
PRODUCTS THAT ARE POWERS.

A mathematical vignette

Ed Barbeau, University of Toronto

This investigation was originally designed for school students to gain fluency
with the factoring of positive integers as a product of prime powers through the
challenge of optimizing sets of numbers with square products. However, like many
such things, it morphed into something larger and generated some interesting more
general questions.

1. Square products. A diverting pastime is to begin with a positive integer
n and multiply it by any number of distinct larger integers until the product is a
square. It is easy to find examples. Simply multiply n by 4n, for instance, to get
the square (2n)2. So to make it a bit more challenging, ask that the largest integer
that we introduce into the product is as small as possible.

For example, let n = 5. We can do better than {5, 20}, by selecting the set of
integers in the product to be {5, 10, 18} or better yet {5, 12, 15}. But as you can
readily see, the set {5, 8, 10} is one whose largest number is minimum, since we
need at least two multiples of 5.

For each positive integer n, define the function f2(n) to be the smallest number
k exceeding n for which there is a set of at least two distinct integers, including n,
in the closed interval [n, k] whose product is a square. Thus, f2(5) = 10. Just to
get you into proper spirit, check that f2(2) = 6, f2(3) = 8 and f2(8) = 15. What is
f2(12)?

If n = m2 is itself a square, then we could choose the set {m2, (m + 1)2}, thus
showing that f2(m2) ≤ (m + 1)2. Is it possible for f2(m2) to be strictly less than
(m + 1)2? Or, to ask a stronger question, are there only finitely many values of m
for which f2(m2) = (m + 1)2? Or for which f2(m2) < (m + 1)2?

It is easy to see that f2(n) ≤ 4n for each positive integer n. However, empirical
investigation suggests that f2(n) ≤ 2n except for 1 ≤ n ≤ 4. This turns out to
be so, and there are at least two approaches that you can take to establish this.
First, you can show that, for sufficiently large n, the open interval (n, 2n) contains
a number of the form 2k2, and check small values of n individually. Alternatively,
you can try to put inside each open interval (n, 2n) a number equal to an odd
power of 2 multipled by a small square. Note that, with this result in hand, that
f2(n) = 2n whenever n is a prime exceeding 3.

This leads to another question. What rational values are assumed by f2(n)/n
infinitely often?

Finally, is f2(2m) ≤ 3m for sufficiently large values of m?

2. Higher power products. We can play the same game with higher powers,
and define, for each positive integer r ≥ 2, the function fr(n) to be the smallest
value of k exceeding n for which there are at least two distinct integers, including
n, in the closed interval [n, k] whose product is an rth power. You may wish to
verify that f3(6) = f4(6) = f5(6) = 18 while f6(6) = 27.

1



2

We can ask questions analogous to those posed for the case n = 2. For n ≥ 2,
show that f3(n) ≤ 3n. (f3(1) = 4.) More generally, is it true that fr(n) ≤ rn for n
sufficiently large, with equality occurring when n is a prime exceeding r?

Prove that fr(mr) is always strictly less than (m + 1)r when r ≥ 3.

What values of fr(n)/n are assumed for infinitely many values of n?

3. Comments. In finding f2(12), we must be sure that our set contains another
multiple of an odd power of 3. We can try to see if we can put in either 15 or 21
(we may decide whether to include 18 depending on straightening out the power of
2). We can find the set {12, 14, 18, 21}; but {12, 15, 20} is better. For a set with a
smaller maximum, we see that we have to exclude any number divisible by a prime
greater than 3, and {12, 18} does not work. Therefore f2(12) = 20.

To show that f(n) ≤ 2n for n ≥ 5, we can check the cases 5 ≤ n ≤ 9 by hand.
Now let x1 = 18 = 2 × 32, x2 = 32 = 25, x3 = 50 = 2 × 52 and xm = 4 × xm−3

for m ≥ 4. Each xm is the product of an odd power of 2 and a square and
xm < xm+1 < 2xm for each m ≥ 1. Then for each n ≥ 10, we can show that for
some m, n < xm < 2n for some value of m ≥ 1.

To show that f3(n) ≤ 3n for n ≥ 2, we can check the small cases by hand
and then show that for n sufficiently large, there is always a values of k for which
n < 36k3 < 3n so that n × 2n × 3n × 36k3 = (6kn)3 is a cube. The only fly in
the ointment is that 36k3 might equal 2n, so that the case n = 18k3 needs special
attention. However, f3(18) = 25 < 54, a suitable set being {18, 20, 24, 25}, and we
can derive a set that works for 18k3.

There is another approach to this result. It appears to be the case that, for n ≥ 9,
we can find a set of distinct integers in the closed interval [n, 3n] whose cardinality
is a multiple of 3, which contains n, 2n and 3n, and whose elements multiply to
give a cubic product. We can check this for an initial tranche of integers n and then
try to prove it in general by an induction argument that involves multiplying each
element in a set for n by a number u to get a set for un. The attempt to construct
an argument is beset by various annoyances.

In order to show that fr(n) ≤ rn for sufficiently large n, we can try to find
numbers v and k such that n < vkr < rn such that r!v is a rth power, vkr is not a
multiple of n, and

n× 2n× 3n× · · · × rn× (vkr)

is an rth power.

The evaluation of f2(m2) turns out to be more interesting than it first appears.
Investigation of small values of m reveals that the open interval (m2, (m + 1)2)
contains a set of distinct integers with a square product more often than not. It
seems plausible that f2(m2) could equal, or not equal, (m+1)2 each infinitely often.
Where the inequality is strict, determination of the set of integers seems to be a
highly idiosyncratic process and it is hard to see how one can devise a systematic
process that will cover infinitely many cases. Sometimes we find that we only need
three numbers for a square product. For example, between 72 and 82, we have the
triple (50, 60, 63); between 122 and 132, we have the triple (147, 150, 162). Does
this happen infinitely often? However, it is not possible to find a pair of numbers
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strictly between two consecutive squares whose product is square. Can you see
why?

Since m3×m2(m+1)×m(m+1)2 = (m2(m+1))3 is cube, f3(m3) ≤ m(m+1)2.
Incidentally, note that f3(m2) ≤ (m + 1)2 since m2 × m(m + 1) × (m + 1)2 =
(m(m + 1))3.

More generally, since mr ×ms(m + 1)r−s ×mr−s(m + 1)s is an rth power for
2s ≥ r, we see that fr(mr) < (m + 1)r for all m.

APPENDIX

This appendix gives an expanded version of the exploration along with tables of
values.

Let r and n be a positive integer and let fr(n) be the minimum value of ak over
all sets {a1, a2, . . . , ak} of distinct integers, where k is a positive integer and where

(i) n < a1 < a2 < · · · < ak
and
(ii) the product na1a2 . . . ak is an rth power.

CONJECTURE: For each positive integer r ≥ 2, fr(n) ≤ rn for all but finitely
many positive integers n.

We note that fr(n) = rn for infinitely many values of n. Let p be any prime
not less than r. Then any collection of integers that contains p whose product is
divisible by p2 must contain at least r multiples of p or at least one multiple p2. In
any case, it contains a multiple of p not less than rp.

§1. The case r = 1. It is clear that f1(n) = n + 1.

§2. The case r = 2.

2.1. There are two arguments to show that f2(n) ≤ 2n for n ≥ 5.

2.1.1. Define xk = 2k2 and note that xk < xk+1 < 2xk for k ≥ 3. Let n ≥ 18,
and select k so that xk ≤ n < xk+1. Then, since n < xk+1 < 2xk ≤ 2n, it
follows that the product of n, xk+1 and 2n is a square and the statement holds. If
10 ≤ n ≤ 17, then the statement holds since n× 18× 2n is a square. If n = 5, 6, 7,
then n×8×2n is square and the statement holds. Since 8×10×12×15 and 9×16
are square, the statement holds for 8 and 9. However, it can be checked that it
does not hold for n = 1, 2, 3, 4, so 4 is the largest number for which the statement
fails.
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2.1.2. Define the sequence x1 = 18 = 2×32, x2 = 32 = 25, x3 = 50 = 2×52, and
xm = 4× xm−3 for m ≥ 4. Then each xm is the product of an odd power of 2 and
a square. Furthermore, note that x1 < x2 < 2x1, x2 < x3 < 2x2, x3 < x4 < 2x4,
so that xm < xm+1 < 2xm for each m ≥ 1. Suppose that 10 ≤ n ≤ 17. Then
n × 18 × 2n is square. Let n ≥ 18, and suppose that m is the largest integer for
which xm ≤ n. Then n < xm+1 < 2xm ≤ 2n, and n×xm+1×2n is a square. Thus,
the statement is true whenever n ≥ 10. The table shows it is true for 5 ≤ n ≤ 9.

2.2. It is clear that f2(m2) ≤ (m + 1)2. However, we can have strict inequality.
Question: Are there infinitely many values of m for which the inequality is strict?
The issue turns on finding in the open interval (m2, (m+1)2) a finite set of distinct
integers whose product is a square. This seems to be possible for most values of m,
as indicated in the table below.

Interval Factors of square Square root of product
(52, 62) 27, 28, 30, 32, 35 24 × 33 × 5× 7
(72, 82) 50, 56, 63 22 × 3× 5× 7
(82, 92) 65, 66, 70, 72, 77, 78 23 × 32 × 5× 7× 11× 13

(92, 102) 88, 98, 99 22 × 3× 7× 11
(102, 112) 102, 105, 108, 119, 120 23 × 33 × 5× 7× 17
(112, 122) 125, 126, 128, 140, 143 25 × 3× 52 × 7

128, 130, 132, 135 25 × 32 × 5× 11× 13
(122, 132) 147, 150, 162 2× 33 × 5× 7
(132, 142) 170, 171, 176, 187, 190 23 × 3× 5× 11× 17× 19
(142, 152) 200, 204, 208, 216, 221 26 × 32 × 5× 13× 17

198, 210, 216, 220, 224 26 × 33 × 5× 7× 11
(152, 162) 228, 234, 240, 247, 250 24 × 32 × 52 × 132 × 192

230, 231, 236, 240, 253 24 × 3× 5× 7× 11× 23
230, 231, 240, 242, 252, 253 24 × 32 × 5× 7× 112 × 23
230, 231, 240, 242, 243, 253 23 × 3× 5× 72 × 112 × 23

(162, 172) 260, 264, 273, 275, 280 24 × 3× 52 × 7× 11× 13
260, 266, 273, 285, 288 24 × 3× 5× 13× 19

(172, 182) 297, 299, 308, 312, 322 23 × 32 × 7× 11× 13× 23
(182, 192) 330, 340, 343, 352, 357 24 × 3× 72 × 22× 17

325, 336, 343, 351 24 × 34 × 52 × 74 × 132

338, 343, 350 22 × 52 × 72 × 132

325, 330, 336, 340, 351, 352, 357 212 × 36 × 54 × 72 × 112 × 172

(192, 202) 363, 384, 392 210 × 32 × 72 × 112

(202, 212) 408, 414, 416, 418, 425, 429, 437 25 × 32 × 5× 11× 19× 23
(222, 232) 504, 507, 512, 525 26 × 32 × 5× 7× 13

2.3. The product of the entries in the set {2n, 6k2, 3n} is a square and this shows
that f2(2n) ≤ 3n when k can be found with (n/3) < k2 < (n/2), or 2k2 < n < 3k2.
This is always possible when n ≥ 25. For lower values of n, the inequality fails
when n = 1, 2, 3, 4, 5, 6, 8, 16. The product of the entries in the set {3n, 3k2, 4n} is a
square and this shows that f(3n) ≤ 4n when k can be found with n < k2 < (4n/3),

or k2 < (4n/3) < (4k2/3). This always happens when n ≥ 30.
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Question: For what values of s does the equation f(n) = sn have infinitely
many solutions?

Question: Is f2(2m) ≤ 3m for all sufficiently large m?
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n f2(n)
1 4 {1, 4}
2 6 {2, 3, 6}
3 8 {3, 6, 8}
4 9 {4, 9}
5 10 {5, 8, 10}
6 12 {6, 8, 12}
7 14 {7, 8, 14}
8 15 {8, 10, 12, 15}
9 16 {9, 16}

10 18 {10, 12, 15, 18}
11 22 {11, 18, 22}
12 20 {12, 15, 20}
13 26 {13, 18, 26}
14 21 {14, 15, 18, 20, 21}
15 24 {15, 18, 20, 24}
16 25 {16, 25}
17 34 {17, 18, 34}; {17, 32, 34}
18 27 {18, 24, 27}
19 38 {19, 32, 38}
20 30 {20, 24, 30}
21 28 {21, 27, 28}
22 33 {22, 24, 33}
23 46 {23, 32, 46}
24 32 {24, 27, 32}
25 35 {25, 27, 28, 30, 32, 35}
26 39 {26, 27, 32, 39}
27 35 {27, 28, 30, 32, 35}
28 40 {28, 32, 25, 40}
29 58 {29, 32, 58}; {29, 50, 58}
30 42 {30, 35, 42}
31 62 {31, 32, 62}; {31, 50, 62}
32 50 {32, 50}
33 48 {33, 44, 48}
34 51 {34, 35, 40, 42, 51}
35 48 {35, 40, 42, 48}
36 49 {36, 49}
37 74 {37, 50, 74}; {37, 72, 74}
38 57 {38, 48, 50, 57}
39 52 {39, 48, 52}
40 50 {40, 45, 50}
41 82 {41, 50, 82}; {41, 72, 82}
42 56 {42, 48, 56}
43 86 {43, 50, 85}; {43, 72, 86}
44 55 {44, 45, 55}
45 60 {45, 50, 54, 60}
46 69 {46, 54, 69}
47 94 {47, 50, 94}; {47, 72, 94}
48 54 {48, 50, 54}
49 63 {49, 50, 56, 63}
50 63 {50, 56, 63}
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n f2(n)
51 68 {51, 54, 56, 63, 68}
52 65 {52, 54, 56, 60, 63, 65}
53 106 {53, 72, 106}; {53, 98, 106
54 75 {54, 55, 60, 66, 75}
55 72 {55, 60, 66, 72}
56 77 {56, 60, 63, 66, 70, 72, 77}
57 76 {57, 75, 76}
58 87 {58, 66, 75, 77, 84, 87}
59 118 {59, 72, 118}; {59, 98, 118}
60 88 {60, 66, 88}
61 122 {61, 72, 122}; {61, 98, 122}
62 93 {62, 65, 78, 80, 93}
63 85 {63, 68, 70, 72, 85}
64 80 {64, 66, 70, 75, 77, 80}
65 84 {65, 70, 78, 84}
80 98 {80, 90, 98}
81 99 {81, 88, 98, 99}

100 121 {100, 121}
121 143 {121, 125, 126, 130, 132, 135, 140, 143}
144 162 {144, 147, 150, 162}
169 190 {169, 170, 171, 176, 187, 190}
196 221 {196, 200, 204, 208, 216, 221}
225 250 {225, 228, 234, 240, 247, 250}
256 280 {256, 260, 264, 273, 275, 280}
289 322 {289, 297, 299, 308, 312, 322}
324 350 {324, 338, 343, 350}
361 392 {361, 363, 384, 392}
400 437 {400, 408, 414, 416, 418, 425, 429, 437}
484 523 {484, 504, 507, 512, 525}
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§3. The case r = 3.

n f3(n) Optimal sets Other efficient sets
1 4 {1, 2, 4}
2 4 {2, 4}
3 9 {3, 9}
4 9 {4, 6, 9}
5 15 {5, 6, 10, 12, 15}
6 18 {6, 16, 18}
7 21 {7, 9, 10, 14, 15, 16, 18, 20, 21}
8 16 {8, 9, 12, 16}
9 16 {9, 12, 16}

10 28 {10, 14, 15, 20, 21, 24, 28}
11 33 {11, 12, 22, 24, 33}
12 18 {12, 18}
13 39 {13, 16, 36, 39}
14 28 {14, 18, 20, 21, 25, 28}
15 32 {15, 18, 25, 32}
16 25 {16, 20, 25}
17 51 {17, 34, 36, 51}
18 25 {18, 20, 24, 25}
19 57 {19, 36, 38, 57}
20 42 {20, 21, 28, 30, 40, 42} {20, 30, 45}; {20, 50}}
22 44 {22, 24, 25, 28, 33, 35, 42, 44}
23 69 {23, 36, 46, 69}
24 45 {24, 30, 36, 40, 45}
25 36 {25, 30, 36}
26 52 {26, 32, 39, 45, 50, 52}
27 48 {27, 36, 48}
28 45 {28, 35, 40, 42, 45}
29 87 {29, 36, 58, 87}
30 45 {30, 32, 40, 45}
31 93 {31, 36, 62, 93}
32 54 {32, 54}
33 55 {33, 40, 44, 45, 54, 55}
34 68 {34, 49, 51, 63, 68}
35 70 {35, 60, 63, 70}
36 48 {36, 48} {36, 42, 49}
37 111 {37, 45, 74, 100, 111}
38 76 {38, 49, 57, 63, 76}
41 123 {41, 45, 82, 100, 123}
43 129 {43, 45, 86, 100, 129}
47 141 {47, 63, 94, 98, 128, 141}
53 159 {53, 63, 98, 106, 128, 159}
59 177 {59, 63, 98, 118, 128, 177}
61 183 {61, 63, 98, 122, 128, 183}
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In the list so far, we see that, for n ≥ 2, f3(n) ≤ 3n. We will establish this.
When n is prime, there must be in fact equality.

3.1. We use induction to obtain a stronger result for n ≥ 10, to wit: There
exists a set {n, 2n, 3n; b1, b2, . . . , b3r} of distinct positive integers whose product is
a cube and for which n < bi < 3n for each i. (Note that the number of entries is a
multiple of 3.)

For 10 ≤ n ≤ 15, then set {n, 2n, 3n; 16, 18, 27} is suitable, the product of its
entries being 26 × 36 × n3. For 16 ≤ n ≤ 20, the set

{n, 2n, 3n; 21, 24, 25, 27, 28, 35}

is suitable, the product of its entries being 26 × 36 × 53 × 73 × n3. Thus the result
holds for 10 ≤ n ≤ 20.

Now suppose that the result holds for 10 ≤ n ≤ 2m− 1, where m ≥ 10, and let

{m, 2m, 3m; b1, b2, . . . , b3r}

be a suitable set for n = m with product 6b1b2 . . . b3rm
3 = u3m3. Then

{2m, 4m, 6m; 2b1, 2b2, . . . , 2b3r}

is a suitable set for n = 2m with product (2r+1)3u3m3. For n = 2m + 1, consider
the set

{2m + 1, 2(2m + 1), 3(2m + 1), 2b1, 2b2, . . . , 2b3r}

We have that 2m < 2bi < 6m < 3(2m + 1), so that 2m + 1 < 2bi for each
i. Also the product of the numbers in the set is (2r)3u3(2m + 1)3, so that this
set is suitable for n = 2m + 1. We need to deal with the possibility that
2bi = 2(2m + 1), 3(2m + 1).

Here is a list of sets whose cardinalities are a multiple of 3, whose maximum
element is not greater than three times the minimum element, and whose elements
multiply to a cube.
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n The set
6 {6, 16, 18}
8 {8, 12, 18}
9 {9, 12, 16}

10 {10, 12, 14, 15, 18, 20, 21, 24, 28}
11 {11, 12, 22, 24, 27, 33}
12 {12, 18, 27}
13 {13, 16, 18, 26, 27, 39}
14 {14, 18, 20, 21, 25, 28}
15 {15, 18, 20, 27, 30, 36}
16 {16, 20, 25}
17 {17, 25, 34, 36, 40, 57}
18 {18, 24, 32}; {18, 30, 50}
19 {19, 25, 36, 38, 40, 57}
20 {20, 27, 50}; {20, 21, 28, 30, 40, 42}
22 {22, 24, 25, 27, 28, 33, 35, 42, 44}
23 {23, 25, 36, 40, 46, 69}
24 {24, 27, 30, 36, 40, 45}
25 {25, 30, 36}
26 {26, 32, 39, 45, 50, 52}
27 {27, 36, 48}
29 {29, 36, 49, 56, 58, 87}
36 {36, 42, 49}
37 {37, 45, 64, 74, 100, 111}
38 {38, 49, 57, 63, 64, 76}
41 {41, 45, 64, 82, 100, 123}
43 {43, 45, 64, 86, 100, 129}
47 {47, 63, 94, 98, 128, 141}
53 {53, 63, 98, 106, 128, 159}
59 {59, 63, 98, 118, 128, 177}
61 {61, 63, 98, 122, 128, 183}

3.2. A second approach is to augment the set {n, 2n, 3n} by additional numbers
between n and 3n. The following cases cover n ≥ 13:

{n, 2n, 3n; 36} 13 ≤ n ≤ 35;n 6= 18
{n, 2n, 3n; 45, 100} 34 ≤ n ≤ 44
{n, 2n, 3n; 60, 75} 31 ≤ n ≤ 59
{m, 2n, 3n; 63, 98, 128} 43 ≤ n ≤ 62
{n, 2n, 3n; 72, 108} 37 ≤ n ≤ 71;n 6= 54
{n, 2n, 3n; 48, 126} 43 ≤ n ≤ 97;n 6= 63
{n, 2n, 3n; 128, 144} 55 ≤ n ≤ 127;n 6= 64, 72
{n, 2n, 3n; 110, 225} 76 ≤ n ≤ 159
{n, 2n, 3n; 243, 256} 86 ≤ n ≤ 242;n 6= 128
{n, 2n, 3n; 352, 363, 375} 126 ≤ n ≤ 351;n 6= 176
{n, 2n, 3n; 972} 325 ≤ n ≤ 971;n 6= 486

The last entry is a special case of {n, 2n, 3n; 36k3} which works for 12k3 + 1 ≤
n ≤ 36k3 − 1, n 6= 18k3. The sets of validity for the sets overlap when k ≥ 3 since
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12(k + 1)3 + 1 ≤ 36k3− 1. The missing values of n, namely 18k3 and 176 = 23× 22
can be settled from the cases n = 18, 22 respectively.

An interesting examples of a set is

{n, 2n, 3n; 23k+1, 32 · 23k−2}
which works for 3 · 23k−2 + 1 ≤ n ≤ 23k+1 − 1, n 6= 23k, 32 · 23k−3, 3 · 23k−2.

3.3. f3(m2) ≤ (m+ 1)2, since the product of the numbers {m2,m(m+ 1), (m+
1)3} is a cube. Equality does not hold when m+1 is a cube. In that case f3(m2) =
m(m + 1); an example is that f(49) = 56.

3.4. f3(m3) ≤ m(m+1)2, since the product of the numbers is the set {m3,m2(m+
1),m(m + 1)2} is a cube. Are there infinitely many values of m for which the in-
equality is strict? Are there infinitely many values of m for which there is equality?

Question. Is f(n) ≤ 2n whenever n is even? When n is twice a prime, we must
have f(n) ≥ 2n.
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§4. The case r = 4.

n f4(n)
1 8 {1, 2, 8}
2 8 {2, 8}
3 9 {3, 6, 8, 9}
4 12 {4, 6, 9, 12}
5 20 {5, 6, 8, 10, 15, 18, 20}
6 18 {6, 12, 18}
7 28 {7, 9, 10, 14, 15, 21, 25, 28}
8 18 {8, 9, 18}
9 25 {9, 10, 18, 21, 25}

10 32 {10, 20, 25, 32}
11 44 {11, 22, 27, 32, 33, 44}
12 48 {12, 36, 48}
13 52 {13, 26, 27, 32, 39, 52}
16 32 {16, 20, 25, 27, 30, 32}

For the case n = 16, we have the following sets whose maximum is less than 64:

{16, 24, 25, 27, 50}, {16, 25, 27, 30, 40}, {16, 20, 25, 27, 30, 32}

For larger numbers:

{n, 2n, 3n, 4n; 27, 32} 9 ≤ n ≤ 26;n 6= 16
{n, 2n, 3n, 4n; 54} 14 ≤ n53;n 6= 18, 27
{n, 2n, 3n, 4n; 96, 144} 37 ≤ n ≤ 95;n 6= 48, 73
{n, 2n, 3n, 4n; 162, 192} 49 ≤ n ≤ 161;n 6= 54, 64, 81, 96
{n, 2n, 3n, 4n; 125, 270} 69 ≤ n ≤ 124
{n, 2n, 3n, 4n; 256, 360, 375} 94 ≤ n ≤ 255;n 6= 120, 125, 128, 180
{n, 2n, 3n, 4n; 864} 217 ≤ n ≤ 863;n 6= 288, 432
{n, 2n, 3n, 4n; 1944, 2304, 2500} 626 ≤ n ≤ 1943;n 6= 768, 972, 1152, 1250
{n, 2n, 3n, 4n; 4374} 1094 ≤ n ≤ 4374;n 6= 1458, 2187
{n, 2n, 3n, 4n; 13824} 3457 ≤ n ≤ 13823

For k ≥ 3, the set {n, 2n, 3n, 4n; 54k4} covers all n ≥ 1094 with the exception of
those that duplicate 54k3, and these can b derived in other ways.
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§5. The case r = 5.

n f5(n)
1 8 {1, 4, 8}
2 16 {2, 16}
3 18 {3, 9, 16, 18}
4 8 {4, 8}
5 25 {5, 6, 10, 12, 15, 18, 25}
6 18 {6, 8, 9, 18}
7 35 {7, 14, 16, 20, 21, 25, 27, 28, 30, 35}
8 36 {8, 10, 15, 16, 18, 24, 25, 27, 30, 36}
9 27 {9, 27}

10 27 {10, 12, 15, 20, 25, 27}
11 55 {11, 15, 16, 18, 22, 27, 30, 33, 44, 45, 50, 55}
12 36 {12, 18, 36}
13 65 {13, 15, 16, 18, 26, 27, 30, 39, 45, 50, 52, 65}
14 45 {14, 21, 25, 28, 30, 35, 42, 45}
15 40 {15, 16, 18, 20, 25, 27, 40}
16 27 {16, 18, 27}
18 45 {18, 25, 30, 40, 45}
20 45 {20, 25, 27, 40, 45}
27 48 {27, 30, 48}
32 81 {32, 40, 50, 64, 75, 81}
81 96 {81, 96}

{n, 2n, 3n, 4n, 5n; 50, 54, 75} 16 ≤ n ≤ 49;n 6= 18, 25, 27
{n, 2n, 3n, 4n, 5n; 150, 200, 208} 42 ≤ n ≤ 149;n 6= 50, 52, 75, 100, 104
{n, 2n, 3n, 4n, 5n; 512, 625, 648} 130 ≤ n ≤ 511;n 6= 162, 216, 256, 324



14

§6. The case r = 6.

n f6(n)
1 8 {1, 2, 4, 8}
2 8 {2, 4, 8}
3 18 {3, 8, 9, 12, 18}
4 16 {4, 16}
5 27 {5, 8, 9, 10, 15, 20, 25, 27}
6 24 {6, 8, 9, 16, 18, 24}
6 27 {6, 16, 18, 27}; {6, 12, 24, 27}
7 42 {7, 10, 14, 16, 20, 21, 25, 27, 28, 30, 35, 42}
8 27 {8, 9, 24, 27}; {8, 12, 18, 27}
9 24 {9, 12, 18, 24}

10 32 {10, 15, 20, 24, 25, 27, 32}
11 66 {11, 15, 16, 18, 20, 22, 25, 30, 33, 44, 55, 66}
12 40 {12, 15, 18, 20, 24, 25, 30, 40}
13 78 {13, 15, 16, 18, 20, 25, 26, 30, 39, 52, 65, 78}
14 56 {14, 15, 21, 25, 27, 28, 32, 35, 42, 50, 56}
15 40 {15, 18, 20, 25, 27, 30, 32, 40}
16 32 {16, 18, 24, 32}
18 54 {18, 48, 54}
20 45 {20, 25, 27, 30, 40, 45}

General r.

Proposition. For all but finitely many positive integers n, fr(n) ≤ rn and
equality occurs infinitely often.

Proof. We note that the product of the numbers in the set

{n, 2n, 3n, . . . , rn; (r!)r−1kr}
is an rth power for each positive integer k. Let s = (r!)r−1. The smallest number
in the set is n and the largest rn if and only if n ≤ pkr ≤ rn. We have to show
that when k is sufficiently large, then the sets work for all n. However, we have
to deal with the possibility that pkr is equal to one of the in.

Note that, since {m2,m3(m + 1)r−s,mr−s(m + 1)s} has a product which is an
rth power, fr(mr) < (m + 1)2.


