
THE UNIVERSITY OF TORONTO
UNDERGRADUATE MATHEMATICS COMPETITION

In Memory of Robert Barrington Leigh

March 11, 2007

Time: 3 1
2 hours

No aids or calculators permitted.

It is not necessary to do all the problems. Complete solutions to fewer problems are preferred to partial
solutions to many.

1. A m × n rectangular array of distinct real numbers has the property that the numbers in each row
increase from left to right. The entries in each column, individually, are rearranged so that the numbers
in each column increase from top to bottom. Prove that it the final array, the numbers in each row will
increase from left to right.

2. Determine distinct positive integers a, b, c, d, e such that the five numbers a, b2, c3, d4, e5 constitute
an arithmetic progression. (The difference between adjacent pairs is the same.)

3. Prove that the set {1, 2, · · · , n} can be partitioned into k subsets with the same sum if and only if k
divides 1

2n(n + 1) and n ≥ 2k − 1.

4. Suppose that f(x) is a continuous real-valued function defined on the interval [0, 1] that is twice differ-
entiable on (0, 1) and satisfies (i) f(0) = 0 and (ii) f ′′(x) > 0 for 0 < x < 1.

(a) Prove that there exists a number a for which 0 < a < 1 and f ′(a) < f(1);

(b) Prove that there exists a unique number b for which a < b < 1 and f ′(a) = f(b)/b.

5. For x ≤ 1 and x 6= 0, let

f(x) =
−8[1− (1− x)1/2]3

x2
.

(a) Prove that limx→0 f(x) exists. Take this as the value of f(0).

(b) Determine the smallest closed interval that contains the set of all values assumed by f(x) on its
domain.

(c) Prove that f(f(f(x))) = f(x) for all x ≤ 1.

6. Let h(n) denote the number of finite sequences {a1, a2, · · · , ak} of positive integers exceeding 1 for which
k ≥ 1, a1 ≥ a2 ≥ · · · ≥ ak and n = a1a2 · · · ak. (For example, if n = 20, there are four such sequences
{20}, {10, 2}, {5, 4} and {5, 2, 2} and h(20) = 4.

Prove that
∞∑

n=1

h(n)
n2

= 1 .

7. Find the Jordan canonical form of the matrix uvt where u and v are column vectors in Cn. (The
superscript t denotes the transpose.)

8. Suppose that n points are given in the plane, not all collinear. Prove that there are at least n distinct
straight lines that can be drawn through pairs of the points.
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9. Which integers can be written in the form

(x + y + z)2

xyz

where x, y, z are positive integers?

10. Solve the following differential equation
2y′ = 3|y|1/3

subject to the intial conditions

y(−2) = −1 and y(3) = 1 .

Your solution should be everywhere differentiable.
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Solutions

1. A m × n rectangular array of distinct real numbers has the property that the numbers in each row
increase from left to right. The entries in each column, individually, are rearranged so that the numbers
in each column increase from top to bottom. Prove that it the final array, the numbers in each row will
increase from left to right.

Solution 1. We prove this by induction. Note that the permutation yielding the final arrangement
of each column is uniquely determined, so that if we can perform a sequence of transposition (switches)
resulting in the entries increasing from top to bottom, the composite of these transpositions is the required
permutation.

We can arrange the rows so that the first column is increasing from top to bottom; all the rows will
still be increasing from left to right. Suppose that we have performed a sequence of rearrangements of sets
of columns so that (a) each row is increasing, and (b) the first k columns are increasing for 1 ≤ k ≤ n − 1.
Let the entries in the kth column be a1, a2, · · · , am and in the (k + 1)th column be b1, b2, · · · , bm. We have
that a1 ≤ a2 ≤ a3 ≤ · · · ≤ am and ai ≤ bi for 1 ≤ i ≤ m.

Suppose that br is the minimum of all the bi (1 ≤ i ≤ m). We interchange the elements in the first and
rth rows of the jth column for k + 1 ≤ j ≤ n. Since a1 ≤ ar ≤ br and ar ≤ br ≤ b1, the first and rth rows
are still increasing.

Let bs be the minimum of all the bi except for br; interchange the elements in the second and sth rows
of the jth column for k + 1 ≤ j ≤ n. Since a2 ≤ as ≤ bs and as ≤ bs ≤ b2, the new second and sth rows are
increasing. Observe that br ≤ bs ≤ bi for i 6= r, s, so that the (k + 1)th column is increasing down to the
third entry.

We can continue in this way, moving the third smallest bi to the third row, and so on, ending up with
changing the order of the columns from the (k +1)th to the nth and keeping the rows increasing. The result
follows by induction on k.

Solution 2. [M. Cai] Let aij be the (i, j)th entry in the array before the rearrangement and bij and
(i, j)th entry after the rearrangement. Then

b1j ≤ b2j ≤ · · · ≤ bmj

for 1 ≤ j ≤ n. We need to show that, for each i with 1 ≤ i ≤ m,

bi1 ≤ bi2 ≤ · · · ≤ bin .

Let 1 ≤ j ≤ n− 1. For 1 ≤ r ≤ m, we have that

bm,j+1 ≥ ar,j+1 and arj ≤ ar,j+1 .

There exist s with 1 ≤ s ≤ m for which bmj = asj . Hence, for 1 ≤ j ≤ n− 1,

bmj = asj ≤ as,j+1 ≤ bm,j+1 .

Suppose, as an induction hypothesis, it has been established that bij ≤ bi,j+1 for 2 ≤ k + 1 ≤ i ≤ m
and 1 ≤ j ≤ n − 1. Then bkj = atj ≤ at,j+1 for some t with 1 ≤ t ≤ m. Since the set of numbers
{bi,j+1 : k ≤ i ≤ m} is the set of the largest m − k + 1 numbers of the set {ai,j+1 : 1 ≤ i ≤ m}, we must
have that at,j+1 ≤ bt,j+1. The result follows.

Solution 3. There is nothing to prove when n = 1. Suppose that n ≥ 2, that a given column, not the
last, is (a1, a2, · · · , am) to begin with and (b1, b2, · · · , bm) after the rearrangement, so that b1 ≤ b2 ≤ · · · ≤ bm.
Let the elements in a column to the right of this be (c1, c2, · · · , cm) to begin with and (d1, d2, · · · , dm) after
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the rearrangement. We have that d1 ≤ d2 ≤ · · · ≤ dm and ai ≤ ci for 1 ≤ i ≤ m. We need to show that
ck ≤ dk for 1 ≤ k ≤ m.

Since bk is the kth largest number in the given column to the left, there are n− k + 1 elements in that
column not less than it. Hence there are at least n− k + 1 elements in the column to the right that are not
less than bk, and these elements include dk, dk+1, · · · , dm. Hence bk ≤ dk.

2. Determine distinct positive integers a, b, c, d, e such that the five numbers a, b2, c3, d4, e5 constitute
an arithmetic progression. (The difference between adjacent pairs is the same.)

Solution 1. One example is obtained by taking the arithmetic progression (1, 9, 17, 25, 33) and multiply-
ing by 32453011241720 to obtain

(a, b, c, d, e) = (32453011241720, 31351511121710, 38510118177, 3658116175, 3556115174) .

Solution 2. [G. Siu] Let

(a, b, c, d, e) = (33× 9724 × 6520, 7× 9712 × 6510, 657 × 978, 3× 976 × 655, 975 × 654) .

Then
(a, b2, c3, d4, e5) = (33k, 49k, 65k, 81k, 97k)

where k = 6520 × 9724.

Comment. Two solvers found the loophole that the arithmetic progression itself could be constant, and
gave the example (a, b, c, d, e) = (n60, n30, n20, n15, n12) for an integer n ≥ 2.

3. Prove that the set {1, 2, · · · , n} can be partitioned into k subsets with the same sum if and only if k
divides 1

2n(n + 1) and n ≥ 2k − 1.

Solution. The necessity of the conditions follows from the fact that the sum of all the numbers in the
set is 1

2n(n + 1) and there is at most one subset with a single element; hence the number k of subsets is at
most 1

2 (n− 1) + 1. [Alternatively: Since n must lie in one of the subsets, the sum of each subset is at least
n, and so kn ≤ 1

2n(n + 1). Therefore n ≥ 2k − 1.]

On the other hand, suppose that the conditions obtain. If k = 1, then the result holds for every positive
integer n. Assume, as an induction hypothesis it holds for all numbers of subsets up to k − 1 and relevant
n. Consider the case where there are k subsets. Let n = 2k − 1 and let s = n(n + 1)/(2k) = 2k − 1. Then
a partition of the required type consists of the singleton {2k − 1} and the k − 1 pairs {2k − 1 − i, i} with
1 ≤ i ≤ k − 1. If n = 2k, then s = n(n + 1)/(2k) = 2k + 1 and we can use the k pairs {2k + 1 − i, i} with
1 ≤ i ≤ k. We use induction to establish the result for n > 2k.

Suppose that 2k < n < 4k − 1 and that s = n(n + 1)/(2k) is an integer. We have that 2 < n/k <
(n + 1)/k < 4 so that

n + 1 =
2ks

n
< s = 2n

[
n + 1
4k

]
< 2n .

Suppose that n′ = s− n− 1, so that 0 < n′ < n + 1.

First, let s be odd. The sum of the numbers from 1 to s− n− 1 inclusive is equal to

(s− n)(s− n− 1)
2

=
s2 − (2n + 1)s

2
+

n(n + 1)
2

= s

[
s− 1

2
− n + k

]
.

Let k′ = 1
2 (s− 1); note that k′ < k and that

n′ − (2k′ − 1) = (s− n− 1)− (s− 1− 2n + 2k) = n− 2k > 0 ,
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so that n′ > 2k′− 1. By the induction hypothesis, we can partition {1, 2, · · · , s−n− 1} into k′ subsets, each
of whose sum is s. Let r = 1

2 (s − 1), and adjoin the n − r = k − k′ doubletons {n, s − n}, {n − 1, s − n +
1}, · · · , {r + 1, r} to get the desired partition of {1, 2, · · · , n} into k subsets with the same sum s.

Now let s be even. Then

(s− n)(s− n− 1)
2

=
s

2
[s− 1− 2n + 2k] .

Let k′ = 2k − 2n + s− 1 and s′ = s/2. Since s < 2(n− 1), 2s′ = s > 2(s− n− 1) = 2n′. By the induction
hypothesis, we can partition the set {1, 2, · · · , s − n − 1} into k′ subsets whose sums are all s′. Since k′ is
odd and since s′ > s−n− 1, we can augment this family of subsets by the singleton {s′} to get evenly many
subsets with sum s′. Pair them off to get 1

2 (k′ + 1) = k − n + s′ subsets with sum s, and further augment
the family with the n− s′ doubletons {n, s− n}, {n− 1, s− n + 1} · · ·, {s′ + 1, s′ − 1} to get a partition of
{1, 2, · · · , n} into k sets with sum s.

Finally, suppose that n ≥ 4k − 1. Let n′ = n− 2k, k′ = k. Then, if s = n(n + 1)/(2k),

(n− 2k)(n− 2k + 1)
2k

=
n(n + 1)

2k
− (2n + 1)− 2k = s− (2n− 2k + 1) > 0 .

Note that n′ = n − 2k ≥ 2k − 1 = 2k′ − 1. Determine a partition of {1, 2, · · · , n − 2k} into k subsets with
sum s′, and adjoin to these subsets the k doubletons

{n, n− 2k + 1}, {n− 1, n− 2k + 2}, · · · , {n− k + 1, n− k} .

The whole result is now established.

Comment. The case 2k < n < 4k − 1 with k a divisor of 1
2n(n + 1) is not realizable for 2 ≤ k ≤ 4. For

k = 5, there are two possibilities, where k′, n′, s′ are determined as in the solution:

(k, n, s) = (5, 14, 21); (k′, n′, s′) = (1, 6, 21)

with the partition
{1, 2, 3, 4, 5, 6}, {14, 7}, {13, 8}, {12, 9}, {11, 10} ,

and
(k, n, s) = (5, 15, 24); (k′, n′, s′) = (3, 8, 12)

with the partition
{1, 5, 6; 2, 3, 7}, {4, 8; 12}, {15, 9}, {14, 10}, {13, 11} .

For k = 6, there is one possibility:

(k, n, s) = (6, 15, 20); (k′, n′, s′) = (1, 4, 10)

with the partition
{1, 2, 3, 4; 10}, {15, 5}, {14, 6}, {13, 7}, {12, 8}, {11, 9} .

4. Suppose that f(x) is a continuous real-valued function defined on the interval [0, 1] that is twice differ-
entiable on (0, 1) and satisfies (i) f(0) = 0 and (ii) f ′′(x) > 0 for 0 < x < 1.

(a) Prove that there exists a number a for which 0 < a < 1 and f ′(a) < f(1);

(b) Prove that there exists a unique number b for which a < b < 1 and f ′(a) = f(b)/b.

Solution. (a) By the Mean Value Theorem, there exists c ∈ (0, 1) for which f ′(c) = f(1). Since f ′(x) is
increasing, when 0 < a < c, f ′(a) < 1.
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(b) Let g(x) = f(x) − xf ′(a). Then g(0) = 0 and g′(x) = f ′(x) − f ′(a). For 0 < u < a < v < 1,
g′(u) < 0 < g′(v) (since f ′(x) increases). Therefore g(a) < 0 and g(1) > 0. Hence there is a unique number
b for which g(b) = 0, and the result follows.

5. For x ≤ 1 and x 6= 0, let

f(x) =
−8[1− (1− x)1/2]3

x2
.

(a) Prove that limx→0 f(x) exists. Take this as the value of f(0).

(b) Determine the smallest closed interval that contains the set of all values assumed by f(x) on its
domain.

(c) Prove that f(f(f(x))) = f(x) for all x ≤ 1.

Solution. Suppose that x = 1− t2 for t ≥ 0 and let g(t) = f(1− t2). Then

g(t) =
−8(1− t)3

(1− t)2(1 + t)2
=

8(t− 1(
(t + 1)2

=
8

(t + 1)
− 16

(t + 1)2
.

(a) Since g(1) = 0, its follows that limx→0 g(x) = 0.

(b) Since

0 ≤
(

1− 4
t + 1

)2

=
[
1−

(
8

t + 1
− 16

(t + 1)2

)]
,

g(t) assumes its maximum value of 1 at t = 3. Indeed,

g′(t) = −8(t + 1)−2 + 32(t + 1)−3 = 8(t + 1)−2(3− t) ,

so that g(t) increases from −8 at t = 0 to its maximum at t = 3 and then decreases with limit 0 at t tends
to infinity. Therefore the smallest closed interval containing the image of f is [−8, 1]. Observe that this
interval gets mapped onto itself one-to-one.

(c) Let x = 8(t− 1)(t + 1)−2. Then

1− x = (t− 3)2(t + 1)−2 ,

so that

(1− x)1/2 =
{ 3−t

1+t , if 0 ≤ t ≤ 3;
t−3
1+t , if t > 3.

and

1− (1− x)1/2 =

{
2(t−1)
t+1, if 0 ≤ t ≤ 3;
4

t+1 , if t > 3.

Thus

f

[
8(t− 1)
(t + 1)2

]
=

{
1− t2, if t ≤ 3;
−8(t+1)
(t−1)2 , if t > 3.

Thus, f(f(x)) = x when −8 ≤ x ≤ 1, i.e. when x = 1− t2 for 0 ≤ t ≤ 3.

Since −8 ≤ f(x) ≤ 1 for all x ≤ 1, it follows that f(f(f(x))) = f(x) for all x ≤ 1.

Comment. It is of slight interest to note that f(−3) = f(−24) = 8/9.

6. Let h(n) denote the number of finite sequences {a1, a2, · · · , ak} of positive integers exceeding 1 for which
k ≥ 1, a1 ≥ a2 ≥ · · · ≥ ak and n = a1a2 · · · ak. (For example, if n = 20, there are four such sequences
{20}, {10, 2}, {5, 4} and {5, 2, 2} and h(20) = 4.
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Prove that
∞∑

n=1

h(n)
n2

= 1 .

Solution 1. We have that

1 +
∞∑

n=2

h(n)
n2

=
∞∏

r=2

( ∞∑
k=0

1
r2k

)

=
∞∏

r=2

1
1− 1/r2

=
∞∏

r=1

r2

r2 − 1

= lim
n→∞

n∏
r=1

(
r

r − 1

)(
r

r + 1

)
= lim

n→∞

2n

n + 1
= 2 ,

from which the result follows.

Solution 2. [J. Kramar] Observe that

∞∑
n=1

h(n)
n2

=
∑

{(a1a2 · · · ak)−2 : a1 ≥ a2 ≥ · · · ≥ ak ≥ 2} .

For m ≥ 2, let
bm =

∑
{(a1a2 · · · ak)−2 : a1 = m ≥ a2 ≥ · · · ≥ ak ≥ 2} .

Since
bm =

1
m2

+
1

m2
(bm + bm−1 + · · ·+ b2) ,

then, for m ≥ 3,
(m2 − 1)bm = 1 + b2 + · · ·+ bm−1 .

Note that
b2 =

1
22

+
1
42

+ · · · = 1
3

.

Assume as an induction hypothesis that, for 2 ≤ k ≤ m− 1, bk = 2/(k(k + 1)). Then

(m + 1)(m− 1)bm = 1 + b2 + · · ·+ bm−1 = 1 + 2
n−1∑
k=2

1
k(k + 1)

= 1 + 2
( m−1∑

k=2

1
k
− 1

k + 1

)
= 1 + 2

(
1
2
− 1

m

)
= 2− 2

m
= 2

(
m− 1

m

)
,

so that bm = 2/(m(m + 1)).

Hence
∞∑

n=1

h(n)
n2

=
∞∑

m=2

bm = 2
∞∑

m=2

(
1
m

− 1
m + 1

)
= 1 .

7. Find the Jordan canonical form of the matrix uvt where u and v are column vectors in Cn.
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Solution. Suppose first that vtu 6= 0. Then

(uvt)u = u(vtu) = (vtu)u

with u 6= O , so that uvt has the nonzero characteristic value vtu. Since uvt has rank 1, so also does its
Jordan form, which is then 

vtu 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

If vt = 0, u 6= O, v 6= O, then (uvt)2 = O and uvt has rank 1, so that its Jordan form is
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

8. Suppose that n points are given in the plane, not all collinear. Prove that there are at least n distinct
straight lines that can be drawn through pairs of the points.

Solution. This can be obtained as a corollary to Sylvester’s theorem: Suppose that n points are given
in the plane, not all collinear. Then there is exists a line that contains exactly two of them. To see this,
suppose that n points are given. Pick a point P and line m through two points of the set that does not
contain P for which the distance between P and m is minimum. If m contains exactly two points, then the
result is established. Otherwise, let A,B, C be three points of m with B between A and C. Let u be the
line AP and v the line CP and let Q be the foot of the perpendicular from P to AC. Suppose, wolog, that
B is between A and Q. Then the distance from B to u is less than the length of PQ, and this contradicts
the choice of the pair (P,m).

We can now solve the problem by an induction argument. It is clearly true for n = 3; suppose it holds
for n − 1 ≥ 3 and that n points are given. Pick a line that passes through exactly two points P and Q of
the set. At least one of these points, say P , is not collinear with the rest. Remove this line and the point Q.
We can find n− 1 distinct lines determined by pairs of the other n− 1 points, and restoring the line through
PQ yields the nth line.

Comment. Perhaps some students will find an alternative approach to this problem.

9. Which integers can be written in the form

(x + y + z)2

xyz

where x, y, z are positive integers?

Solution. Let F (x, y, z) be the expression in question. Wolog, suppose that x ≤ y ≤ z. Suppose that
F (x, y, z) = n. Then

nxyz = (x + y + z)2 = (x + y)2 + 2z(x + y) + z2

from which z|(x + y)2. Let w = (x + y)2/z. Then

F (x, y, w) =
(zx + zy + (x + y)2)2

zxy(x + y)2
=

(z + x + y)2

zxy
= F (x, y, z) .
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If x + y ≤ z, then w ≤ x + y. So, if there is a representation of n, we can find one for which z ≤ x + y. Then

n =
x

yz
+

y

xz
+

z

xy
+ 2

(
1
x

+
1
y

+
1
z

)
≤ 1

z
+

1
x

+
(

1
x

+
1
y

)
+

2
x

+
2
y

+
2
z

≤ 7
x

+
3
z

.

If (x, y, z) = (1, 1, 1), then n = 9. Otherwise n < 9. We have that F (9, 9, 9) = 1, F (4, 4, 8) = 2, F (3, 3, 3) = 3,
F (2, 2, 4) = 4, F (1, 4, 5) = 5, F (1, 2, 3) = 6, F (1, 1, 2) = 8.

However, F (x, y, z) cannot equal 7. Supposing that 2 ≤ x ≤ y ≤ z ≤ x + y ≤ 2y, we have that

(x + y + z)2

xyz
≤ (x2 + y2) + 2x(y + z) + z2 + 2yz

2yz

≤ x2

2yz
+

y

2z
+

x(y + z)
yz

+
z2

2yz
+ 2

≤ 1
2

+
1
2

+
y(2z)
yz

+
z

2y
+ 2

= 1 + 2 + 1 + 2 = 6 .

Now let x = 1 and y ≤ z ≤ 1 + y. Since F (1, 1, 1) and F (1, 1, 2) differ from 7, y ≥ 2. But then

F (1, y, y) =
(2y + 1)2

y2
= 4 +

4
y

+
1
y2

< 7 ,

and

F (1, y, y + 1) =
(2y + 2)2

y(y + 1)
=

4(y + 1)
y

= 4 +
4
y

< 7 .

Hence F (x, y, z) = 7 is not possible. Therefore, only the integers 1, 2, 3, 4, 5, 6, 8 can be represented.

10. Solve the following differential equation
2y′ = 3|y|1/3

subject to the intial conditions

y(−2) = −1 and y(3) = 1 .

Your solution should be everywhere differentiable.

Solution. Depending on the sign of y in any region, separation of variables leads to the solution

y2/3 = x + c or y = (x + c)3/2

when y ≥ 0 and to
y2/3 = −(x + c) or y = −[−(x + c)]3/2

when y < 0. The desired solution is

y(x) =

−[−(x + 1)]3/2, if x < −1;
0, if −1 ≤ x ≤ 2;
(x− 2)3/2, if x > 2.
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