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Problems for November

577. ABCDEF is a regular hexagon of area 1. Determine the area of the region inside the hexagon thst
belongs to none of the triangles ABC, BCD, CDE, DEF , EFA and FAB.

578. ABEF is a parallelogram; C is a point on the diagonal AE and D a point on the diagonal BF for which
CD‖AB. The sements CF and EB intersect at P ; the segments ED and AF intersect at Q. Prove
that PQ‖AB.

579. Solve, for real x, y, z the equation

y2 + z2 − x2

2yz
+

z2 + x2 − y2

2zx
+

x2 + y2 − z2

2xy
= 1 .

580. Two numbers m and n are two perfect squares with four decimal digits. Each digit of m is obtained by
increasing the corresponding digit of n be a fixed positive integer d. What are the possible values of the
pair (m,n).

581. Let n ≥ 4. The integers from 1 to n inclusive are arranged in some order around a circle. A pair (a, b)
is called acceptable if a < b, a and b are not in adjacent positions around the circle and at least one of
the arcs joining a and b contains only numbers that are less than both a and b. Prove that the number
of acceptable pairs is equal to n− 3.

582. Suppose that f is a real-valued function defined on the closed unit interval [0, 1] for which f(0) = f(1) = 0
and |f(x)− f(y)| < |x− y| when 0 ≤ x < y ≤ 1. Prove that |f(x)− f(y)| < 1

2 for all x, y ∈ [0, 1]. Can
the number 1

2 in the inequality be replaced by a smaller number and still result in a true proposition?

583. Suppose that ABCD is a convex quadrilateral, and that the respective midpoints of AB, BC, CD, DA
are K, L, M , N . Let O be the intersection point of KM and LN . Thus ABCD is partitioned into four
quadrilaterals. Prove that the sum of the areas of two of these that do not have a common side is equal
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to the sum of the areas of the other two, to wit

[AKON ] + [CMOL] = [BLOK] + [DNOM ] .

Solutions

563. (a) Determine infinitely many triples (a, b, c) of integers for which a, b, c are not in arithmetic progression
and ab + 1, bc + 1, ca + 1 are all squares.

(b) Determine infinitely many triples (a, b, c) of integers for which a, b, c are in arithemetic progression
and ab + 1, bc + 1, ca + 1 are all squares.

(c) Determine infinitely many triples (u, v, w) of integers for which uv−1, vw−1, wu−1 are all squares.
(Can it be arranged that u, v, w are in arithmetic progression?)

Solution. (a) Here are some families of solutions that are (mostly) not in arithmetic progression, where
n is an integer:

(0, 0, n); (0, n− 1, n + 1); (0, 2, 2n(n + 1)); (1, n2 − 1, n2 + 2n); (n− 1, n + 1, 4n); (n, n + 2, 4(n + 1));

(m,mn2 + 2n, m(n + 1)2 + 2(n + 1)); (f2(n−1), f2n, f2(n+1)) .

Here, {fn} is the Fibonacci sequence defined by f1 = f2 = 1 and fn+1 = fn + fn−1 for every integer n. We
need to establish that f2nf2n+2 + 1 = f2

2n+1 and f2n−2f2n+2 + 1 = f2
2n for each integer n. Since

f2
2n+1 − f2

2n = f2n+2f2n−1 = f2n+2(f2n − f2n−2) = (f2nf2n+2 + 1)− (f2n−2f2n+2 + 1) ,

the two equations are equivalent. Note that

f2nf2n+2 − f2
2n+1 = f2n(f2n+1 + f2n)− f2

2n+1 = f2n+1(f2n − f2n+1) + f2
2n = −(f2n+1f2n−1 − f2

n) ;

a proof by induction can be devised for the first equation.

(b) (i) Some examples for (a, b, c) are (−1, 0, 1), (0, 2, 4), (1, 8, 15), (4, 30, 56)), (15, 112, 209). This
suggests the possibility (un, 2un+1, un+2) where u0 = 0, u1 = 1, u2 = 4 and un+1 = 4un−1 − un for integral
n. Since un+1 − 2un = 2un − un−1, un−1, 2un, un+1 are in arithmetic progression.

We now prove, for each integer n,

2unun+1 + 1 = (un+1 − un)2 (1)

un+2un + 1 = u2
n+1 (2)

2un+1un+2 + 1 = (un+2 − un+1)2 (3)

Properties (1) and (3) are the same. The truth of (2) is equivalent to the truth of (1), since

[(2unun+1 + 1)− (un+1 − un)2)] + [(unun+2 + 1)− u2
n+1]

= un(2un+1 − un+2) + un(2un+1 − un)
= −un(un+2 − 4un+1 + un) = 0 .

We establish (2) by induction. Since

un+2un + 1− u2
n+1 = un(4un+1 − un) + 1− u2

n+1

= un+1(4un − un+1) + 1− u2
n

= un+1un−1 + 1− u2
n ,
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un+2un + 1− u2
n+1 = u2u0 + 1− u2

1 = 0 for all n. The desired results follow.

(b) (ii) [A. Dhawan] Let v2− 3u2 = 1 for some integers v and u. Then, if (a, b, c) = (2u− v, 2u, 2u + v),
then

ab + 1 = (2u− v)2u + 1 = 4u2 − 2uv + 1

= u2 + (v2 − 1)− 2uv + 1 = (u− v)2 ;

bc + 1 = 2u(2u + v) + 1 = 4u2 + 2uv + 1

= u2 + 2uv + v2 − 1 + 1 = (u + v)2 ;

and
ac + 1 = (2u− v)(2u + v) + 1

= 4u2 − v2 + 1 = u2 .

(Note that in this solution, the roots of the square, not all positive, are also in arithmetic progression.)

The equation v2 − 3u2 = 1 is a Pell’s equation with infinitely many solutions given by (v, u) = (xn, yn),
where xn + yn

√
3 = (2 +

√
3)n, for positive integers n.

(b) (iii) We look for solutions in which one integer is 0, Thus (a, b, c) has the form (0, p, 2p), where
2p2 + 1 = q2. This is a Pell’s equation whose solutions are given by (q, p) = (xn, yn) where xn + yn

√
2 =

(3 + 2
√

2)n for positive integers n. P. Wen also identified triples (0, p, 2p) where 2p2 + 1 is square. Since this
square is odd, it must have the form (2y + 1)2, so that p2 = 2y(y + 1). Thus, p is even, say p = 2x, and
so x2 = 1

2y(y + 1), which is at once a square and a triangula number. Conversely, any triangular number
which is also a square gives a solution triple, so we need to know that there are infinitely many such. If
x2 = 1

2y(y + 1), then 8x2 + 1 = (2y + 1)2, so that

[x(2y + 1)]2 = 4p2(2y + 1)2 =
4y(y + 1)(2y + 1)2

2

=
1
2
(4y2 + 4y)(4y2 + 4y + 1) .

Starting with (x, y) = (1, 1), we are led to (6, 8), (204, 288) and so on, and obtain the solutions (a, b, c) =
(0, 2, 4), (0, 12, 24), (0, 408, 816), · · ·.

(c) Here are some families of solutions for (u, v, w): (1, 1, n2 + 1), (1, n2 + 1, (n + 1)2 + 1) along with
(f2n−1, f2n+1, f2n+3), where fn is the Fibonacci sequence defined in the solution to (a). S.H. Lee found a
two-parameter family:

(m2 + 1, (m2 + 1)n2 + 2mn + 1, (m2 + 1)(n + 1)2 + 2m(n + 1) + 1) .

In this case,
uv − 1 = [(m2 + 1)n + m2]2 ; uw − 1 = [(m2 + 1)(n + 1) + m]2 ;

uw − 1 = [(m2 + 1)n(n + 1) + 2mn + m + 1]2 .

J. Zung identified the triple (1, 2, p2 + 1) where q2− 2p2 = 1 for some integer q. [Exercise: Check these out.]

564. Let x1 = 2 and

xn+1 =
2xn

3
+

1
3xn

for n ≥ 1. Prove that, for all n > 1, 1 < xn < 2.

Solution 1. Since, for n ≥ 1,

xn+1 − 1 =
2xn

3
+

1
3xn

− 1 =
2x2

n − 3xn + 1
3xn

=
(2xn − 1)(xn − 1)

3xn
,
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it can be shown by induction that xn > 1 for all n ≥ 1.

Since, for n ≥ 1,

xn − xn+1 =
x2

n − 1
3xn

,

it follows that xn+1 < xn ≤ 2 for all n ≥ 1. Thus we have the desired inequality.

Solution 2. Observe that x2 = 3/2. As an induction hypothesis, suppose that 1 < xn < 2 for some
n ≥ 2. Then

xn+1 =
xn

3
+

1
3

(
xn +

1
xn

)
>

1
3

+
1
3
· 2 = 1

by the arithmetic-geometric means inequality. Also,

xn+1 =
2xn

3
+

1
3xn

<
4
3

+
1
3

=
5
3

< 2 .

The result follows.

Comment. An induction argument for the right inequalitycan be based on the observation that, when
1 < x < 2, the quadratic 2x2 − 6x + 1 = 2(x − 3

2 )2 − 7
2 ≤ 1

2 −
7
2 = −3 < 0, whence 2x2 + 1 < 6x and

(2xn/3) + (1/3xn) < 2.

Solution 3. Let f(x) = (2x/3) + (1/3x). Then f ′(x) = (2/3) − (1/3x3) ≥ 1/3 > 0 when 1 ≤ x. Hence
f(x) is strictly increasing on the interval [1, 2] and so takes values strictly between f(1) = 1 and f(2) = 3/2
on the open interval (0, 1). Since x2 ∈ (0, 1) and xn+1 = f(xn) for n ≥ 1, the desired result can be established
by induction.

565. Let ABC be an acute-angled triangle. Points A1 and A2 are located on side BC so that the four points
are ordered B,A1, A2, C; similarly B1 and B2 are on CA in the order C,B1, B2, A and C1 and C2 on
side AB in order A,C1, C2, B. All the angles AA1A2, AA2A1, BB1B2, BB2B1, CC1C2, CC2C1 are
equal to θ. Let T1 be the triangle bounded by the lines AA1, BB1, CC1 and T2 the triangle bounded
by the lines AA2, BB2, CC2. Prove that all six vertices of the triangles are concyclic.

Solution 1. Let A0B0C0 be the triangle with B0C0‖BC, C0A0‖CA, A0B0‖AB where A, B, C are the
respective midpoints of B0C0, C0A0, A0B0. Then the orthocentre H of triangle ABC is the circumcentre
of triangle A0B0C0.

Suppose that K is the intersection point of AA2 and BB2. Since the exterior angle at A2 is equal to
the interior angle at B2, the quadrilateral A2KB2C is concyclic, so that ∠BKA2 = ∠BCA = ∠BC0A.
Therefore, the quadrilateral AC0BK is concyclic; the quadrilateral AC0BH with right angles at A and B is
concyclic. Thus, BC0AKH is concyclic and so ∠C0KH = ∠C0AH = 90◦.

Since C0A0‖AC, ∠C0HK = ∠C0BK = ∠BB2C = θ. Therefore |HK| = |HC0| cos θ = R cos θ, where
R is the circumradius of triangle A0B0C0. The same argument can be applied to the intersection point of
any pairs (AAi, BBi), (BBi, CCi), (CCi, AAi) (i = 1, 2). All the vertices lie on the circle with centre H and
radius R.

Solution 2. [A. Murali] Let AA1 ∩ BB1 = P , BB1 ∩ CC1 = Q, CC1 ∩ AA1 = R, AA2 ∩ BB2 = V ,
BB2 ∩ CC2 = W , CC2 ∩AA2 = U . We have that

∠A2CU = ∠BCC2 = 180◦ − ∠ABC − ∠BC2C

= 180◦ − ∠ABC − (180◦ − θ) = θ − ∠ABC ,

and
∠CUA2 = 180◦ − (∠A2CU + ∠AA2C)

= 180◦ − (θ − ∠ABC)− (180◦ − θ) = ∠ABC .
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Since ∠AA1B = ∠CA2U and ∠ABA1 = ∠ABC = ∠A2UC, triangles AA1B and CA2U are similar. There-
fore CA2 : A2U = AA1 : BA1, from which

|A2U | =
|CA2| × |BA1|

|AA1|
.

Similarly, ∠BPA1 = ∠BCA, which along with ∠BA1A = ∠BB1C implies that triangles BA1P and
BB1C are similar. Therefore

|PA1| =
|BA1| × |B1C|

|BB1|
.

Hence,
|A2U |
|A1P |

=
|CA2| × |BB1|
|AA1| × |B1C|

=
|CA2| × |BB1|
|AA2| × |B1C|

.

Since triangles CBB1 and CAA2 are similar, CA2 : AA2 = CB1 : BB1, from which it follows that UA2 =
PA1, so that UA2 : AA2 = PA1 : AA1 and PU‖A1A2.

Similarly, QV ‖B1B2. Therefore

∠PUV = ∠A1A2A = θ = ∠B2B1B = ∠V QP

and PUQV is concyclic.

Since ∠C2UA = ∠CUA2 = ∠ABC and ∠AC2U = θ = ∠BC1C, triangles AUC2 and CBC1 are similar,
so that

|UC2| =
|BC1| × |C2A|

|C1C|
.

Since triangles BQC1 and CAC2 are similar,

|QC1| =
|BC1| × |AC2|

|CC2|
.

Since CC2 = CC1, UC2 = QC1 so that UQ‖BA. Similarly WP‖AC. Therefore, ∠WPQ = 180◦ − θ =
∠WUQ, and WPUQ is concyclic.

Since RWPU , WPUQ and PUQV are all concyclic, R and Q lie on the circle through W,P,U and W
and V lie on the circle through P,U,Q. The result follows.

Solution 3. [P. Wen] Use the notation of Solution 2 and let H denote the orthocentre of triangle ABC.
Since ∠WBH = 90◦ − θ = ∠WCH, the points B,W,H, C are concyclic; similarly, B,H, Q, C are concyclic.
Hence B,W,H, Q, C are concyclic. Similarly, A, V, H, P,B are concyclic.

Since
∠PQW = ∠BQW = ∠BCW = ∠BCC2 = ∠BAA1

= ∠BAP = ∠BV P = ∠PV W ,

the points P,Q, V, W are concyclic. Since ∠BHW = ∠BCW = ∠BAP = ∠BHP , ∠HBW = ∠HBB2 =
∠HBB1 = ∠HBP , and side BH is common, the triangles BHW and BHP are congruent, so that BP =
BW .

Since ∠PHW = 2∠BHW = 2∠PQW , H must be the centre of the circle through P,Q, V, W , so that
H is equidistant from these four points. Similarly, H is equidistant from the four points R,P, U, V and from
the points Q,R,W, U . The desired result follows.

Solution 4. [P.J. Zhao] Use the notation of Solutions 2 and 3, with H the orthocentre of triangle ABC.
Since the quadrilaterals BC1RA1, BC1B2C and CA2V B2 are concyclic, we have that

AR : AA1 = AC1”AB = AB2 : AC = AV : AA2 .

5



Since AA1 = AA2, AR = AV . As AA1A2 is isosceles, AH bisects angle A1AA2 and triangles AHR amd
AHV are congruent (SAS), so that HR = HV . Similarly, HP = HW and HQ = HU .

Since the quadrilaterals CB1PA1, BC2B1C and BC2UA2 are concyclic, it follows that

AP : AA1 = AB1 : AC = AC2 : AB = AU : AA2 ,

whence AP = AU . Since triangles AHP and AHU are congruent, HP = HU . Similarly, HQ = HV and
HR = HW .

Thus, all six vertices of the two triangles are equidistant from H and the result follows.

Comment. J. Zung observed that a rotation about H through the angle 2θ takes the line AA1 onto the
line A2A, the line BB1 onto the line B2B and the line CC1 onto the line C2C. To see this, note that if A3

and A4 are the feet of the perpendiculars dropped from H to AA1 and AA2 respectively, then

∠A3HA4 = ∠A3HA + ∠AHA4 = ∠AA1A2 + ∠AA2A1 = 2θ .

This rotation takes P → V , Q → W , R → U , so that HP = HV , HQ = HW , HR = HU . This taken with
either half of the argument of Solution 4 yields the result.

566. A deck of cards numbered 1 to n (one card for each number) is arranged in random order and placed
on the table. If the card numbered k is on top, remove the kth card counted from the top and place it
on top of the pile, not otherwise disturbing the order of the cards. Repeat the process. Prove that the
card numbered 1 will eventually come to the top, and determine the maximum number of moves that
is required to achieve this.

Solution For each card, a move must result in exactly one of the following possibilities: (i) the card
remains in the same position; (ii) the card moves one position lower in the deck; (iii) the card is brought to
the top of the deck.

We prove by induction the following statement: Suppose that we have deck of m cards each with a
different number, and that we follow the procedure of the problem; then after at most 2m−1 − 1 moves the
process will have to stop either because card 1 comes to the top or a card with a number exceeding m comes
to the top. It is straightfoward to see that the result holds for m = 1 and m = 2. Suppose that when
1 ≤ m ≤ r − 1.

Let m = r. Since there are r cards with different numbers, there is a card u where either u = 1 or u > r.
Suppose that u occurs in the kth position. Then the first k − 1 positions must contain card 1 or a card
exceeding k − 1. By the induction hypothesis, in at most 2k−2 − 1 moves one of the following must occur:
(1) the process stops because a card numbered 1 or with a number exceeding m (possibly u) comes to the
top, or (2) a card with a number between k + 1 and m inclusive comes to the top. In the second case, one
more move will cause u to go to the (k+1)th position. Therefore, after at most 1+2+ · · ·+2r−3 = 2r−2−1,
either the process has stopped or u has been forced from the (r − 1)th position to the rth position.

The top r− 1 cards must contain at least one lying outside of the range [2, r− 1]. Therefore, in at most
2r−2 − 1 further moves, either the process stops, because card number 1 or a card with a number exceeding
r comes to the top, or else r comes to the top. In the latter case, one further move will make u come to
the top. Thus, we can get a card with either the number 1 or a card exceeding m to the top in at most
(2r−2 − 1) + (2r−2 − 1) + 1 = 2r−1 − 1 moves.

The desired result is a special case of this, where m = n and the card outside of the range [2, n] is the
card numbered 1.

There is an initial arrangement of the cards where the maximum number of moves is attained, namely
(n, 1, n− 1, n− 2, · · · , 3, 2). To show this, we establish the following result:
Let m ≥ 2. Then the sequence (m,u,m− 1,m− 2, · · · , 2) becomes the sequence (u, m,m− 1,m− 2, · · · , 2)
in exactly 2m−1 − 1 moves, where u is any number.
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This is true for m = 2 ((2, u) → (u, 2)) and m = 3 ((3, u, 2) → (2, 3, u) → (3, 2, u) → (u, 3, 2)). Assume
that m ≥ 4 and that the result holds for all values of m up to and including k − 1. Then we can use the
induction hypothesis to make changes as follows (where the number in square brackets indicates the number
of moves):

(k, u, k − 1, · · · , 2) → [1] → (2, k, u, k − 1, · · · 3) → [1] → (k, 2, u, k − 1, · · · 3)
→ [1] → (3, k, 2, u, k − 1, · · · , 4) → [3] → (k, 3, 2, u, k − 1, · · · , 4)
→ [1] → (4, k, 3, 2, u, k − 1, · · · , 5) → [7] → (k, 4, 3, 2, u, k − 1, · · · , 5)
...
→ [1] → (j, k, j − 1, · · · , 2, u, k − 1, · · · , j + 1)

→ [2j−1 − 1] → (k, j, j − 1, · · · , 2, u, k − 1, · · · , j + 1)
...

→ [1] → (k − 1, k, k − 2, · · · , 3, 2, u)) → [2k−2 − 1] → (k, k − 1, k − 2, · · · , 3, 2, u)
→ [1] → (u, k, k − 1, · · · , 3, 2) .

The total number of moves is

1 +
k−2∑
j=2

[(2j−1 − 1) + 1] = 1 + 2 + · · ·+ 2k−2 = 2k−1 − 1 .

In particular, when u = 1 and k = n, we conclude that (n, 1, n− 1, · · · , 2) goes to (1, n, n− 1, · · · , 2) in
2n−1 − 1 moves.

Comment. A. Abdi provided the following induction argument that the process must terminate. The
result clearly holds for n = 1. Suppose it holds for 1 ≤ n ≤ m − 1, If card 1 never comes to the top, then
the process never terminates and card 1 eventually finds its way to position r ≤ m and stays there. The
cards below position r (if any) never move from that point on. Let X be the set of cards on top of 1 at that
point whose numbers exceed r and Y the set of cards on top of 1 whose numbers do not exceed r, so that
#X +#Y = r−1. Since card 1 cannot move down, the cards in X never come to the top, so it is immaterial
what numbers appear on these cards. Relabel these cards with numbers from {2, 3, 4, · · · , r} that do not
belong to the cards in Y , so that the numbers from 2 to r inclusive all appear on top of card 1. These cards
get permuted among themselves by subsequent moves.

However, by the induction hypothesis applied to this deck of r−1 ≤ m−1 cards atop card 1 (with card
r relabelled to a second card 1), we see that card r must eventually come to the top, when then will force
card 1 to come to the top. This yields a contradiction of the assertion that the process can go on forever.

567. (a) Let A,B, C, D be four distinct points in a straight line. For any points X, Y on the line, let XY
denote the directed distance between them. In other words, a positive direction is selected on the line
and XY = ±|XY | according as the direction X to Y is positive or negative. Define

(AC,BD) =
AB/BC

AD/DC
=

AB × CD

BC ×DA
.

Prove that (AB,CD) + (AC,BD) = 1.

(b) In the situation of (a), suppose in addition that (AC,BD) = −1. Prove that

1
AC

=
1
2

(
1

AB
+

1
AD

)
,
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and that
OC2 = OB ×OD ,

where O is the midpoint of AC. Deduce from the latter that, if Q is the midpoint of BD and if the
circles on diameters AC and BD intersect at P , ∠OPQ = 90◦.

(c) Suppose that A,B, C, D are four distinct on one line and that P,Q,R, S are four distinct points
on a second line. Suppose that AP , BQ, CR and DS all intersect in a common point V . Prove that
(AC,BD) = (PR,QS).

(d) Suppose that ABQP is a quadrilateral in the plane with no two sides parallel. Let AQ and BP
intersect in U , and let AP and BQ intersect in V . Suppose that V U and PQ produced meet AB at C
and D respectively, and that V U meets PQ at W . Prove that

(AB,CD) = (PQ, WD) = −1 .

Solution. (a)

AC ×BD

CB ×DA
+

AB × CD

BC ×DA
=

(AB + BC)× (BC + CD)−AB × CD

BC ×AD

=
BC × (AB + BC + CD)

BC ×AD
= 1 .

(b) AB × CD = BC ×AD =⇒

AB × (AD + CA) = (BA + AC)×AD =⇒ 2AB ×AD = AB ×AC + AC ×AD

=⇒ 1
AC

=
1
2

(
1

AB
+

1
AD

)
.

Since AB = AO + OB = OC + OB, AD = AO + OD = OC + OD and AC = 2OC,

1
OC

=
1

OB + OC
+

1
OD + OC

,

from which the desired result follows. Since OP = OC2, OP 2 = OB × OD, so that OP is tangent to the
circle of diameter BD. Hence PQ ⊥ OP and the result follows.

Comment. For the last part, M. Sardarli noted that

OP 2 + PQ2 = OC2 + BQ2 = OB ×OD + BQ2 = (OQ + QB)(OQ−QB) + BQ2

= OQ2 −QB2 + BQ2 = OQ2 ,

whence ∠OPQ = 90◦.

(c) First observe that, of both lines lie on the same side of V , then corresponding lengths among
A,B, C, D and P,Q,R, S have the same signs, while if V is between the lines, then the signs are opposite.
Let a, b, c, d be the respective lengths of AV , BV , CV , DV ; let α, β, γ, δ be the respective angles AV B,
CV D, BV C, DV A; let h be the distance from V to the line ABCD. Then

|(AC,BD)| =
∣∣∣∣AB × CD

BC ×DA

∣∣∣∣ =
∣∣∣∣ ( 1

2h×AB)× ( 1
2h× CD)

( 1
2h×BC)× ( 1

2h×DA)

∣∣∣∣
=

[AV B]× [CV D]
[BTC]× [DTA]

=
( 1
2ab sinα)( 1

2cd sinβ)
( 1
2bc sin γ)( 1

2ad sin δ)

=
sinα sinβ

sin γ sin δ
.

8



Since ∠AV B = ∠PV Q, etc., we find that |(PR,QS)| = (sinα sinβ)/(sin γ sin δ), and the result follows.

(d) By (c), with the role of V played respectively by V and U , we obtain that

(AB,CD) = (PQ, WD) = (BA,CD) =
1

(AB,CD)
,

so that (AB,CD)2 = 1. Since (AB,CD)+(AC,BD) = 1 and (AC,BD) can vanish only if A = B or C = D,
we must have that (AB,CD) = −1.

568. Let ABC be a triangle and the point D on BC be the foot of the altitude AD from A. Suppose that
H lies on the segment AD and that BH and CH intersect AC and AB at E and F respectively.

Prove that ∠FDH = ∠HDE.

Solution 1. Suppose that ED‖AB. Then by Ceva’s theorem,

1 =
|AF |
|FB|

· |BD|
|DC|

· |CE|
|EA|

=
|AF |
|FB|

· |BD|
|DC|

· |CD|
|DB|

,

so that AF = FB. Hence F is the circumcentre of the right triangle ADB, so that AF = DF and
∠FDB = ∠FAD = ∠HDE.

Otherwise, let AB and ED produced intersect at G. Then, in the notation of problem 567, (AB,FG) =
−1. Therefore

sin∠ADF sin∠BDG = sin∠FDB sin∠ADG = cos ∠ADF cos ∠BDG .

Hence tan∠ADF = cot ∠BDG = tan ∠ADE and ∠ADF = ∠ADE.

Solution 2. Suppose that DE and DF intersect the line through A parallel to BC at the points M and
N respectively. Since triangles BDF and ANF are similar, as are triangles CDE and AME,

|AM |
|AN |

=
|AM |
|CD|

· |CD|
|DB|

· |DB|
|AN |

=
|AE|
|EC|

· |CD|
|DB|

· |BF |
|AF |

= 1 ,

by Ceva’s theorem. Therefore, AM = AN , so that triangles AMD and AND are congruent and ∠ADF =
∠ADM .

Solution 3. [R. Peng] Suppose that the points K and L are selected on BC so that EK ⊥ CB and
FL ⊥ BC. Let X = CH ∩ EK and Y = BH ∩ FL. Then FL‖EK, so that the triangles FY H and XEH
with respective heights LD and KD are similar. Therefore

LD : DK = FY : EX = (FY : AH)(AH : EX) = (BF : BA)(CA : EC)
= (FL : AD)(AD : EK) = FL : EK .

Therefore triangles FLD and EKD are similar, so that ∠LDF = ∠KDE. The result follows.

Solution 4. [A. Murali] Suppose that ∠FDH = α and ∠HDE = β. By the Law of Sines,

|AF |
sinα

=
|AD|

sin∠AFD

and
|AE|
sinβ

=
|AD|

sin∠AED
.
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Therefore
sinα

sinβ
=
|AF |
|AE|

· sin∠AFD

sin∠AED
=
|AF |
|AE|

· sin∠BFD

sin∠CED
.

Since
|BD|

sin∠BFD
=

|BF |
sin∠BDF

=
|BF |
cos α

and
|CD|

sin∠CED
=
|CE|
cos β

,

it follows, using Ceva’s theorem, that

sinα

sinβ
=
|AF |
|AE|

· |BD|
|BF |

· |CE|
|CD|

· cos α

cos β
=
|AF |
|BF |

· |BD|
|CD|

· |CE|
|AE|

· cos α

cos β
.

Therefore tanα = tan β and the desired result follows.

Comment. It was intended that D be an interior point of BC. However, in the case that either B or C
is obtuse, the result can be adapted.

569. Let A,W, B, U, C, V be six points in this order on a circle such that AU , BV and CW all intersect in
the common point P at angles of 60◦. Prove that

|PA|+ |PB|+ |PC| = |PU |+ |PV |+ |PW | .

Solution 1. [A. Abdi] We first recall the result: Suppose that DEF is an equilateral triangle and that
G is a point on the minor arc EF of the circumcircle of DEF . Then |DG| = |EG|+ |FG|. (Select H on DG
so that EH = EG. Since ∠EGH = 60◦, triangle EGH is equilateral. It can be shown that triangle DEH
and FEG are congruent (SAS), so that |DG| = |DH|+ |HG| = |FE|+ |EG|.)

Let O be the centre of the circle and let K, M, N be respective feet of the perpendiculars from O to
AU , BV , CW . Wolog, let K be between P and A, M between P and V and N be between P and C. Since
triangles PKO, PMO and PNO are right with hypotenuse PO, the points O,P,K,M,N are all equidistant
from the midpoint of OP and so are concyclic.

P and M lie on opposite arcs KN so ∠NMK = 180◦ − ∠NPK = 180◦ − ∠CPA = 60◦. Also
∠NKM = ∠NPM = 60◦ and ∠KNM = ∠KPM = 60◦, so that triangle KMN is equilateral and
|PM | = |PK|+ |PN |.

Hence

(|AP |+ |BP |+ |CP |)− (|UP |+ |V P |+ |WP |)
= (|AK|+ |PK|+ |BM | − |PM |+ |CN |+ |PN |)

− (|UK| − |PK|+ |V M |+ |PM |+ |WN | − |PN |)
= (|AK| − |UK|) + (|BM | − |V M |) + (|WN | − |PN |) + 2(|PK| − |PM |+ |PN |)
= 0 .

Comment. Several solvers tried the strategy of comparing the equation for two related positions, either
with the situation where the second position put P at the centre of the circle, where the result is obvious, or
moved P along one of the lines, say UA to a new position. In both case, the fact that the difference in the
lengths of two parallel chords was split evenly to the two half chords played a role, as did the perpendiculars
to the chords for one position of P from the other position of P .
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Solution 2. [P.J. Zhao] Construct equilateral triangles BCD and V WT external to P . Then PBDC
and PWTV are concyclic quadrilaterals so that ∠DPC = ∠DBC = 60◦ = ∠UPC and ∠TPV = ∠TWV =
60◦ = ∠APV . Therefore, the points D,U, P, A, T are collinear.

Since PD = PB + PC and PT = PV + PW (see Solution 1), |PA| + |PB| + |PC| = |DA| and
|PU |+ |PV |+ |PW | = |UT |.

Let O be the centre of the circle. Triangles BDO and CDO are congruent (SSS), so that DO bisects
angle BDC and so is perpendicular to BC. Similarly, OT ⊥ V W .

Let BC and V W intersect UA at E and S respectively. Then

∠ODP = 90◦ − ∠CED = 90◦ − ∠BEP

= 90◦ − (180◦ − 60◦ − ∠CBP )
= 90◦ − (180◦ − 60◦ − ∠V WP )
= 90◦ − ∠V SP = ∠OTP .

Therefore, triangle DOT is isosceles and so OD = OT . Also OU = OA and ∠OUT = ∠OAD. Therefore
triangles DAO and TUO are congruent (ASA) and so DA = UT . Hence

|PA|+ |PB|+ |PC| = |PU |+ |PV |+ |PW | .

Solution 3. [J. Zung] Construct the equilateral triangles BCD and WV T and adopt the notation of
Solution 2. Observe that P is the Fermat point of both triangles ABC and UV W ; this is the point that
minimizes the sum of the distances from P to the vertices of the triangle and is characterized as that point
from which the rays to the vertices meet at an angle of 120◦. This point has the property, that when an
external equilateral triangle is erected on one side of the triangle, the line joining the vertices of the given
triangle and equilateral triangle not on the common side passes through it. In the present situation, this
implies that D,U, P, A, T are collinear.

Consider the rotation with centre D through an angle of 60◦ that takes B → C, C → E, P → Q. Then

∠QCP = ∠QCE + ∠ECD + ∠DCB + ∠BCP

= ∠PBC + 60◦ + 60◦ + ∠BCP = 180◦ .

Thus, Q,C, P are collinear. Since ∠PDQ = 60◦, triangle PDQ is equilateral, so that |PQ| = |PD|. Therefore

|PA|+ |PB|+ |PC| = |PA|+ |CQ|+ |PC|
= |PA|+ |PQ| = |PA|+ |DP | = |DA| .

Similarly, |PU |+ |PV |+ |PT | = |UT |.

Let O be the centre of the circle. Since B,W, V, C are concyclic, ∠BCW = ∠BV W . Since ∠BDC +
∠BPC = 180◦, then B,D,C, P are concyclic and ∠BDP = ∠BCD. Since the right bisector of BC passes
through D and O, ∠BDO = 30◦. Hence

∠ODP = 30◦ − ∠BDP = 30◦ − ∠BCP = 30◦ − ∠BCW .

Similarly, ∠OTP = 30◦−∠BV W . Therefore ∠ODP = ∠OTP , triangle ODT is isosceles and so DF = FT ,
where F is the foot of the perpendicular from O to UA, Since, also, FU = FA, it follows that

|DA| = |DF |+ |FA| = |FT |+ |FU | = |UT |

and the desired result obtains.
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Solution 4. [P. Wen] Let the centre of the circle be at the origin, the coordinates of P be (p, q) and the
respective lengths of PA, PB, PC, PU , PV , PW be a, b, c, u, v, w. Take UA to be parallel to the x−axis.
Then

A ∼ (p + a, q) B ∼ (p− b/2, q + b
√

3/2) C = (p− c/2, q − c
√

3/2)

U ∼ (p− u, q) V ∼ (p + v/2, q − v
√

3/2) W = (p + w/2, q + w
√

3/2) .

Since AO = UO,

(p + a)2 + q2 = (p− u)2 + q2 =⇒ a2 + 2ap = u2 − 2up

=⇒ 0 = (a + u)(a− u + 2p) =⇒ u = a + 2p .

Since BO = V O,

(p− b/2)2 + (q + b
√

3/2)2 = (p + v/2)2 + (q − v
√

3/2)2

=⇒ b2 − b(p− q
√

3) = v2 + v(p− q
√

3)

=⇒ 0 = (b + v)(b− v − p + q
√

3) =⇒ v = b− p + q
√

3 .

Since CO = WO,
c2 − c(p + q

√
3) = w2 + w(p + q

√
3) =⇒ w = c− p− q

√
3 .

Therefore u + v + w = a + b + c.

Solution 5. Let |PA| = a, |PB| = b, |PC| = c, |PU | = u, |PV | = v, |PW | = w. Let r be the radius and
O the centre of the circle. Suppose that |OP | = d. Let A,W, B be on one side of OP and U,C, V be on the
other side.

Let ∠APO = α ≤ 60◦. Then ∠WPO = α + 60◦, ∠BPO = α + 120◦. ∠UPO = 180◦ − α, ∠CPO =
120◦ − α, ∠V PO = 60◦ − α.

Using the Law of Cosines, we obtain that

r2 = a2 + d2 − 2ad cos α

= w2 + d2 − 2wd cos(α + 60◦)

= b2 + d2 − 2bd cos(α + 120◦)

= u2 + d2 − 2ud cos(180◦ − α) = u2 + d2 + 2bd cos α

= c2 + d2 − 2cd cos(120◦ − α) = c2 + d2 + 2cd cos(α + 60◦)

= v2 + d2 − 2vd cos(60◦ − α) = v2 + d2 + 2vd cos(α + 120◦) .

Each of these equations is a quadratic of the form

x2 − (2d cos θ)x + (d2 − r2) = 0 .

It has one positive and one non-positive root. Since r2 − d2 sin2 θ ≥ d2 cos2 θ, the positive root is

2d cos θ +
√

4d2 cos2 θ − 4d2 + 4r2

2
= d cos θ +

√
r2 − d2 sin2 θ .

Hence,
a = d cos α +

√
r2 − d2 sin2 α ;

b = d cos(α + 120◦) +
√

r2 − d2 sin2(α + 120◦) ;

c = −d cos(α + 60◦) +
√

r2 − d2 sin2(α + 60◦) ;
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u = −d cos α +
√

r2 − d2 sin2 α ;

v = −d cos(α + 120◦) +
√

r2 − d2 sin2(α + 120◦) ;

w = d cos(α + 60◦) +
√

r2 − d2 sin2(α + 60◦) ;

therefore
(a + b + c)− (u + v + w) = 2d[cos α + cos(α + 120◦)− cos(α + 60◦)]

= 2d[cos α(1 + cos 120◦ − cos 60◦]− sinα(sin 120◦ − sin 60◦)] = 0 ,

as desired.
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