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Problems.

668. The nonisosceles right triangle ABC has ∠CAB = 90◦. The inscribed circle with centre T touches the
sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle meets
UV produced in S. Prove that

(a) ST ‖ BC;

(b) |d1− d2| = r, where r is the radius of the inscribed circle and d1 and d2 are the respective distances
from S to AC and AB.

669. Let n ≥ 3 be a natural number. Prove that

1989|nnnn

− nnn

,

i.e., the number on the right is a multiple of 1989.

670. Consider the sequence of positive integers {1, 12, 123, 1234, 12345, · · ·} where the next term is constructed
by lengthening the previous term at the right-hand end by appending the next positive integer. Note
that this next integer occupies only one place, with “carrying”occurring as in addition. Thus, the ninth
and tenth terms of the sequence are 123456789 and 1234567900 respectively. Determine which terms of
the sequence are divisible by 7.

671. Each point in the plane is coloured with one of three distinct colours. Prove that there are two points
that are unit distant apart with the same colour.

672. The Fibonacci sequence {Fn} is defined by F1 = F2 = 1 and Fn+2 = Fn+1+Fn for n = 0,±1,±2,±3, · · ·.
The real number τ is the positive solution of the quadratic equation x2 = x + 1.

(a) Prove that, for each positive integer n, F−n = (−1)n+1Fn.

(b) Prove that, for each integer n, τn = Fnτ + Fn−1.

(c) Let Gn be any one of the functions Fn+1Fn, Fn+1Fn−1 and F 2
n . In each case, prove that Gn+3+Gn =

2(Gn+2 + Gn+1).
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673. ABC is an isosceles triangle with AB = AC. Let D be the point on the side AC for which CD = 2AD.
Let P be the point on the segment BD such that ∠APC = 90◦. Prove that ∠ABP = ∠PCB.

674. The sides BC, CA, AB of triangle ABC are produced to the poins R, P , Q respectively, so that
CR = AP = BQ. Prove that triangle PQR is equilateral if and only if triangle ABC is equilateral.

Solutions.

654. Let ABC be an arbitrary triangle with the points D,E, F on the sides BC, CA, AB respectively, so
that

BD

DC
≤ BF

FA
≤ 1

and
AE

EC
≤ AF

FB
.

Prove that [DEF ] ≤ 1
4 [ABC], with equality if and only if two at least of the three points D,E, F are

midpoints of the corresponding sides.
(Note: [XY Z] denotes the area of triangle XY Z.)

Solution 1. Let BF = µBA, BD = λBC and CE = νCA.

The conditions are that

λ ≤ µ ≤ 1
2

and 1− ν ≤ 1− µ or µ ≤ ν .

We observe that [BDF ] = λµ[ABC].

To see this, let BG = λBA. Then

[BDF ] =
µ

λ
[BGD] =

µ

λ
λ2[ABC] = µλ[ABC] .

Similarly [AFE] = (1− µ)(1− λ)[ABC] and [DEC] = ν(1− λ)[ABC].

Hence
[DEF ] = (1− λµ− (1− µ)(1− ν)− ν(1− λ))[ABC]

= (µ− µν − µλ + νλ)[ABC]

=
(

1
4
− (

1
2
− µ)2 − (µ− λ)(ν − µ)

)
[ABC] ≤ 1

4
[ABC]

with equality if and only if µ = 1/2 and either λ = µ = 1/2 or ν = µ = 1/2. The result follows.

Solution 2. Let G be on AC so that FG‖BC. Then, since AE
EC ≤ AF

FB , E lies in the segment AG.

Since BD
DC ≤ BF

FA , DF produced is either parallel to AC or meets CA produced at a point X beyond A.
Hence the distance from G to FD is not less than the distance from E to FD, so that [DEF ] ≤ [FGD].
The area of [FGD] does not change as D varies along BC. To maximize [DEF ] is suffices to consider the
special case of triangle [FGD]. Let AF = xAB. Then FG = xBC and the heights of ∆DFG and ∆ABC
are in the ratio 1− x. Hence

[DFG]
[ABC]

= x(1− x)

which is maximized when x = 1
2 . The result follows from this, with [DEF ] being exactly one quarter of

[ABC] when F and G are the midpoints of AB and AC respectively.
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Solution 3. Set up the situation as in the second solution. Let BF = tFA. Then AB = (1 + t)FA, and
the height of the triangle FGD is t/(1 + t) times the height of the triangle ABC. Hence

[DEF ] ≤ [FGD] =
t

(1 + t)2
[ABC] .

Now
1
4
− t

(1 + t)2
=

(1− t)2

4(1 + t)2
≥ 0

so that t(1 + t)−2 ≤ 1/4 and the result follows. Equality occurs if and only if t = 1 and E = G, i.e., F and
E are both midpoints of their sides.

655. (a) Three ants crawl along the sides of a fixed triangle in such a way that the centroid (intersection
of the medians) of the triangle they form at any moment remains constant. Show that this centroid
coincides with the centroid of the fixed triangle if one of the ants travels along the entire perimeter of
the triangle.

(b) Is it indeed always possible for a given fixed triangle with one ant at any point on the perimeter of
the triangle to place the remaining two ants somewhere on the perimeter so that the centroid of their
triangle coincides with the centroid of the fixed triangle?

(a) Solution. Recall that the centroid lies two-thirds of the way along the median from a vertex of the
triangle to its opposite side. Let ABC be the fixed triangle and let PQ‖BC, RS‖AC and TU‖BA with PQ,
RS and TU intersecting in the centroid G.

Observe, for example, that if A, X, Y are collinear and X and Y lie on PQ and BC respectively, then
AX : XY = 2 : 3. It follows from this that, if one ant is at A, then the centroid of the triangle formed
by the three ants lies inside ∆APQ (otherwise the midpoint of the side opposite the ant at A would not
be in ∆ABC). Similarly, if one ant is at B (respectively C) then the centroid of the ants’ triangle lies
within ∆BRS (respectively ∆CTU). Thus, if one ant traverses the entire perimeter, the centroid of the
ants’ triangle must lie inside the intersection of these three triangles, the singleton {G}. The result follows.

(b) Solution 1. Suppose the vertices of the triangle are given by the planar vectors a, b and c; the
centroid of the triangle is at 1

3 (a + b + c). Suppose that one ant is placed at ta + (1 − t)b for 0 ≤ t ≤ 1.
Place the other two ants at tb + (1− t)c and tc + (1− t)a. The centroid of the ants’ triangle is at

1
3
[(ta + (1− t)b) + (tb + (1− t)c) + (tc + (1− t)a) =

1
3
(a + b + c) .

(b) Solution 2. If one ant is at a vertex, then we can replace the remaining ants at the other vertices of
the fixed triangle. Suppose, wolog, the ant is at X in the side BC.

Let MN be the line joining the midpoints M and N of AB and AC respectively; MN‖BC. Let XG
meet MN at W . Since BG : BN(= CG : CM) = 2 : 3, it follows, by considering the similar triangles BGX
and NGW , that XG : XW = 2 : 3. Hence the midpoint of the segment joining the other two ants’ positions
must be at W . Thus, the problem now is to find points Y and Z on the perimeter of ∆ABC such that W
is the midpoint of Y Z. We use a continuity argument.

Let UV be any segment containing W whose endpoints lie on the perimeter of ∆ABC. Let Y travel
counterclockwise around the perimeter from U to V , and let Z be a point on the perimeter such that W lies
on Y Z. When Y is at U , Y W : WZ = V W : WV , while when Y is at V , Y W : WZ = V W : WU . Hence
Y W : WZ varies continuously from a certain ratio to its reciprocal, so there must be a position for which
Y W = WZ.

(b) Solution 3. [A. Panayotov] Suppose that the triangle has vertices at (0, 0), (1, 0) and (u, v), so that
its centroid is at ( 1

3 (1+u), v
3 ). Wolog, let one ant be at (a, 0) where 0 ≤ a ≤ 1. Put the second ant at (u, v).
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Then we will place the third ant at a point (b, 0) on the x−axis. We require that 1
3 (a + b + u) = 1

3 (1 + u),
so that b = 1− a. Clearly, 0 ≤ b ≤ 1 and the result follows.

656. Let ABC be a triangle and k be a real constant. Determine the locus of a point M in the plane of the
triangle for which

|MA|2 sin 2A + |MB|2 sin 2B + |MC|2 sin 2C = k .

Solution. Let O and R be the circumcentre and circumradius, respectively, of triangle ABC. We have
that

|MA|2 = |−−→MA|2 = |−−→MO +−→
OA|2

= |−−→MO|2 + |−→OA|2 + 2−−→MO · −→OA

= |−−→MO|2 + R2 + 2−−→MO · −→OA

with similar expressions for MB and MC. Therefore, we have that

|MA|2 sin 2A + |MB|2 sin 2B + |MC|2 sin 2C = (|MO|2 + R2)(sin 2A + sin 2B + sin 2C)

2−−→MO · (−→OA sin 2A +−−→
OB sin 2B +−−→

OC sin 2C) .

Now
sin 2A + sin 2B + sin 2C = sin 2A + sin 2B − sin(2A + 2B)

= sin 2A(1− cos 2B) + sin 2B(1− cos 2A)

= 2 sin A cos A(2 sin2 B) + 2 sinB cos B(2 sin2 A)
= 4 sin A sinB sin(A + B) = 4 sinA sinB sinC

=
2[ABC]

R2
,

since [ABC] = 1
2ab sinC = 2R2 sinA sinB sinC.

Also, we have that −→
OA sin 2A +−−→

OB sin 2B +−−→
OC sin 2C = −→

O .

To see this, let P be the intersection of the line AO with the side BC of the triangle. Observe that
∠BOP = 180◦ − 2∠ACB, ∠COP = 180◦ − 2∠ABC, ∠OBC = ∠OCB = 90◦ − ∠BAC. Applying the Law
of Sines to triangle OPC yields that

|OP |
sin(90◦ −A)

=
|OC|

sin(2C + A− 90◦)
.

Since |OC| = R, we find that

|OA| = − cos(2C + A)
cos A

|OP | = −2 sinA cos(2C + A)
2 sinA cos A

|OP |

=
sin 2B + sin 2C

sin 2A
|OP | ,

so that
−→
OA = − sin 2B + sin 2C

sin 2A

−−→
OP .

Applying the Law of Sines in triangle BOP and COP , we obtain that

|OP |
sin(90◦ −A)

=
|BP |
sin 2C
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and
|OP |

sin(90◦ −A)
=

|CP |
sin 2B

.

Therefore |BP | sin 2B = |CP | sin 2C, so that

sin 2B
−−→
PB = − sin 2C

−−→
PC

and −→
OA sin 2A +−−→

OB sin 2B +−−→
OC sin 2C = −(sin 2B + sin 2C)−−→OP + sin 2B

−−→
OB + sin 2C

−−→
OC

= sin 2B(−−→OB −−−→OP ) + sin 2C(−−→OC −−−→OP )

= sin 2B
−−→
PB + sin 2C

−−→
PC = −→

O .

Therefore (|MO|2 + R2)(2[ABC]/R2) = k so that

|MO|2 =
k − 2[ABC]

2[ABC]
R2 .

Therefore, when k < 2[ABC], the locus is the empty set. When k = 2[ABC], the locus consists solely of the
circumcentre. When k > 2[ABC], the locus is a circle concentric with the circumcircle.

657. Let a, b, c be positive real numbers for which a + b + c = abc. Find the minimum value of√
1 +

1
a2

+

√
1 +

1
b2

+

√
1 +

1
c2

.

Solution 1. By repeated squaring it can be shown that√
x2 + u2 +

√
y2 + b2 ≥

√
(x + u)2 + (y + v)2 ,

for x, y, u, v ≥ 0. Applying this inequality yields that√
1 +

1
a2

+

√
1 +

1
b2

+

√
1 +

1
c2
≥

√
(1 + 1)2 + (

1
a

+
1
b
)2 +

√
1 +

1
c2

≥
√

(2 + 1)2 + (
1
a

+
1
b

+
1
c
)2 .

The given condition implies that 1
ab + 1

bc + 1
ca , whereupon(

1
a

+
1
b

+
1
c

)2

≥ 2 +
1
a2

+
1
b2

+
1
c2
≥ 2 +

1
ab

+
1
bc

+
1
ca

= 3 .

It follows that the given expression is not less than 2
√

3, with equality occurring if and only if a = b = c =
√

3.

Solution 2. [S. Sun] Using the inequality x2 + y2 + z2 ≥ xy + yz + zx for real x, y, z, we find that the
square of the quantity in question is not less than

3
(√

1 +
1
a2

√
1 +

1
b2

+

√
1 +

1
b2

√
1 +

1
c2

+

√
1 +

1
c2

√
1 +

1
a2

)
.

From the Arithmetic-Geometric Means Inequality, we find that√
1 +

1
a2

√
1 +

1
b2

=

√
1 +

1
a2

+
1
b2

+
1

a2b2
≥

√
1 +

2
ab

+
1

a2b2
= 1 +

1
ab

,
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with similar inequalities for the other products. Since

1
ab

+
1
bc

+
1
ca

=
a + b + c

abc
= 1 ,

we find that the square of the quantity in question is not less than 3× 4 = 12, so that the quantity has the
minimum value 2

√
3, attainable if and only is a = b = c =

√
3.

Solution 3. Let A, B, C be acute angles for which a = tan A, b = tan B and c = tan C. Then

c = − a + b

1− ab
= − tanA + tanB

1− tanA tanB

= − tan(A + B) = tan(π −A−B) ,

so that C = π −A−B. Substituting these values fo a, b, c into the given expression yields

csc A + csc B + csc C

. Since the cosecant function is convex in the interval (0, π/2), by Jensen’s inequality, we deduce that

csc A + csc B + csc C ≥ 3 csc
(

A + B + C

3

)
= 3csc

π

3
= 2

√
3 ,

with equality if and only if A = B = C = π
3 . Thus, the minimum of the given expression is equal to 2

√
3

with equality if and only is a = b = c =
√

3.

658. Prove that tan 20◦ + 4 sin 20◦ =
√

3.

Solution 1. [CJ. Bao] Since

(
√

3/2) cos 20◦ − (1/2) sin 20◦ = sin 60◦ cos 20◦ − cos 60◦ sin 20◦ = sin 40◦ = 2 sin 20◦ cos 20◦ ,

it follows that √
3 cos 20◦ = sin 20◦ + 4 sin 20◦ cos 20◦a .

Division by cos 20◦ yields the desired result.

Solution 2. Let ABC be a triangle with ∠ABC = 60◦ and ∠CAB = 30◦. Let ABD be a triangle on
the same side of AB with ∠ABD = 40◦ and ∠DAB = 50◦. Suppose that AC and BD intersect at E, and
that the length of BC is 1, so that the respective lengths of CA and AB are

√
3 and 2. Then

|AD| = |AB| sin 40◦ = 4 sin 20◦ cos 20◦

and
|AE| = |AD| sec 20◦ = |AB| cos 50◦ sec 20◦ = 2 sin 40◦ sec 20◦ = 4 sin 20◦ .

However, |CE| = |BC| tan 20◦ = tan 20◦. Therefore

tan 20◦ + 4 sin 20◦ = |CE|+ |AE| = |AC| =
√

3 .

Solution 3. [M. Essafty]

tan 20◦ + 4 sin 20◦ =
sin 20◦ + 4 sin 20◦ cos 20◦

cos 20◦

=
sin 20◦ + 2 sin 40◦

cos 20◦

=
sin(30◦ − 10◦) + 2 sin(30◦ + 10◦

cos(30◦ − 10◦

=
3 sin 30◦ cos 10◦ + sin 10◦ cos 30◦

cos 30◦ cos 10◦ + sin 30◦ sin 10◦

=
3 cos 10◦ +

√
3 sin 10◦√

3 cos 10◦ + sin 10◦
=
√

3 .
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Solution 4.

tan 20◦ + 4 sin 20◦ =
sin 20◦ + 4 sin 20◦ cos 20◦

cos 20◦
=

sin 20◦ + 2 sin 40◦

cos 20◦

=
sin 40◦ + 2 sin 30◦ cos 10◦

cos 20◦
=

sin 40◦ + sin 80◦

cos 20◦

=
2 sin 60◦ cos 20◦

cos 20◦
=
√

3 .

Solution 5.

tan 20◦ + 4 sin 20◦ =
sin 20◦ + 4 sin 20◦ cos 20◦

cos 20◦
=

sin 20◦ + 2 sin 40◦

cos 20◦

=
sin 50◦ cos 30◦ − (1/2) cos 50◦ + 2 sin 40◦

cos 20◦

=
sin 50◦ cos 30◦ + (1/2) cos 50◦ + cos 50◦

cos 20◦

=
sin 80◦ + cos 50◦

cos 20◦
=

cos 10◦ + cos 50◦

cos 20◦
2 cos 30◦ cos 20◦

cos 20◦
=
√

3 .

Solution 6. Let a = cos 20◦. Then, using the de Moivre formula cos 3θ + i sin 3θ = (cos θ + i sin θ)3 with
θ = 20◦, we find that

1
2

= cos 60◦ = 4a3 − 3a

and √
3

2
= 3 sin 20◦ − 4 sin3 20◦ = sin 20◦(3− 4(1− a2)) = sin 20◦(4a2 − 1) .

Therefore

tan 20◦ + 4 sin 20◦ −
√

3 = sin 20◦[(1/a) + 4− 8a2 + 2) = a−1 sin 20◦(1 + 6a− 8a3) = 0 .

Solution 7. [B. Wu]

tan 60◦ − tan 20◦ =
sin 60◦

cos 60◦
− sin 20◦

cos 20◦

=
sin 40◦

cos 60◦ cos 20◦
= 4 sin 20◦ cos 40◦overcos 20◦ = 4 sin 20◦ ,

whence tan 20◦ + 4 sin 20◦ =
√

3.

659. (a) Give an example of a pair a, b of positive integers, not both prime, for which 2a− 1, 2b− 1 and a+ b
are all primes. Determine all possibilities for which a and b are themselves prime.

(b) Suppose a and b are positive integers such that 2a− 1, 2b− 1 and a + b are all primes. Prove that
neither ab + ba nor aa + bb are multiples of a + b.

(a) First solution. (a, b) = (3, 2) yields 2a − 1 = 5, 2b − 1 = 3 and a + b = 5; (a, b) = (3, 4) yields
2a − 1 = 5, 2b − 1 = 7 and a + b = 7. Suppose that a and b are primes. Then for a + b to be prime, a + b
must be odd, so that one of a and b, say b, is equal to 2. Thus, we require the a + 2 and 2a− 1, along with
a, to be prime. This is true when a = 3.
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Now suppose a is an odd prime exceeding 3. Then a ≡ ±1 (mod 6), so the only way a and a + 2 can
both be prime is for a ≡ −1 (mod 6), whence 2a − 1 ≡ −3 (mod 6). Thus, 3 divides 2a − 1, and since
2a− 1 ≥ 9, 2a− 1 must be composite.

(b) Solution 1. We first recall a bit of theory. Let p be a prime. By Fermat’s Little Theorem, ap−1 ≡ 1
(mod p) whenever gcd(a, p) = 1. Let d be the smallest positive integer for which ad ≡ ±1 (mod p). Then d
divides p− 1, and indeed divides any positive integer k for which ak ≡ ±1 (mod p). Now to the problem.

Since a + b is prime, a 6= b. Wolog, let a > b and let p = a + b. Then a ≡ −b (mod p), so that

ab + ba ≡ (−b)b + ba ≡ bb((−1)b + ba−b) .

Suppose, if possible, that p divides ab + ba. Then, since b < p, gcd(b, p) = 1 and so ba−b ≡ (−1)b+1 (mod p).
It follows that

b2b−1 = b(p−1)−(a−b) ≡ (−1)b+1 mod p .

Now 2b − 1 is prime, so that 2b − 1 must be the smallest exponent d for which bd ≡ ±1 (mod p). Hence
2b− 1 divides a− b, so that for some positive integer c, a− b = c(2b− 1), whence a = b + 2bc− c and so

2a− 1 = 2b− 1 + (2b− 1)2c = (2b− 1)(2c + 1) .

But 2a−1 is prime and 2b−1 > 1, so 2c+1 = 1 and c = 0. This is a contradiction. Hence p does not divide
ab + ba.

Similarly, using the fact that ab + ba ≡ (−b)a + bb ≡ bb((−1)aba−b + 1), we can show that p does not
divide aa + bb.

(b) Solution 2. [M. Boase] Suppose that a and b exist as specified. Exactly one of a and b is odd, since
a + b is prime. Let it be a. Modulo a + b, we have that

0 ≡ ab + ba = ab + (−a)a ≡ ab − aa ≡ aa(ab−a − 1) or ab(1− aa−b)

according as a < b or a > b. Hence a|b−a| − 1 ≡ 0 (mod a + b). Now a + b− 1± |b− a| = 2a− 1 or 2b− 1,
and aa+b−1 ≡ 1 (mod a + b) (by Fermat’s Little Theorem). Hence a2a−1 ≡ a2b−1 ≡ 1 (mod a + b). Both
2a− 1 and 2b− 1 exceed 1 and are divisible by the smallest value of m for which am ≡ 1 (mod a + b). Since
both are prime, 2a− 1 = 2b− 1 = m, whence a = b, a contradiction. A similar argument can be applied to
aa + bb.

(c) Solution 3. Suppose, if possible, that one of ab + ba and aa + bb is divisible by a + b. Then a + b
divides their product aa+b +(ab)a +(ab)b + ba+b. By Fermat’s Little Theorem, aa+b + ba+b ≡ a+ b ≡ 0 (mod
a + b), so that (ab)a + (ab)b ≡ 0 (mod a + b). Since a + b is prime, it is odd and so a 6= b. Wolog, let a > b.
Then

(ab)a + (ab)b = (ab)b[(ab)a−b + 1]

and gcd(a, a + b) = gcd(b, a + b) = 1, so that (ab)a−b + 1 ≡ 0 (mod a + b). Since (ab)a+b−1 ≡ 1 (mod a + b),
it follows that (ab)2a−1 ≡ (ab)2b−1 ≡ −1 (mod a+ b). As in the foregoing solution, it follows that a = b, and
we get a contradiction.

660. ABC is a triangle and D is a point on AB produced beyond B such that BD = AC, and E is a point
on AC produced beyond C such that CE = AB. The right bisector of BC meets DE at P . Prove that
∠BPC = ∠BAC.

Solution 1. Let the lengths a, b, c, u and the angles α, β, γ, λ, µ, ν be as indicated in the diagram.

In the solution, we make use of the fact that if p/q = r/s, then both fractions are equal to (p+r)/(q+s).
Since ∠DBP = 90◦ + λ− 2β, it follows that

2µ = 180◦ − (90◦ − α)− (90◦ + λ− 2β) = α + 2β − λ .
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Similarly, 2ν = α + 2γ − λ. Using the Law of Sines, we find that

a

sin 2α
=

b

sin 2β
=

c

sin 2γ
=

b + c

sin 2β + sin 2γ
=

b + c

2 sin(β + γ) cos(β − γ)

=
b + c

2 cos α cos(β − γ)
.

Hence
a

sinα
=

b + c

cos(β − γ)
.

Since a = 2u sinλ and, by the Law of Sines,

u

sin(90◦ − α)
=

b

sin 2µ
and

u

sin(90◦ − α)
=

c

sin 2ν
,

we have that

a

2 sinλ cos α
=

u

cos α
=

b

sin 2µ
=

c

sin 2ν
=

b + c

sin 2µ + sin 2ν

=
b + c

2 sin(µ + ν) cos(µ− ν)
=

b + c

2 cos λ cos(β − γ)
=

a

2 cos λ sinα
.

Hence tanα = tan λ and so α = λ.

Solution 2. Let M be the midpoint of BC. A rotation of 180◦ about M interchanges B and C and
takes E to G, D to F and P to Q. Then AB = CE = BG and AC = BD = CF . Join GA and FA.
Let 2α = ∠BAC. Since AE‖BG and AB is a transversal, ∠GBA = ∠BAC = 2α. Since AB = BG,
∠BGA = 90◦ − α. But ∠BGF = ∠CED = 90◦ − α. Thus, G, A, F are collinear.

Since GF and DE are equidistant from M , we can use Cartesian coordinates with the origin at M ,
the line y = 1 as GF and the line y = −1 as DE. Let A ∼ (a, 1), B ∼ (−u,−mu), C ∼ (u, mu). Then
P ∼ (m,−1), Q ∼ (−m, 1),

D ∼ (a− 2(a + u)
1 + mu

,−1), E ∼ (a +
2(a + u)
1 + mu

,−1) .

Since |AC| = |BD|, we find that u− a = −u− a + 2(a+u)
1+mu , or a = mu2. (We can check this by equating the

slopes of AC and AE.)

The slope of AE is −1/u and of AD is 1/u, so that

tan∠BAC =
−(2/u)

1− (1/u2)
= − 2u

u2 − 1
.

The slope of CQ is (mu− 1)/(m + u) and of BQ is (1 + mu)/(u−m), so that

tan∠BPC = tan ∠BQC =
(mu− 1)(u−m)− (mu + 1)(u + m)
(u−m)(u + m) + (mu− 1)(mu + 1)

=
−2(m2u + u)

u2 −m2 + m2u2 − 1
=

−2(m2 + 1)u
(1 + m2)(u2 − 1)

=
−2u

u2 − 1
.

The result follows.

Solution 3. [M. Boase] Let XAY be drawn parallel to DE.
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Since M is the midpoint of BC, the distance from M to DE is the average of the distances from B and
C to DE. Similarly, the distance from M to XY is the average of the distances from B and C to XY . The
distance of B (resp. C) to DE equals the distance of C (resp. B) to XY . Hence, M is equidistant from DE
and XY . If PM produced meets XY in Q, then PM = MQ and so ∠BQC = ∠BPC.

Select R on MQ (possibly produced) so that ∠BAC = ∠BRC. Since ∆ADE‖|∆RBC, ∠RBC =
∠RCB = ∠ADE. Since BARC is a concyclic quadrilateral, ∠BAR = 180◦ − ∠RCB = 180◦ − ∠ADE =
180◦ − ∠XAD = ∠BAQ from which it follows that R = Q and so ∠BPC = ∠BQC = ∠BRC = ∠BAC.

Solution 4. [Jimmy Chui] Set coordinates: A ∼ (0, (m + n)b), B ∼ (−ma, nb), C ∼ (na,mb) D ∼
(−(m + n)a, 0) and E ∼ ((m + n)a, 0) where m = |AB|, n = |AC| and a2 + b2 = 1. Then the line BC has
the equation

m− n

a
x− m + n

b
y + m2 + n2 = 0

and the right bisector of BC has equation

m + n

b
x +

m− n

a
y +

(a2 − b2)(m2 − n2)
2ab

= 0 .

Thus

P ∼
(

(b2 − a2)(m− n)
2a

, 0
)

.

Now
|BC|2 = m2 + n2 + 2mn(a2 − b2)

and

|BP |2 =
m2 + n2 + 2mn(a2 − b2)

4a2

so that |BC|/|BP | = 2a. Also |DE|/|AD| = 2(m + n)a/(m + n) = 2a so that ∆BPC is similar to ∆ADE
and the result follows.

Solution 5. Determine points L and N on DE such that BL‖AE and LN = NE. Now

LE

LD
=

AB

BD
=

CE

CA

so that CL‖AD and CL : AD = CE : AE. Since AD = DE, CL = CE and so CN ⊥ LE. Consider
the trapezoid CBLE. The line MN joins the midpoints of the nonparallel opposite sides and so MN‖BL.
MPNC is a quadrilateral with right angles at M and N , and so is concyclic. Hence

∠BPC = 2∠MPC = 2∠MNC = 2∠NCE = ∠LCE = ∠BAC .

Solution 6. [C. So] Let F,N, G be the feet of the perpendiculars dropped from B,M,C respectively to
DE. Note that FN = NG, so that MF = MG. Let ∠ADE = ∠AED = θ, |AB| = c, |AC| = b and h be
the altitude of ∆ADE. Then

|MN | = 1
2
[|BF |+ |CG|] =

1
2
(b + c) sin θ =

h

2

and
|DF | = b cos θ , |GE| = c cos θ , |DE| = 2(b + c) cos θ .

Hence |FG| = |DE| − |DF | − |GE| = 1
2 |DE|. Since ∆ADE and ∆MFG are isosceles triangles with heights

and beses in proportion, they are similar so that ∠MFG = ∠ADE = θ. Since ∠BFP = ∠BMG = 90◦, the
quadrilateral BFPM is concyclic and so ∠CBP = ∠MFP = θ (we are supposing that the configuration is
labelled so P lies between F and E). Hence ∆ADE is similar to ∆PCB and so ∠BPC = ∠BAC.
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Solution 7. [A. Chan] Let ∠ADE = ∠AED = θ, so ∠BAC = 180◦ − 2θ. Suppose that ∠ACB = φ,
∠CPE = σ and ∠BCP = ρ. By the Law of Sines for triangles ABC and PCE, we find that

2|PC| cos ρ

sin 2θ
=
|AB|
sinφ

whence
sinσ

sin θ
=
|CE|
|PC|

=
|AB|
|PC|

=
2 cos ρ sinφ

sin 2θ

and
sinσ cos θ = sinφ cos ρ .

Therefore
sin(θ + σ) + sin(σ − θ) = sin(φ + ρ) + sin(φ− ρ).

Since θ + σ = φ + ρ, sin(σ − θ) = sin(φ− ρ). Either (σ − θ) + (φ− ρ) = ±180◦ or σ − θ = φ− ρ. In the first
case, since θ + σ = φ + ρ, |σ − ρ| = 90◦, which is false.

Hence σ − θ = φ− ρ, so, with θ + σ = φ + ρ, we have that

2θ = θ + (ρ + σ − φ) = θ + (ρ + ρ− σ) = 2ρ

and the result follows.

Solution 8. [A. Murali] Let F be the midpoint of BC. Observe that triangles ADE and PBC are
isosceles with AD = AE and PB = PC. Suppose that the line parallel to AC through D and the line
parallel to AD through C meet at N , and let CN intersect DE at M . Since ACND is a parallelogram,
DN = AC. Since triangle CME is similar to triangle ADE, it is isosceles with CM = CE = AB. Since
AD = CN , BMND is a parallelogram. In fact, MN = BD = AC = DN = BM , so that BMND is a
rhombus.

Since P is a point on a diagonal of the rhombus BMND, PB = PN and so triangles PBM and
PNM are congrunent, from which we see that ∠PBM = ∠PNM . Since PC = PB = PN , it follows that
∠PBM = ∠PNC = ∠PCM and quadrilateral BCMP is concyclic. Therefore, ∠BPC = ∠BMC = ∠BAC
(ABMC being a quadrilateral).

Solution 9. [C. Deng] If BC were parallel to DE, then BC would be a midline of triangle ADE and
P would be the reflection of A in the axis BC yielding the desired result. Suppose that BC and DE are
not parallel. Let R be the circumradius of triangle ADE, R1 the circumradius of triangle BDP and R2 the
circumradius of triangle CEP . Observe that AD = AE and PB = PC.

Let the circumcircles of triangles BDP and CEP intersect at O. The point O lies inside triangle ADE.
By the Extended Sine Law,

OP

sin∠PBO
= 2R1 =

PB

sin∠ADE
=

PC

sin∠AED
= 2R2 =

OP

sin∠PCO
.

Since ∠PCO = ∠PEO < ∠PEA < 90◦, the angle PCO is acute. Similarly, angle PBO is acute. Therefore
∠PBO = ∠PCO, so that ∠OBC = ∠OCB and O is on the right bisector of BC. Since

DO = 2R1 sin∠DPO = 2R2 sin∠OPE = EO

, the point O is on the right bisector of DE, which is also the angle bisector of ∠BAC.

Since the quadrilaterals OBDP and OCEP are concyclic,

∠BOC = 360◦ − ∠BOP − ∠COP

= 36◦ − (180◦ − ∠BDP )− (180◦ − ∠CEP )
= ∠ADE + ∠AED = 180◦ − ∠BAC .
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Hence quadrilaterla ABOC is concyclic. Also ∠BCO = ∠CBO = 1
2∠BAC.

From Ptolemy’s Theorem, we have that

BC ·AO = AB · CO + AC ·BO = (AB + AB ·BO = AD ·BO .

Therefore

AO = AD · BO

BC
= AD · sin∠BCO

sinBOC
= AD ·

sin 1
2∠BAC

2 sin∠BAC
=

AD

2 cos 1
2∠BAC

= R .

Since O is on the right bisector of DE and AO = R, O is the circumcentre of triangle ADE. Therefore

∠BPC = ∠BPO + ∠CPO = ∠BDO + ∠CEO = ∠OAB + ∠OAC = ∠A .
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