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Notes. bxc, the floor of x, is the largest integer n that does not exceed x, i.e., that integer n for which
n ≤ x < n + 1. {x}, the fractional part of x, is equal to x − bxc. The notation [PQR] denotes the area
of the triangle PQR. A geometric progression is a sequence for which the ratio of two successive terms is
always the same; its nth term has the general form arn−1. A truncated pyramid is a pyramid with a similar
pyramid on a base parallel to the base of the first pyramid removed. A polyhedron is inscribed in a sphere
if each of its vertices lies on the surface of the sphere.

542. Solve the system of equations
bxc+ 3{y} = 3.9 ,

{x}+ 3byc = 3.4 .

543. Let a > 0 and b be real parameters, and suppose that f is a function taking the set of reals to itself for
which

f(a3x3 + 3a2bx2 + 3ab2x) ≤ x ≤ a3f(x)3 + 3a2bf(x)2 + 3ab2f(x) ,

for all real x. Prove that f is a one-one function that takes the set of real numbers onto itself (i.e., f is
a bijection).

544. Define the real sequences {an : n ≥ 1} and {bn : n ≥ 1} by a1 = 1, an+1 = 5an + 4 and 5bn = an + 1 for
n ≥ 1.

(a) Determine {an} as a function of n.

(b) Prove that {bn : n ≥ 1} is a geometric progression and evaluate the sum
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545. Suppose that x and y are real numbers for which x3 + 3x2 + 4x + 5 = 0 and y3 − 3y2 + 4y − 5 = 0.
Determine (x + y)2008.

546. Let a, a1, a2, · · · , an be a set of positive real numbers for which

a1 + a2 + · · ·+ an = a

1



and
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a
.

Prove that
n∑

k=1

ak

a− ak
= 1 .

547. Let A,B, C, D be four points on a circle, and let E be the fourth point of the parallelogram with vertices
A,B, C. Let AD and BC intersect at M , AB and DC intersect at N , and EC and MN intersect at
F . Prove that the quadrilateral DENF is concyclic.

548. In a sphere of radius R is inscribed a regular hexagonal truncated pyramid whose big base is inscribed
in a great circle of the sphere (ı.e., a whose centre is the centre of the sphere). The length of the side
of the big base is three times the length of the side of a small base. Find the volume of the truncated
pyramid as a function of R.
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