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Problems for February, 2009

598. Let a1, a2, · · · , an be a finite sequence of positive integers. If possible, select two indices j, k with
1 ≤ j < k ≤ n for which aj does not divide ak; replace aj by the greatest common divisor of aj and
ak, and replace ak by the least common multiple of aj and ak. Prove that, if the process is repeated, it
must eventually stop, and the final sequence does not depend on the choices made.

599. Determine the number of distinct solutions x with 0 ≤ x ≤ π for each of the following equations. Where
feasible, give an explicit representation of the solution.
(a) 8 cos x cos 2x cos 4x = 1;
(b) 8 cos x cos 4x cos 5x = 1.

600. Let 0 < a < b. Prove that, for any positive integer n,

b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)
≤ n

√
an + bn

2
.

601. A convex figure lies inside a given circle. The figure is seen from every point of the circumference of the
circle at right angles (that is, the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the centre of the circle is a centre of symmetry of the figure.

602. Prove that, for each pair (m,n) of integers with 1 ≤ m ≤ n,

n∑
i=1

i(i− 1)(i− 2) · · · (i−m + 1) =
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

(b) Suppose that 1 ≤ r ≤ n; consider all subsets with r elements of the set {1, 2, 3, · · · , n}. The elements
of this subset are arranged in ascending order of magnitude. For 1 ≤ i ≤ r, let ti denote the ith smallest
element in the subset, and let T (n, r, i) denote the arithmetic mean of the elements ti. Prove that

T (n, r, i) = i

(
n + 1
r + 1

)
.
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603. For each of the following expressions severally, determine as many integer values of x as you can so that
it is a perfect square. Indicate whether your list is complete or not.

(a) 1 + x;

(b) 1 + x + x2;

(c) 1 + x + x2 + x3;

(d) 1 + x + x2 + x3 + x4;

(e) 1 + x + x2 + x3 + x4 + x5.

604. ABCD is a square with incircle Γ. Let l be a tangent to Γ, and let A′, B′, C ′, D′ be points on l such
that AA′, BB′, CC ′, DD′ are all prependicular to l. Prove that AA′ · CC ′ = BB′ ·DD′.

Note: there was an error in the statement of one of the December problems. I will state it as intended
and repose it with this set. Solutions may be sent to E. Barbeau:

585. Calculate the number

b = b(
√

n− 1 +
√

n +
√

n + 1)2c .

Challenge Problems

I am starting new feature of Olymon, a list of problems that look interesting and appropriate for which
I do not have a solution. They may turn out to be trivial, easy, difficult or impossible. There is no fixed
deadline for their solution, but I will acknowledge successful solutions in the order in which I receive them.
When I have a solution in hand, then I will add them to the regular Olymon stock for everyone to have a go
at them.

C1. The function f(x) is defined for real nonzero x, takes nonzero real values and satisfies the functional
equation

f(x) + f(y) = f(xyf(x + y)) ,

whenever xy(x + y) 6= 0. Determine all possibilities for f .

C2. Let T be a triangle in the plane whose vertices are lattice points (i.e., both coordinates are integers),
whose edges contain no lattice points in their interiors and whose interior contains exactly one lattice
point. Must this lattice point in the interior be the centroid of the T?

C3. Two circles are externally tangent at A and are internally tangent to a third circle Γ at points B and
C. Suppose that D is the midpoint of the chord of Γ that passses through A and is tangent there to the
two smaller given circles. Suppose, further, that the centres of the three circles are not collinear. Prove
that A is the incentre of triangle BCD.

C4. Let a, b, c, m be positive integers for which abcm = 1 + a2 + b2 + c2. Show that m = 4, and that there
are actually possibilities with this value of m.

C5. Solve the equation

x12 − x9 + x4 − x = 1 .

Solutions.

584. Let n be an integer exceeding 2 and suppose that x1, x2, · · · , xn are real numbers for which
∑n

i=1 xi = 0
and

∑n
i=1 x2

i = n. Prove that there are two numbers among the xi whose product does not exceed −1.
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Solution. We can supppose that the xi are ordered in increasing sequence and that there is a positive
integer k with x1 ≤ x2 ≤ · · · ≤ xk ≤ 0 ≤ xk+1 ≤ · · · ≤ xn. Then, noting that −x1 ≥ 0, we have that

k∑
i=1

x2
i ≤

k∑
i=1

x1xi = −x1(xk+1 + xk+2 + · · ·+ xn) ≤ −(n− k)x1xn

and
n∑

i=k+1

x2
i ≤

n∑
i=k+1

xnxi = −xn(x1 + x2 + · · ·+ xk) ≤ −kx1xn .

Finally, n =
∑n

i=1 x2
i ≤ −nx1xn; thus x1xn ≤ −1.

585. Calculate the number
a = b

√
n− 1 +

√
n +

√
n + 1c2 ,

where bxc denotes the largest integer than does not exceed x and n is a positive integer exceeding 1.

Solution. It does not appear that there is a neat expression for this. One can obtain without too much
trouble the inequality

3
√

n− 1 <
√

n− 1 +
√

n +
√

n + 1 < 3
√

n ,

from which we can find that when k2 + 1 ≤ n ≤ k2 + (2k/3), then
√

a = 3k, when k2 + (2k/3) + (10/9) <
n ≤ k2 + (4k/3) + (1/3), then

√
a = 3k + 1, and when k2 + 4k + (13/9) < n ≤ (k + 1)2, then

√
a = 3k + 2.

However, this leaves the difficulty of getting the right expression for the gaps between the various ranges of
n.

586. The function defined on the set C* of all nonzero complex numbers satisfies the equation

f(z)f(iz) = z2 ,

for all z ∈ C∗. Prove that the function f(z) is odd, i,e., f(−z) = −f(z) for all z ∈ C∗. Give an example
of a function that satisfies this condition.

Solution. Note that f(z) 6= 0 for all x ∈ C∗. Replacing z by iz leads to f(iz)f(−z) = −z2, from which
we have that

f(z)f(iz) + f(iz)f(−z) = 0 =⇒ f(z) + f(−z) = 0 .

Therefore the function is odd.

An example is given by f(z) = (−1 + i)z/
√

2.

587. Solve the equation

tan 2x tan
(

2x +
π

3

)
tan

(
2x +

2π

3

)
=
√

3 .

Solution. Using the standard trigonometric identities for sinA sinB, cos A cos B, cos 2A and sin 2A, we
have that √

3 = tan 2x

(
sin(2x + (π/3)) sin(2x + (2π/3))
cos(2x + (π/3)) cos(2x + (2π/3))

)
= tan 2x

(
cos(π/3)− cos(4x + π)
cos(π/3) + cos(4x + π)

)
= tan 2x

(
1 + 2 cos 4x

1− 2 cos 4x

)
= tan 2x

(
1 + 2(2 cos2 2x− 1)
1− 2(1− 2 sin2 2x)

)
=

(
sin 2x

cos 2x

)(
4 cos2 2x− 1
4 sin2 2x− 1

)
=

2 sin 4x cos 2x− sin 2x

2 sin 4x sin 2x− cos 2x

=
sin 6x + sin 2x− sin 2x

cos 2x− cos 6x− cos 2x
=

sin 6x

− cos 6x
= − tan 6x .
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Therefore x = −10◦ + k · 30◦ for some integer k.

588. Let the function f(x) be defined for 0 ≤ x ≤ π/3 by

f(x) = sec
(

π

6
− x

)
+ sec

(
π

6
+ x

)
.

Determine the set of values (its image or range) assumed by the function.

Solution. Making use of the inequality (1/a) + (1/b) ≥ 2/
√

ab for a, b > 0, we find that

f(x) ≥ 2√
cos((π/6)− x) cos((π/6) + x)

≥ 2√
(1/4) + ((cos 2x)/2)

.

Since 0 ≤ x ≤ π/3 implies that − 1
2 ≤ cos 2x ≤ 1, it follows that

0 ≤
√

1
4

+
cos 2x

2
≤
√

3
2

,

and
f(x) ≥ 4√

3
.

Since f(x) is continuous, f(0) = 4/
√

3 and f(x) grows without bound when x approaches π/3, the image of
f on [0, π/3) is [4/

√
3.∞).

589. In a circle, A is a variable point and B and C are fixed points. The internal bisector of the angle BAC
intersects the circle at D and the line BC at G; the external bisector of the angle BAC intersects the
circle at E and the line BC at F . Find the locus of the intersection of the lines DF and EG.

Solution. Suppose without loss of generality that AB > AC. If M is the midpoint of BC, since
BG : GC = AB : AC, BG > GC so that G lies between M and C and A lies between E and F . Let P be
the intersection of DF and EG.

Observe that D is the midpoint of the arc BC and that AD ⊥ EF . Therefore DA is an altitude of
triangle DEF and DE is a diameter of the circle. Therefore DE must pass through M , and so FM ⊥ DE,
i.e., FM is an altitude of triangle DEF . The intersection of these two altitudes, G, is the orthocentre of
triangle ABC and so EG ⊥ DF . Thus, ∠EPD = 90◦, so that P must lie on the given circle.

Conversely, let P be a point on the given circle. Wolog, we may assume that P lies between D, the
midpoint of arc BC and C. Let DE be the diameter of the circle that right bisects BC. Suppose that
DP produced intersects BC produced at F and that EF intersects the circle at A. This is the point A
that produced the point P as described in the problem. Thus, the locus is indeed the given circle with the
exception of the points B and C.

590. Let SABC be a regular tetrahedron. The points M,N,P belong to the edges SA, SB and SC respec-
tively such that MN = NP = PM . Prove that the planes MNP and ABC are parallel.

Solution. Let |SM | = a, |SN | = b and |SP | = c. From the Law of Cosines, we have that |MN |2 =
a2 + b2 − ab, etc., whence a2 + b2 − ab = b2 + c2 − bc = c2 + a2 − ac = 0. This implies that a = b = c [prove
it], so that SM : SA = SN : SB = SP : SC and the result follows.
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