
PUTNAM PROBLEMS

CALCULUS, ANALYSIS

2018-A-5. Let f : R → R be an infinitely differentiable function satisfying f(0) = 0, f(1) = 1, and
f(x) ≥ 0 for all x ∈ R. Show that there exist a positive integer n and a real number x such that f (n)(x) < 0.

2018-B-5. Let f = (f1, f2) be a function from R2 to R2 with continuous partial derivatives ∂fi
∂xj

that

are positive everywhere. Suppose that

∂f1
∂x1

∂f2
∂x2
− 1

4

(
∂f1
∂x2

+
∂f2
∂x1

)2

> 0

everywhere. Prove that f is one-to-one.

2017-A-3. Let a and b be real numbers with a < b, and let f and g be continuous functions from [a, b]

to (0,∞) such that
∫ b
a
f(x) dx =

∫ b
a
g(x) dx but f 6= g. For every positive integer n, define

In =

∫ b

a

(f(x))n+1

(g(x))n
dx.

Show that I1, I2, I3, . . . is an increasing sequence with limn→∞ In =∞.

2017-B-3. Suppose that f(x) =
∑∞
i=0 cix

i is a power series for which each coefficient ci is 0 or 1. Show
that, if f(2/3) = 3/2, then f(1/2) must be irrational.

2016-A-1. Find the smallest positive integer j such that for every polynomial p(x) with integer coeffi-
cients and for every integer k, the integer

p(j)(k) =
dj

dxj
p(x)|x=k

(the j-th derivative of p(x) at k) is divisible by 2016.

2016-A-2. Given a positive integer n, let M(n) be the largest integer m such that(
m

n− 1

)
>

(
m− 1

n

)
.

Evaluate

lim
n→∞

M(n)

n
.

2016-A-3. Suppose that f is a function from R to R such that

f(x) + f

(
1− 1

x

)
= arctanx

for all real x 6= 0. (As usual, y = arctanx means −π/2 < y < π/2 and tan y = x.) Find

∫ 1

0

f(x)dx.
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2016-A-6. Find the smallest constant C such that for every real polynomial P (x) of degree 3 that has
a root in the interval [0, 1], ∫ 1

0

|P (x)|dx ≤ C max
x∈[0,1]

|P (x)|.

2016-B-5. Find all functions f from the interval (1,∞) to (1,∞) with the following property:

if x, y ∈ (1,∞) and x2 ≤ y ≤ x3, then (f(x))2 ≤ f(y) ≤ (f(x))3.

2015-A-3. Compute

log2

(
2015∏
a=1

2015∏
b=1

(1 + e2πiab/2015)

)
.

Here i is the imaginary unit (that is, i2 = −1).

2015-A-4. For each real number x, let

f(x) =
∑
n∈Sx

1

2n
,

where Sx is the set of positive integers n for which bnxc is even. What is the largest real number L such
that f(x) ≥ L for all x ∈ [0, 1)? (As usual, bzc denotes the greatest integer less than or equal to z.)

2015-B-1. Let f be a three times differentiable function (defined on R and real valued) such that f
has at least five distinct real zeros. Prove that f + 6f ′ + 12f ′′ + 8f ′′′ has at least two distinct real zeros.

2014-A-1. Prove that every nonzero coefficient of the Taylor series of

(1− x+ x2)ex

about x = 0 is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

2014-A-3. Let a0 = 5/2 and ak = a2k−1 − 2 for k ≥ 1. Compute

∞∏
k=0

(
1− 1

ak

)

in closed form.

2014-B-2. Suppose that f is a function on the interval [1, 3] such that −1 ≤ f(x) ≤ 1 for all x and∫ 3

1
f(x) dx = 0. How large can

∫ 3

1
f(x)/x dx be?

2014-B-6. Let f : [0, 1] → R be a function for which there exists a constant K > 0 such that
|f(x) − f(y)| ≤ K|x − y| for all x, y ∈ [0, 1]. Suppose also that, for each rational number r ∈ [0, 1], there
exist integers a and b such that f(r) = a+ br. Prove that there exist finitely many intervals I1, . . . , In such
that f is a linear function on each Ii and [0, 1] = ∪ni=1Ii.

2013-A-3. Suppose that the real numbers a0, a1, . . . , an and x, with 0 < x < 1, satisfy

a0
1− x

+
a1

1− x2
+ · · ·+ an

1− xn+1
= 0.

0 < y < 1 such that
a0 + a1y + · · ·+ any

n = 0.
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2013-B-2. Let C = ∪∞N=1CN , where CN denotes the set of those ‘cosine polynomials’ of the form

f(x) = 1 +

N∑
n=1

an cos(2πnx)

for which
(i) f(x) ≥ 0 for all real x, and
(ii) an = 0 whenever n is a multiple of 3.

Determine the maximum value of f(0) as f ranges through C, and prove that this maximum is attained.

2013-B-4, For any continuous real-valued function f defined on the interval [0, 1], let

µ(f) =

∫ 1

0

f(x)dx

Var (f) =

∫
+01(f(x)− µ(f))2dx

M(f) = max
0≤x≤1

|f(x)|.

Show that if f and g are continuous real-valued functions defined on the interval [0, 1], then

Var(fg) ≤ 2Var(f)M(g)2 + 2Var(g)M(f)2.

2012-A-3. Let f : [−1, 1]→ R be a continuous function such that

(i) f(x) = 2−x2

2 f
(

x2

2−x2

)
for every x ∈ [−1, 1];

(ii) f(0) = 1; and

(iii) limx→1−
f(x)√
1−x exists and is finite.

Prove that f is unique, and express f(x) in closed form.

2012-A-6. Let f(x, y) be a continuous, real-valued function on R2. Suppose that, for every rectangular
region R of area 1, the double integral of f(x, y) over R equals 0. Must f(x, y) be identically zero?

2012-B-1. Let S be a class of functions from [0,∞) to [0,∞) that satisfies

(i) The functions f1(x) = ex − 1 and f2(x) = ln(x+ 1) are in S;

(ii) If f(x) and g(x) are in S, the functions f(x) + g(x) and f(g(x)) are in S;

(iii) If f(x) and g(x) are in S and f(x) ≥ g(x) for x ≥ 0, then the function f(x)− g(x) is in S.

Prove that if f(x) and g(x) are in S, then the function f(x)g(x) is also in S.

2012-B-4. Suppose that a0 = 1 and that an+1 = an + e−an for n = 0, 1, 2, · · ·. Does an − log n have a
finite limit as n→∞? (Here log n = loge n = lnn.)

2012-B-5. Prove that, for any two bounded functions g1, g2 : R → [1,∞), there exist functions
h1, h2 : R→ R such that for every x ∈ R,

sup
s∈R

(g1(s)xg2(s)) = maxt∈R(xh1(t) + h2(t)).
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2011-A-2. Let {a1, a2, · · ·} and {b1, b2, · · ·} be sequences of positive real numbers such that a1 = b1 = 1
and bn = bn−1an − 2 for n = 2, 3, · · ·. Assume that the sequence {bn} is bounded. Prove that

S =

∞∑
n=1

1

a1a2 · · · an

converges, and evaluate S.

2011-A-3. Find a real number c and a positive number L for which

lim
r→∞

rc
∫ π/2
0

xr sinxdx∫ π/2
0

xr cosxdx
= L.

2011-A-5. Let F : R2 → R and g : R → R be twice continuously differentiable functions with the
following properties:

• F (u, u) = 0 for every u ∈ R;
• for every x ∈ R, g(x) > 0 and x2g(x) ≤ 1;
• for every (u, v) ∈ R2, the vector ∇F (u, v) is either 0 or parallel to the vector (g(u),−g(v)).

Prove that there exists a constant C such that for every n ≥ 2 and any x1, · · · , xn+1 ∈ R, we have

min{|F (xi, xj)| : i 6= j} ≤ C

n
.

2011-B-3. Let f and g be (real-valued) functions defined on an open interval containing 0, with g
nonzero and continuous at 0; if fg and f/g are differentiable at 0, must f be differentiable at 0?

2011-B-5. Let a1, a2, · · · be real numbers. Suppose there is a constant A such that for all n,

∫ ∞
−∞

(
n∑
i=1

1

1 + (x− ai)2

)2

dx ≤ An.

Prove that there is a constant B > 0 such that for all n,

n∑
i,j=1

(1 + (ai − aj)2) ≥ Bn2.

2010-A-2. Find all differentiable functions f : R→ R such that

f ′(x) =
f(x+ n)− f(x)

n

for all real numbers x and all positive integers n.

2010-A-3. Suppose that the function h : R2 → R has continuous partial derivatives and satisfies the
equation

h(x, y) = a
∂h

∂x
(x, y) + b

∂h

∂y
(x, y)

for some constants a, b. Prove that if there is a constant M such that |h(x, y)| ≤M for all (x, y) ∈ R2, then
h is identic ally zero.
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2010-A-6. Let f : [0,∞)→ R be a strictly decreasing continuous function such that limx→∞ f(x) = 0.
Prove that ∫ ∞

0

f(x+ 1)− f(x)

f(x)
dx

diverges.

2010-B-5. Is there a strictly increasing fucntion f : R→ R such that f ′(x) = f(f(x)) for all x?

2009-A-6. Let f ; [0, 1]2 → R be a continuous function on the closed unit square such that ∂f/∂x

and ∂f/∂y exist and are continuous on the interior (0, 1)2. Let a =
∫ 1

0
f(0, y)dy, b =

∫ 1

0
f(1, y)dy, c =∫ 1

0
f(x, 0)dx, d =

∫ 1

0
f(x, 1)dx. Prove or disprove: There must be a point (x0, y0) in (0, 1)2 such that

∂f

∂x
(x0, y0) = b− a

and
∂f

∂y
(x0, y0) = d− c .

2008-A-4. Define f : R→ R by

f(x) =

{
x if x ≤ e
xf(lnx) if x > e.

Does
∞∑
n=1

1

f(n)

converge?

2008-B-1. What is the maximum number of rational points that can lie on a circle in R2 whose centre
is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.)

2008-B-2. Let F0(x) = lnx. For n ≥ 0 and x > 0, let Fn+1(x) =
∫ x
0
Fn(t)dt. Evaluate

lim
n→∞

n!Fn(1)

lnn
.

2008-B-5. Find all continuously differentiable functions f : R→ R such that for every rational number
q, the number f(q) is rational and has the same denominator as q. (The denominator of a rational number
q is the unique positive integer b such that q = a/b for some integer a with gcd(a, b) = 1.) (Note: gcd means
greatest common divisor.)

2007-B-2. Suppose that f : [0, 1] −→ R has a continuous derivative and that
∫ 1

0
f(x)dx = 0. Prove

that for every α ∈ (0, 1), ∣∣∣∣ ∫ α

0

f(x)dx

∣∣∣∣ ≤ 1

8
max 0≤x≤1|f ′(x)| .

2006-A-1. Find the volume of the region of points (x, y, z) such that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2) .
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2006-A-5. Let n be a positive odd integer and let θ be a real number such that θ/π is irrational. Set
ak = tan(θ + kπ/n), k = 1, 2, · · · , n. Prove that

a1 + a2 + · · ·+ an
a1a2 · · · an

is an integer and determine its value.

2006-B-2. Prove that, for every set X = {x1, x2, · · · , xn} of n real numbers, there exists a non-empty
subset S of X and an integer m such that ∣∣∣∣m+

∑
s∈S

s

∣∣∣∣ ≤ 1

n+ 1
.

2006-B-5. For each continuous function f : [0, 1] −→ R, let I(f) =
∫ 1

0
x2f(x)dx and J(f) =∫ 1

0
x(f(x))2dx. Find the maximum value of I(f)− J(f) over all such functions f .

2006-B-6. Let k be an integer greater than 1. Suppose a0 > 0, and define

an+1 = an +
1

k
√
an

for n ≥ 0. Evaluate

lim
n→∞

ak+1
n

nk
.

2005-A-5. Evaluate ∫ 1

0

ln(x+ 1)

x2 + 1
dx .

2005-B-3. Find all differentiable functions f : (0,∞) −→ (0,∞) for which there is a positive real
number a such that

f ′
(
a

x

)
=

x

f(x)

for all x > 0.

2004-A-6. Suppose that f(x, y) is a continuous real-valued function on the unit square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. Show that∫ 1

0

(∫ 1

0

f(x, y)dx

)2

dy +

∫ 1

0

(∫ 1

0

f(x, y)dy

)2

dx ≤
(∫ 1

0

∫ 1

0

f(x, y)dxdy

)2

+

∫ 1

0

∫ 1

0

[f(x, y)]2dxdy .

2004-B-3. Determine all real numbers a > 0 for which there exists a nonnegative continuous function
f(x) defined on [0, a] with the property that the region

R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ f(x)}

has perimeter k units and area k square units for some real number k.

2004-B-5. Evaluate

lim
x→1−

∞∏
n=0

(
1 + xn+1

1 + xn

)xn

.
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2003-A-3. Find the minimum value of

| sinx+ cosx+ tanx+ cotx+ secx+ cscx|

for real numbers x.

2003-B-6. Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show that∫ 1

0

∫ 1

0

|f(x) + f(y)|dxdy ≥
∫ 1

0

|f(x)|dx .

2002-A-1. Let k be a positive integer. The nth derivative of 1/(xk−1) has the form (Pn(x))/(xk−1)n+1

where Pn(x) is a polynomial. Find Pn(1).

2002-B-3. Show that, for all integers n > 1,

1

2ne
<

1

e
−
(

1− 1

n

)n
<

1

ne
.

2001-B-5. Let a and b be real numbers in the interval (0, 12 ) and let g be a continuous ral-valued
function such that g(g(x)) = ag(x) + bx for all real x. Prove that g(x) = cx for some constant c.

2000-A-4. Show that the improper integral

lim
B→∞

∫ B

0

sin(x) sin(x2)dx

converges.

2000-B-3. Let f(t) =
∑N
j=1 aj sin(2πjt), where each aj is real and an 6= 0. Let Nk denote the number

of zeros (including multiplicities) of dkf/dtk. Prove that

N0 ≤ N1 ≤ N2 ≤ · · · and lim
k→∞

Nk = 2N .

[Added note: Presumably one is to restrict t to the interval [0, 1) when counting the zeros.]

2000-B-4. Let f(x) be a continuous function such that f(2x2 − 1) = 2xf(x) for all x. Show that
f(x) = 0 for −1 ≤ x ≤ 1.

1999-A-5. Prove that there is a constant C such that, if p(x) is a polynomial of degree 1999, then

|p(0)| ≤ C
∫ 1

−1
|p(x)|dx .

1999-B-4. Let f be a real function with a continuous third derivative such that f(x), f ′(x), f ′′(x),
f ′′′(x) are positive for all x. Suppose that f ′′′(x) ≤ f(x) for all x. Show that f ′(x) < 2f(x) for all x.

1998-A-3. Let f be a real function on the real line with continuous third derivative. Prove that there
exists a point a such that

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ≥ 0 .
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1997-A-3. Evaluate∫ ∞
0

(
x− x3

2
+

x5

2 · · · 4
− x7

2 · 4 · 6
+ · · ·

)(
1 +

x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62
+ · · ·

)
dx .

1996-A-6. Let c ≥ 0 be a constant. Give a complete description, with proof, of the set of all continuous
functions f : R→ R such that f(x) = f(x2 + c) for all x ∈ R. [Note: R is the set of real numbers.]

1995-A-2. For what pairs (a, b) of positive real numbers does the improper integral∫ ∞
b

(√√
x+ a−

√
x−

√√
x−
√
x− b

)
dx

converge?

1994-A-2. Let A be the area of the region in the first quadrant bounded by the line y = 1
2x, the

x−axis, and the ellipse 1
9x

2 + y2 = 1. Find the positive number m such that A is equal to the area of the
region in the first quadrant bounded by the line y = mx, the y−axis, and the ellipse 1

9x
2 + y2 = 1.

1994-B-3. Find the set of all real numbers k with the following property:

For any positive, differentiable function f that satisfies f ′(x) > f(x) for all x, there is some number N
such that f(x) > ekx for all x > N .

1994-B-5. For any real number α, define the function fα by fα(x) = bαxc. Let n be a positive integer.
Show that there exists an α such that for 1 ≤ k ≤ n,

fkα(n2) = n2 − k = fαk(n2) .

(bxc denotes the greatest integer ≤ x, and fkα = fα ◦ · · · ◦ fα is the k−fold composition of fα.)

1993-A-1. The horizontal line y = c intersects the curve y = 2x − 3x3 in the first quadrant as in the
figure. Find c so that the areas of the two shaded regions are equal.

1993-A-5. Show that∫ −10
−100

(
x2 − x

x3 − 3x+ 1

)2

dx+

∫ 1
11

1
100

(
x2 − x

x3 − 3x+ 1

)2

dx+

∫ 11
10

101
100

(
x2 − x

x3 − 3x+ 1

)2

dx

is a rational number.

1993-B-4. The function K(x, y) is positive and continuous for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and the functions
f(x) and g(x) are positive and continuous for 0 ≤ x ≤ 1. Suppose that for all x, 0 ≤ x ≤ 1,∫ 1

0

f(y)K(x, y)dy = g(x) and

∫ 1

0

g(y)K(x, y)dy = f(x) .
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Show that f(x) = g(x) for 0 ≤ x ≤ 1.

1992-A-2. Define C(α) to be the coefficient of x1992 in the power series expansion about x = 0 of
(1 + x)α. Evaluate ∫ 1

0

C(−y − 1)

(
1

y + 1
+

1

y + 2
+

1

y + 3
+ · · ·+ 1

y + 1992

)
dy .

1992-A-4. Let f be an infinitely differentiable real-valued function defined on the real numbers. If

f(
1

n
) =

n2

n2 + 1
, n = 1, 2, 3, · · · ,

compute the values of the derivatives f (k)(0), k = 1, 2, 3, · · ·.

1992-B-3. For any pair (x, y) of real numbers, a sequence (an(x, y))n≥0 is defined as follows:

a0(x, y) = x

an+1(x, y) =
(an(x, y))2 + y2

2
, for all n ≥ 0 .

Find the area of the region

{(x, y)|(an(x, y))n≥0 converges}

.

1992-B-4. Let p(x) be a nonzero polynomial of degree less than 1992 having no nonconstant factor in
common with x3 − x. Let

d1992

dx1992

(
p(x

x3 − x

)
=
f(x)

g(x)

for polynomials f(x) and g(x). Find the smallest possible degree of f(x).

1990-A-2. Is
√

2 the limit of a sequence of numbers of the form 3
√
n− 3
√
m (n,m = 0, 1, 2, . . .)?

1990-A-4. Consider a paper punch that can be centered at any point of the plane and that, when
operated, removes from the plane precisely those points whose distance from the center is irrational. How
many punches are needed to remove every point?

1990-B-1. Find all real-valued continuously differentiable functions f on the real line such that for all
x

(f(x))2 =

∫ x

0

((f(t))2 + (f ′(t))2)dt+ 1990.

1989-A-2. Evaluate ∫ a

0

∫ b

0

emax(b2x2,a2y2dydx,

where a and b are positive.

1989-B-3. Let f be a function on [0,∞), differentiable and satisfying

f ′(x) = −3f(x) + 6f(2x)
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for x > 0. Assume that |f(x)| ≤ e−
√
x for x ≥ 0 (so that f(x) tends rapidly to 0 as x increases). For n a

non-negative integer, define

µn =

∫ ∞
0

xnf(x)dx

(sometimes called the nth moment of f).

(a) Express µn in terms of µ0.

(b) Prove that the sequence {µn(3n/n!)} always converges, and that its limit is 0 only if µ0 = 0.

1988-A-2. A not uncommon calculus mistake is to believe that the product rule for derivatives says
that (fg)′ = f ′g′. If f(x) = ex

2

, determine, with proof, whether there exists an open interval (a, b) and a
nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).

1988-A-3. Determine, with proof, the set of real numbers x for which

∞∑
n=1

(
1

n
csc

1

n
− 1

)x
converges.

1988-A-5. Prove that there exists a unique function f from the set R+ of positive real numbers to R+

such that f(f(x)) = 6x− f(x) and f(x) > 0 for all x > 0.

1988-B-4. Prove that, if
∑∞

1 an is a convergent series of positive real numbers, then so is
∑∞

1 (an)n/n+1.

1971-A-6. Let c be a real number such that nc is an integer for every positive integer n. Show that c
is a non-negative integer.
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