the sequence must be 1,
2, 1 ≡ 1 + 2 = 3 mod 5, 0 ≡ 1 + 2 + 3 = 4 ≡ 1 + 2 + 3 + 4 + 5, and so on. This
leads us to the sequence

1, 2, 2, 1, 2, 2, 1, 2, 2, . . . .

Go through the same process for other possible cycle sums.

Here is a question for you to investigate: given cycle sum s, what is the largest
number n for which 1 + 2 + 3 + · · · + n gives a remainder upon division by s tht
forces a new splitting of a number in the provisional cycle? We saw that for s = 15,
the answer is n = 7.

4. Examples. For every odd cycle sum, we can find a Prague clock sequence.
When the cycle sum is even, can you show that the cycle can be decomposed into
two or more smaller cycles? This table gives the cycles for small odd cycle sums.

Cycle sum Cycle Largest new remainder
1 1 1
3 1, 2 2
5 1, 2, 2 2
7 1, 2, 3, 1 3
9 1, 2, 3, 3 3

11 1, 2, 1, 2, 4, 1 5
13 1, 1, 1, 3, 2, 2, 3 6
15 1, 2, 3, 4, 3, 2 7
17 1, 1, 1, 1, 2, 4, 1, 4, 2 8
19 1, 1, 1, 3, 1, 2, 1, 5, 2, 2 9
21 1, 2, 3, 1, 3, 3, 2, 6 10
31 1, 2, 1, 1, 1, 4, 2, 2, 1, 1, 5, 3, 3, 1, 1, 2


