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Problems 654-691

654. Let ABC be an arbitrary triangle with the points D,E, F on the sides BC, CA, AB respectively, so
that

BD

DC
≤ BF

FA
≤ 1

and
AE

EC
≤ AF

FB
.

Prove that [DEF ] ≤ 1
4 [ABC], with equality if and only if two at least of the three points D,E, F are

midpoints of the corresponding sides.
(Note: [XY Z] denotes the area of triangle XY Z.)

655. (a) Three ants crawl along the sides of a fixed triangle in such a way that the centroid (intersection
of the medians) of the triangle they form at any moment remains constant. Show that this centroid
coincides with the centroid of the fixed triangle if one of the ants travels along the entire perimeter of
the triangle.

(b) Is it indeed always possible for a given fixed triangle with one ant at any point on the perimeter of
the triangle to place the remaining two ants somewhere on the perimeter so that the centroid of their
triangle coincides with the centroid of the fixed triangle?

656. Let ABC be a triangle and k be a real constant. Determine the locus of a point M in the plane of the
triangle for which

|MA|2 sin 2A + |MB|2 sin 2B + |MC|2 sin 2C = k .

657. Let a, b, c be positive real numbers for which a + b + c = abc. Find the minimum value of√
1 +

1
a2

+

√
1 +

1
b2

+

√
1 +

1
c2

.

658. Prove that tan 20◦ + 4 sin 20◦ =
√

3.

659. (a) Give an example of a pair a, b of positive integers, not both prime, for which 2a− 1, 2b− 1 and a+ b
are all primes. Determine all possibilities for which a and b are themselves prime.

(b) Suppose a and b are positive integers such that 2a− 1, 2b− 1 and a + b are all primes. Prove that
neither ab + ba nor aa + bb are multiples of a + b.

660. ABC is a triangle and D is a point on AB produced beyond B such that BD = AC, and E is a point
on AC produced beyond C such that CE = AB. The right bisector of BC meets DE at P . Prove that
∠BPC = ∠BAC.

661. Let P be an arbitrary interior point of an equilateral triangle ABC. Prove that

|∠PAB − ∠PAC| ≥ |∠PBC − ∠PCB| .

662. Let n be a positive integer and x > 0. Prove that

(1 + x)n+1 ≥ (n + 1)n+1

nn
x .
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663. Find all functions f : R −→ R such that

x2y2(f(x + y)− f(x)− f(y)) = 3(x + y)f(x)f(y)

for all real numbers x and y.

664. The real numbers x, y, and z satisfy the system of equations

x2 − x = yz + 1;

y2 − y = xz + 1;

z2 − z = xy + 1.

Find all solutions (x, y, z) of the system and determine all possible values of xy + yz + zx + x + y + z
where (x, y, z) is a solution of the system.

665. Let f(x) = x3 + ax2 + bx + b. Determine all integer pairs (a, b) for which f(x) is the product of three
linear factors with integer coefficients.

666. Assume that a face S of a convex polyhedron P has a common edge with every other face of P. Show
that there exists a simple (nonintersecting) closed (not necessarily planar) polygon that consists of edges
of P and passes through all the vertices.

667. Let An be the set of mappings f : {1, 2, 3, · · · , n} −→ {1, 2, 3, · · · , n} such that, if f(k) = i for some i, then
f also assumes all the values 1, 2, · · · , i−1. Prove that the number of elements of An is

∑∞
k=0 kn2−(k+1).

668. The nonisosceles right triangle ABC has ∠CAB = 90◦. The inscribed circle with centre T touches the
sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle meets
UV produced in S. Prove that

(a) ST ‖ BC;

(b) |d1− d2| = r, where r is the radius of the inscribed circle and d1 and d2 are the respective distances
from S to AC and AB.

669. Let n ≥ 3 be a natural number. Prove that

1989|nnnn

− nnn

,

i.e., the number on the right is a multiple of 1989.

670. Consider the sequence of positive integers {1, 12, 123, 1234, 12345, · · ·} where the next term is constructed
by lengthening the previous term at the right-hand end by appending the next positive integer. Note
that this next integer occupies only one place, with “carrying”occurring as in addition. Thus, the ninth
and tenth terms of the sequence are 123456789 and 1234567900 respectively. Determine which terms of
the sequence are divisible by 7.

671. Each point in the plane is coloured with one of three distinct colours. Prove that there are two points
that are unit distant apart with the same colour.

672. The Fibonacci sequence {Fn} is defined by F1 = F2 = 1 and Fn+2 = Fn+1+Fn for n = 0,±1,±2,±3, · · ·.
The real number τ is the positive solution of the quadratic equation x2 = x + 1.

(a) Prove that, for each positive integer n, F−n = (−1)n+1Fn.

(b) Prove that, for each integer n, τn = Fnτ + Fn−1.

(c) Let Gn be any one of the functions Fn+1Fn, Fn+1Fn−1 and F 2
n . In each case, prove that Gn+3+Gn =

2(Gn+2 + Gn+1).
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673. ABC is an isosceles triangle with AB = AC. Let D be the point on the side AC for which CD = 2AD.
Let P be the point on the segment BD such that ∠APC = 90◦. Prove that ∠ABP = ∠PCB.

674. The sides BC, CA, AB of triangle ABC are produced to the poins R, P , Q respectively, so that
CR = AP = BQ. Prove that triangle PQR is equilateral if and only if triangle ABC is equilateral.

675. ABC is a triangle with circumcentre O such that ∠A exceeds 90◦ and AB < AC. Let M and N be
the midpoints of BC and AO, and let D be the intersection of MN and AC. Suppose that AD =
1
2 (AB + AC). Determine ∠A.

676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

for all real x and y.

677. For vectors in three-dimensional real space, establish the identity

[a× (b−c)]2 +[b× (c−a)]2 +[c× (a−b)]2 = (b×c)2 +(c×a)2 +(a×b)2 +(b×c+c×a+a×b)2 .

678. For a, b, c > 0, prove that
1

a(b + 1)
+

1
b(c + 1)

+
1

c(a + 1)
≥ 3

1 + abc
.

679. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.

680. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

681. Let a and b , the latter nonzero, be vectors in R3. Determine the value of λ for which the vector
equation

a− (x× b) = λb

is solvable, and then solve it.

682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

683. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

684. Let x, y, z be positive reals for which xyz = 1. Prove that

x + y

x2 + y2
+

y + z

y2 + z2
+

z + x

z2 + x2
≤
√

x +
√

y +
√

z .

685. Let f : R → R be defined by
f(x) = x− 4bxc+ b2xc ,
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where b·c represents the greatest integer that does not exceed the argument. Determine f(f(x)) and
show that f is a surjective (onto) function.

686. Solve the equation √
6 + 3

√
2 +

√
2 + x +

√
2−

√
2 +

√
2 + x = 2x .

687. Prove that
(1 + 2 + 3 + · · ·+ n)!

1!2! . . . n!
is a natural number for any positive integer n.

688. Solve the equation
2010x + 2010−x = 1 + 2x− x2 .

689. Let BC e a diameter of the circle C and let A be an interior point. Suppose that BA and CA intersect
the circle C at D and E respectively. If the tangents to the circle C at E and D intersect at the point
M , prove that AM ⊥ BC.

690. Let ma, mb, mc; ha, hb, hc be the lengths of the medians and the heights of triangle ABC, where the
notation is used conventionally.

(a) If a ≤ b ≤ c, prove that ha ≥ hb ≥ hc and that ma ≥ mb ≥ mc.

(b) If (
h2

a

hb · hc

)ma

·
(

hb)2

hc · ha

)mb

·
(

hc)2

ha · hb

)mc

= 1 ,

prove that triangle ABC is equilateral.

691. Prove that √
3
√

x + 3
√

y + 3
√

z > 3

√√
x +

√
y +

√
z

for positive integers x, y, z.

Solutions.

654. Let ABC be an arbitrary triangle with the points D,E, F on the sides BC, CA, AB respectively, so
that

BD

DC
≤ BF

FA
≤ 1

and
AE

EC
≤ AF

FB
.

Prove that [DEF ] ≤ 1
4 [ABC], with equality if and only if two at least of the three points D,E, F are

midpoints of the corresponding sides.
(Note: [XY Z] denotes the area of triangle XY Z.)

Solution 1. Let BF = µBA, BD = λBC and CE = νCA.

The conditions are that

λ ≤ µ ≤ 1
2

and 1− ν ≤ 1− µ or µ ≤ ν .
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We observe that [BDF ] = λµ[ABC].

To see this, let BG = λBA. Then

[BDF ] =
µ

λ
[BGD] =

µ

λ
λ2[ABC] = µλ[ABC] .

Similarly [AFE] = (1− µ)(1− λ)[ABC] and [DEC] = ν(1− λ)[ABC].

Hence
[DEF ] = (1− λµ− (1− µ)(1− ν)− ν(1− λ))[ABC]

= (µ− µν − µλ + νλ)[ABC]

=
(

1
4
− (

1
2
− µ)2 − (µ− λ)(ν − µ)

)
[ABC] ≤ 1

4
[ABC]

with equality if and only if µ = 1/2 and either λ = µ = 1/2 or ν = µ = 1/2. The result follows.

Solution 2. Let G be on AC so that FG‖BC. Then, since AE
EC ≤ AF

FB , E lies in the segment AG.

Since BD
DC ≤ BF

FA , DF produced is either parallel to AC or meets CA produced at a point X beyond A.
Hence the distance from G to FD is not less than the distance from E to FD, so that [DEF ] ≤ [FGD].
The area of [FGD] does not change as D varies along BC. To maximize [DEF ] is suffices to consider the
special case of triangle [FGD]. Let AF = xAB. Then FG = xBC and the heights of ∆DFG and ∆ABC
are in the ratio 1− x. Hence

[DFG]
[ABC]

= x(1− x)

which is maximized when x = 1
2 . The result follows from this, with [DEF ] being exactly one quarter of

[ABC] when F and G are the midpoints of AB and AC respectively.

Solution 3. Set up the situation as in the second solution. Let BF = tFA. Then AB = (1 + t)FA, and
the height of the triangle FGD is t/(1 + t) times the height of the triangle ABC. Hence

[DEF ] ≤ [FGD] =
t

(1 + t)2
[ABC] .

Now
1
4
− t

(1 + t)2
=

(1− t)2

4(1 + t)2
≥ 0

so that t(1 + t)−2 ≤ 1/4 and the result follows. Equality occurs if and only if t = 1 and E = G, i.e., F and
E are both midpoints of their sides.

655. (a) Three ants crawl along the sides of a fixed triangle in such a way that the centroid (intersection
of the medians) of the triangle they form at any moment remains constant. Show that this centroid
coincides with the centroid of the fixed triangle if one of the ants travels along the entire perimeter of
the triangle.

(b) Is it indeed always possible for a given fixed triangle with one ant at any point on the perimeter of
the triangle to place the remaining two ants somewhere on the perimeter so that the centroid of their
triangle coincides with the centroid of the fixed triangle?

(a) Solution. Recall that the centroid lies two-thirds of the way along the median from a vertex of the
triangle to its opposite side. Let ABC be the fixed triangle and let PQ‖BC, RS‖AC and TU‖BA with PQ,
RS and TU intersecting in the centroid G.

Observe, for example, that if A, X, Y are collinear and X and Y lie on PQ and BC respectively, then
AX : XY = 2 : 3. It follows from this that, if one ant is at A, then the centroid of the triangle formed
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by the three ants lies inside ∆APQ (otherwise the midpoint of the side opposite the ant at A would not
be in ∆ABC). Similarly, if one ant is at B (respectively C) then the centroid of the ants’ triangle lies
within ∆BRS (respectively ∆CTU). Thus, if one ant traverses the entire perimeter, the centroid of the
ants’ triangle must lie inside the intersection of these three triangles, the singleton {G}. The result follows.

(b) Solution 1. Suppose the vertices of the triangle are given by the planar vectors a, b and c; the
centroid of the triangle is at 1

3 (a + b + c). Suppose that one ant is placed at ta + (1 − t)b for 0 ≤ t ≤ 1.
Place the other two ants at tb + (1− t)c and tc + (1− t)a. The centroid of the ants’ triangle is at

1
3
[(ta + (1− t)b) + (tb + (1− t)c) + (tc + (1− t)a) =

1
3
(a + b + c) .

(b) Solution 2. If one ant is at a vertex, then we can replace the remaining ants at the other vertices of
the fixed triangle. Suppose, wolog, the ant is at X in the side BC.

Let MN be the line joining the midpoints M and N of AB and AC respectively; MN‖BC. Let XG
meet MN at W . Since BG : BN(= CG : CM) = 2 : 3, it follows, by considering the similar triangles BGX
and NGW , that XG : XW = 2 : 3. Hence the midpoint of the segment joining the other two ants’ positions
must be at W . Thus, the problem now is to find points Y and Z on the perimeter of ∆ABC such that W
is the midpoint of Y Z. We use a continuity argument.

Let UV be any segment containing W whose endpoints lie on the perimeter of ∆ABC. Let Y travel
counterclockwise around the perimeter from U to V , and let Z be a point on the perimeter such that W lies
on Y Z. When Y is at U , Y W : WZ = V W : WV , while when Y is at V , Y W : WZ = V W : WU . Hence
Y W : WZ varies continuously from a certain ratio to its reciprocal, so there must be a position for which
Y W = WZ.

(b) Solution 3. [A. Panayotov] Suppose that the triangle has vertices at (0, 0), (1, 0) and (u, v), so that
its centroid is at ( 1

3 (1+u), v
3 ). Wolog, let one ant be at (a, 0) where 0 ≤ a ≤ 1. Put the second ant at (u, v).

Then we will place the third ant at a point (b, 0) on the x−axis. We require that 1
3 (a + b + u) = 1

3 (1 + u),
so that b = 1− a. Clearly, 0 ≤ b ≤ 1 and the result follows.

656. Let ABC be a triangle and k be a real constant. Determine the locus of a point M in the plane of the
triangle for which

|MA|2 sin 2A + |MB|2 sin 2B + |MC|2 sin 2C = k .

Solution. Let O and R be the circumcentre and circumradius, respectively, of triangle ABC. We have
that

|MA|2 = |−−→MA|2 = |−−→MO +−→
OA|2

= |−−→MO|2 + |−→OA|2 + 2−−→MO · −→OA

= |−−→MO|2 + R2 + 2−−→MO · −→OA

with similar expressions for MB and MC. Therefore, we have that

|MA|2 sin 2A + |MB|2 sin 2B + |MC|2 sin 2C = (|MO|2 + R2)(sin 2A + sin 2B + sin 2C)

2−−→MO · (−→OA sin 2A +−−→
OB sin 2B +−−→

OC sin 2C) .

Now
sin 2A + sin 2B + sin 2C = sin 2A + sin 2B − sin(2A + 2B)

= sin 2A(1− cos 2B) + sin 2B(1− cos 2A)

= 2 sin A cos A(2 sin2 B) + 2 sinB cos B(2 sin2 A)
= 4 sin A sinB sin(A + B) = 4 sinA sinB sinC

=
2[ABC]

R2
,
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since [ABC] = 1
2ab sinC = 2R2 sinA sinB sinC.

Also, we have that −→
OA sin 2A +−−→

OB sin 2B +−−→
OC sin 2C = −→

O .

To see this, let P be the intersection of the line AO with the side BC of the triangle. Observe that
∠BOP = 180◦ − 2∠ACB, ∠COP = 180◦ − 2∠ABC, ∠OBC = ∠OCB = 90◦ − ∠BAC. Applying the Law
of Sines to triangle OPC yields that

|OP |
sin(90◦ −A)

=
|OC|

sin(2C + A− 90◦)
.

Since |OC| = R, we find that

|OA| = − cos(2C + A)
cos A

|OP | = −2 sinA cos(2C + A)
2 sinA cos A

|OP |

=
sin 2B + sin 2C

sin 2A
|OP | ,

so that
−→
OA = − sin 2B + sin 2C

sin 2A

−−→
OP .

Applying the Law of Sines in triangle BOP and COP , we obtain that

|OP |
sin(90◦ −A)

=
|BP |
sin 2C

and
|OP |

sin(90◦ −A)
=

|CP |
sin 2B

.

Therefore |BP | sin 2B = |CP | sin 2C, so that

sin 2B
−−→
PB = − sin 2C

−−→
PC

and −→
OA sin 2A +−−→

OB sin 2B +−−→
OC sin 2C = −(sin 2B + sin 2C)−−→OP + sin 2B

−−→
OB + sin 2C

−−→
OC

= sin 2B(−−→OB −−−→OP ) + sin 2C(−−→OC −−−→OP )

= sin 2B
−−→
PB + sin 2C

−−→
PC = −→

O .

Therefore (|MO|2 + R2)(2[ABC]/R2) = k so that

|MO|2 =
k − 2[ABC]

2[ABC]
R2 .

Therefore, when k < 2[ABC], the locus is the empty set. When k = 2[ABC], the locus consists solely of the
circumcentre. When k > 2[ABC], the locus is a circle concentric with the circumcircle.

657. Let a, b, c be positive real numbers for which a + b + c = abc. Find the minimum value of√
1 +

1
a2

+

√
1 +

1
b2

+

√
1 +

1
c2

.

Solution 1. By repeated squaring it can be shown that√
x2 + u2 +

√
y2 + b2 ≥

√
(x + u)2 + (y + v)2 ,
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for x, y, u, v ≥ 0. Applying this inequality yields that√
1 +

1
a2

+

√
1 +

1
b2

+

√
1 +

1
c2
≥

√
(1 + 1)2 + (

1
a

+
1
b
)2 +

√
1 +

1
c2

≥
√

(2 + 1)2 + (
1
a

+
1
b

+
1
c
)2 .

The given condition implies that 1
ab + 1

bc + 1
ca , whereupon(

1
a

+
1
b

+
1
c

)2

≥ 2 +
1
a2

+
1
b2

+
1
c2
≥ 2 +

1
ab

+
1
bc

+
1
ca

= 3 .

It follows that the given expression is not less than 2
√

3, with equality occurring if and only if a = b = c =
√

3.

Solution 2. [S. Sun] Using the inequality x2 + y2 + z2 ≥ xy + yz + zx for real x, y, z, we find that the
square of the quantity in question is not less than

3
(√

1 +
1
a2

√
1 +

1
b2

+

√
1 +

1
b2

√
1 +

1
c2

+

√
1 +

1
c2

√
1 +

1
a2

)
.

From the Arithmetic-Geometric Means Inequality, we find that√
1 +

1
a2

√
1 +

1
b2

=

√
1 +

1
a2

+
1
b2

+
1

a2b2
≥

√
1 +

2
ab

+
1

a2b2
= 1 +

1
ab

,

with similar inequalities for the other products. Since

1
ab

+
1
bc

+
1
ca

=
a + b + c

abc
= 1 ,

we find that the square of the quantity in question is not less than 3× 4 = 12, so that the quantity has the
minimum value 2

√
3, attainable if and only is a = b = c =

√
3.

Solution 3. Let A, B, C be acute angles for which a = tan A, b = tan B and c = tan C. Then

c = − a + b

1− ab
= − tanA + tanB

1− tanA tanB

= − tan(A + B) = tan(π −A−B) ,

so that C = π −A−B. Substituting these values fo a, b, c into the given expression yields

csc A + csc B + csc C

. Since the cosecant function is convex in the interval (0, π/2), by Jensen’s inequality, we deduce that

csc A + csc B + csc C ≥ 3 csc
(

A + B + C

3

)
= 3csc

π

3
= 2

√
3 ,

with equality if and only if A = B = C = π
3 . Thus, the minimum of the given expression is equal to 2

√
3

with equality if and only is a = b = c =
√

3.

658. Prove that tan 20◦ + 4 sin 20◦ =
√

3.

Solution 1. [CJ. Bao] Since

(
√

3/2) cos 20◦ − (1/2) sin 20◦ = sin 60◦ cos 20◦ − cos 60◦ sin 20◦ = sin 40◦ = 2 sin 20◦ cos 20◦ ,
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it follows that √
3 cos 20◦ = sin 20◦ + 4 sin 20◦ cos 20◦a .

Division by cos 20◦ yields the desired result.

Solution 2. Let ABC be a triangle with ∠ABC = 60◦ and ∠CAB = 30◦. Let ABD be a triangle on
the same side of AB with ∠ABD = 40◦ and ∠DAB = 50◦. Suppose that AC and BD intersect at E, and
that the length of BC is 1, so that the respective lengths of CA and AB are

√
3 and 2. Then

|AD| = |AB| sin 40◦ = 4 sin 20◦ cos 20◦

and
|AE| = |AD| sec 20◦ = |AB| cos 50◦ sec 20◦ = 2 sin 40◦ sec 20◦ = 4 sin 20◦ .

However, |CE| = |BC| tan 20◦ = tan 20◦. Therefore

tan 20◦ + 4 sin 20◦ = |CE|+ |AE| = |AC| =
√

3 .

Solution 3. [M. Essafty]

tan 20◦ + 4 sin 20◦ =
sin 20◦ + 4 sin 20◦ cos 20◦

cos 20◦

=
sin 20◦ + 2 sin 40◦

cos 20◦

=
sin(30◦ − 10◦) + 2 sin(30◦ + 10◦

cos(30◦ − 10◦

=
3 sin 30◦ cos 10◦ + sin 10◦ cos 30◦

cos 30◦ cos 10◦ + sin 30◦ sin 10◦

=
3 cos 10◦ +

√
3 sin 10◦√

3 cos 10◦ + sin 10◦
=
√

3 .

Solution 4.

tan 20◦ + 4 sin 20◦ =
sin 20◦ + 4 sin 20◦ cos 20◦

cos 20◦
=

sin 20◦ + 2 sin 40◦

cos 20◦

=
sin 40◦ + 2 sin 30◦ cos 10◦

cos 20◦
=

sin 40◦ + sin 80◦

cos 20◦

=
2 sin 60◦ cos 20◦

cos 20◦
=
√

3 .

Solution 5.

tan 20◦ + 4 sin 20◦ =
sin 20◦ + 4 sin 20◦ cos 20◦

cos 20◦
=

sin 20◦ + 2 sin 40◦

cos 20◦

=
sin 50◦ cos 30◦ − (1/2) cos 50◦ + 2 sin 40◦

cos 20◦

=
sin 50◦ cos 30◦ + (1/2) cos 50◦ + cos 50◦

cos 20◦

=
sin 80◦ + cos 50◦

cos 20◦
=

cos 10◦ + cos 50◦

cos 20◦
2 cos 30◦ cos 20◦

cos 20◦
=
√

3 .
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Solution 6. Let a = cos 20◦. Then, using the de Moivre formula cos 3θ + i sin 3θ = (cos θ + i sin θ)3 with
θ = 20◦, we find that

1
2

= cos 60◦ = 4a3 − 3a

and √
3

2
= 3 sin 20◦ − 4 sin3 20◦ = sin 20◦(3− 4(1− a2)) = sin 20◦(4a2 − 1) .

Therefore

tan 20◦ + 4 sin 20◦ −
√

3 = sin 20◦[(1/a) + 4− 8a2 + 2) = a−1 sin 20◦(1 + 6a− 8a3) = 0 .

Solution 7. [B. Wu]

tan 60◦ − tan 20◦ =
sin 60◦

cos 60◦
− sin 20◦

cos 20◦

=
sin 40◦

cos 60◦ cos 20◦
= 4 sin 20◦ cos 40◦overcos 20◦ = 4 sin 20◦ ,

whence tan 20◦ + 4 sin 20◦ =
√

3.

659. (a) Give an example of a pair a, b of positive integers, not both prime, for which 2a− 1, 2b− 1 and a+ b
are all primes. Determine all possibilities for which a and b are themselves prime.

(b) Suppose a and b are positive integers such that 2a− 1, 2b− 1 and a + b are all primes. Prove that
neither ab + ba nor aa + bb are multiples of a + b.

(a) First solution. (a, b) = (3, 2) yields 2a − 1 = 5, 2b − 1 = 3 and a + b = 5; (a, b) = (3, 4) yields
2a − 1 = 5, 2b − 1 = 7 and a + b = 7. Suppose that a and b are primes. Then for a + b to be prime, a + b
must be odd, so that one of a and b, say b, is equal to 2. Thus, we require the a + 2 and 2a− 1, along with
a, to be prime. This is true when a = 3.

Now suppose a is an odd prime exceeding 3. Then a ≡ ±1 (mod 6), so the only way a and a + 2 can
both be prime is for a ≡ −1 (mod 6), whence 2a − 1 ≡ −3 (mod 6). Thus, 3 divides 2a − 1, and since
2a− 1 ≥ 9, 2a− 1 must be composite.

(b) Solution 1. We first recall a bit of theory. Let p be a prime. By Fermat’s Little Theorem, ap−1 ≡ 1
(mod p) whenever gcd(a, p) = 1. Let d be the smallest positive integer for which ad ≡ ±1 (mod p). Then d
divides p− 1, and indeed divides any positive integer k for which ak ≡ ±1 (mod p). Now to the problem.

Since a + b is prime, a 6= b. Wolog, let a > b and let p = a + b. Then a ≡ −b (mod p), so that

ab + ba ≡ (−b)b + ba ≡ bb((−1)b + ba−b) .

Suppose, if possible, that p divides ab + ba. Then, since b < p, gcd(b, p) = 1 and so ba−b ≡ (−1)b+1 (mod p).
It follows that

b2b−1 = b(p−1)−(a−b) ≡ (−1)b+1 mod p .

Now 2b − 1 is prime, so that 2b − 1 must be the smallest exponent d for which bd ≡ ±1 (mod p). Hence
2b− 1 divides a− b, so that for some positive integer c, a− b = c(2b− 1), whence a = b + 2bc− c and so

2a− 1 = 2b− 1 + (2b− 1)2c = (2b− 1)(2c + 1) .

But 2a−1 is prime and 2b−1 > 1, so 2c+1 = 1 and c = 0. This is a contradiction. Hence p does not divide
ab + ba.
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Similarly, using the fact that ab + ba ≡ (−b)a + bb ≡ bb((−1)aba−b + 1), we can show that p does not
divide aa + bb.

(b) Solution 2. [M. Boase] Suppose that a and b exist as specified. Exactly one of a and b is odd, since
a + b is prime. Let it be a. Modulo a + b, we have that

0 ≡ ab + ba = ab + (−a)a ≡ ab − aa ≡ aa(ab−a − 1) or ab(1− aa−b)

according as a < b or a > b. Hence a|b−a| − 1 ≡ 0 (mod a + b). Now a + b− 1± |b− a| = 2a− 1 or 2b− 1,
and aa+b−1 ≡ 1 (mod a + b) (by Fermat’s Little Theorem). Hence a2a−1 ≡ a2b−1 ≡ 1 (mod a + b). Both
2a− 1 and 2b− 1 exceed 1 and are divisible by the smallest value of m for which am ≡ 1 (mod a + b). Since
both are prime, 2a− 1 = 2b− 1 = m, whence a = b, a contradiction. A similar argument can be applied to
aa + bb.

(c) Solution 3. Suppose, if possible, that one of ab + ba and aa + bb is divisible by a + b. Then a + b
divides their product aa+b +(ab)a +(ab)b + ba+b. By Fermat’s Little Theorem, aa+b + ba+b ≡ a+ b ≡ 0 (mod
a + b), so that (ab)a + (ab)b ≡ 0 (mod a + b). Since a + b is prime, it is odd and so a 6= b. Wolog, let a > b.
Then

(ab)a + (ab)b = (ab)b[(ab)a−b + 1]

and gcd(a, a + b) = gcd(b, a + b) = 1, so that (ab)a−b + 1 ≡ 0 (mod a + b). Since (ab)a+b−1 ≡ 1 (mod a + b),
it follows that (ab)2a−1 ≡ (ab)2b−1 ≡ −1 (mod a+ b). As in the foregoing solution, it follows that a = b, and
we get a contradiction.

660. ABC is a triangle and D is a point on AB produced beyond B such that BD = AC, and E is a point
on AC produced beyond C such that CE = AB. The right bisector of BC meets DE at P . Prove that
∠BPC = ∠BAC.

Solution 1. Let the lengths a, b, c, u and the angles α, β, γ, λ, µ, ν be as indicated in the diagram.

In the solution, we make use of the fact that if p/q = r/s, then both fractions are equal to (p+r)/(q+s).
Since ∠DBP = 90◦ + λ− 2β, it follows that

2µ = 180◦ − (90◦ − α)− (90◦ + λ− 2β) = α + 2β − λ .

Similarly, 2ν = α + 2γ − λ. Using the Law of Sines, we find that

a

sin 2α
=

b

sin 2β
=

c

sin 2γ
=

b + c

sin 2β + sin 2γ
=

b + c

2 sin(β + γ) cos(β − γ)

=
b + c

2 cos α cos(β − γ)
.

Hence
a

sinα
=

b + c

cos(β − γ)
.

Since a = 2u sinλ and, by the Law of Sines,

u

sin(90◦ − α)
=

b

sin 2µ
and

u

sin(90◦ − α)
=

c

sin 2ν
,

we have that

a

2 sinλ cos α
=

u

cos α
=

b

sin 2µ
=

c

sin 2ν
=

b + c

sin 2µ + sin 2ν

=
b + c

2 sin(µ + ν) cos(µ− ν)
=

b + c

2 cos λ cos(β − γ)
=

a

2 cos λ sinα
.
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Hence tanα = tan λ and so α = λ.

Solution 2. Let M be the midpoint of BC. A rotation of 180◦ about M interchanges B and C and
takes E to G, D to F and P to Q. Then AB = CE = BG and AC = BD = CF . Join GA and FA.
Let 2α = ∠BAC. Since AE‖BG and AB is a transversal, ∠GBA = ∠BAC = 2α. Since AB = BG,
∠BGA = 90◦ − α. But ∠BGF = ∠CED = 90◦ − α. Thus, G, A, F are collinear.

Since GF and DE are equidistant from M , we can use Cartesian coordinates with the origin at M ,
the line y = 1 as GF and the line y = −1 as DE. Let A ∼ (a, 1), B ∼ (−u,−mu), C ∼ (u, mu). Then
P ∼ (m,−1), Q ∼ (−m, 1),

D ∼ (a− 2(a + u)
1 + mu

,−1), E ∼ (a +
2(a + u)
1 + mu

,−1) .

Since |AC| = |BD|, we find that u− a = −u− a + 2(a+u)
1+mu , or a = mu2. (We can check this by equating the

slopes of AC and AE.)

The slope of AE is −1/u and of AD is 1/u, so that

tan∠BAC =
−(2/u)

1− (1/u2)
= − 2u

u2 − 1
.

The slope of CQ is (mu− 1)/(m + u) and of BQ is (1 + mu)/(u−m), so that

tan∠BPC = tan ∠BQC =
(mu− 1)(u−m)− (mu + 1)(u + m)
(u−m)(u + m) + (mu− 1)(mu + 1)

=
−2(m2u + u)

u2 −m2 + m2u2 − 1
=

−2(m2 + 1)u
(1 + m2)(u2 − 1)

=
−2u

u2 − 1
.

The result follows.

Solution 3. [M. Boase] Let XAY be drawn parallel to DE.

Since M is the midpoint of BC, the distance from M to DE is the average of the distances from B and
C to DE. Similarly, the distance from M to XY is the average of the distances from B and C to XY . The
distance of B (resp. C) to DE equals the distance of C (resp. B) to XY . Hence, M is equidistant from DE
and XY . If PM produced meets XY in Q, then PM = MQ and so ∠BQC = ∠BPC.

Select R on MQ (possibly produced) so that ∠BAC = ∠BRC. Since ∆ADE‖|∆RBC, ∠RBC =
∠RCB = ∠ADE. Since BARC is a concyclic quadrilateral, ∠BAR = 180◦ − ∠RCB = 180◦ − ∠ADE =
180◦ − ∠XAD = ∠BAQ from which it follows that R = Q and so ∠BPC = ∠BQC = ∠BRC = ∠BAC.

Solution 4. [Jimmy Chui] Set coordinates: A ∼ (0, (m + n)b), B ∼ (−ma, nb), C ∼ (na,mb) D ∼
(−(m + n)a, 0) and E ∼ ((m + n)a, 0) where m = |AB|, n = |AC| and a2 + b2 = 1. Then the line BC has
the equation

m− n

a
x− m + n

b
y + m2 + n2 = 0

and the right bisector of BC has equation

m + n

b
x +

m− n

a
y +

(a2 − b2)(m2 − n2)
2ab

= 0 .

Thus

P ∼
(

(b2 − a2)(m− n)
2a

, 0
)

.

Now
|BC|2 = m2 + n2 + 2mn(a2 − b2)
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and

|BP |2 =
m2 + n2 + 2mn(a2 − b2)

4a2

so that |BC|/|BP | = 2a. Also |DE|/|AD| = 2(m + n)a/(m + n) = 2a so that ∆BPC is similar to ∆ADE
and the result follows.

Solution 5. Determine points L and N on DE such that BL‖AE and LN = NE. Now

LE

LD
=

AB

BD
=

CE

CA

so that CL‖AD and CL : AD = CE : AE. Since AD = DE, CL = CE and so CN ⊥ LE. Consider
the trapezoid CBLE. The line MN joins the midpoints of the nonparallel opposite sides and so MN‖BL.
MPNC is a quadrilateral with right angles at M and N , and so is concyclic. Hence

∠BPC = 2∠MPC = 2∠MNC = 2∠NCE = ∠LCE = ∠BAC .

Solution 6. [C. So] Let F,N, G be the feet of the perpendiculars dropped from B,M,C respectively to
DE. Note that FN = NG, so that MF = MG. Let ∠ADE = ∠AED = θ, |AB| = c, |AC| = b and h be
the altitude of ∆ADE. Then

|MN | = 1
2
[|BF |+ |CG|] =

1
2
(b + c) sin θ =

h

2

and
|DF | = b cos θ , |GE| = c cos θ , |DE| = 2(b + c) cos θ .

Hence |FG| = |DE| − |DF | − |GE| = 1
2 |DE|. Since ∆ADE and ∆MFG are isosceles triangles with heights

and beses in proportion, they are similar so that ∠MFG = ∠ADE = θ. Since ∠BFP = ∠BMG = 90◦, the
quadrilateral BFPM is concyclic and so ∠CBP = ∠MFP = θ (we are supposing that the configuration is
labelled so P lies between F and E). Hence ∆ADE is similar to ∆PCB and so ∠BPC = ∠BAC.

Solution 7. [A. Chan] Let ∠ADE = ∠AED = θ, so ∠BAC = 180◦ − 2θ. Suppose that ∠ACB = φ,
∠CPE = σ and ∠BCP = ρ. By the Law of Sines for triangles ABC and PCE, we find that

2|PC| cos ρ

sin 2θ
=
|AB|
sinφ

whence
sinσ

sin θ
=
|CE|
|PC|

=
|AB|
|PC|

=
2 cos ρ sinφ

sin 2θ

and
sinσ cos θ = sinφ cos ρ .

Therefore
sin(θ + σ) + sin(σ − θ) = sin(φ + ρ) + sin(φ− ρ).

Since θ + σ = φ + ρ, sin(σ − θ) = sin(φ− ρ). Either (σ − θ) + (φ− ρ) = ±180◦ or σ − θ = φ− ρ. In the first
case, since θ + σ = φ + ρ, |σ − ρ| = 90◦, which is false.

Hence σ − θ = φ− ρ, so, with θ + σ = φ + ρ, we have that

2θ = θ + (ρ + σ − φ) = θ + (ρ + ρ− σ) = 2ρ

and the result follows.

Solution 8. [A. Murali] Let F be the midpoint of BC. Observe that triangles ADE and PBC are
isosceles with AD = AE and PB = PC. Suppose that the line parallel to AC through D and the line
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parallel to AD through C meet at N , and let CN intersect DE at M . Since ACND is a parallelogram,
DN = AC. Since triangle CME is similar to triangle ADE, it is isosceles with CM = CE = AB. Since
AD = CN , BMND is a parallelogram. In fact, MN = BD = AC = DN = BM , so that BMND is a
rhombus.

Since P is a point on a diagonal of the rhombus BMND, PB = PN and so triangles PBM and
PNM are congrunent, from which we see that ∠PBM = ∠PNM . Since PC = PB = PN , it follows that
∠PBM = ∠PNC = ∠PCM and quadrilateral BCMP is concyclic. Therefore, ∠BPC = ∠BMC = ∠BAC
(ABMC being a quadrilateral).

Solution 9. [C. Deng] If BC were parallel to DE, then BC would be a midline of triangle ADE and
P would be the reflection of A in the axis BC yielding the desired result. Suppose that BC and DE are
not parallel. Let R be the circumradius of triangle ADE, R1 the circumradius of triangle BDP and R2 the
circumradius of triangle CEP . Observe that AD = AE and PB = PC.

Let the circumcircles of triangles BDP and CEP intersect at O. The point O lies inside triangle ADE.
By the Extended Sine Law,

OP

sin∠PBO
= 2R1 =

PB

sin∠ADE
=

PC

sin∠AED
= 2R2 =

OP

sin∠PCO
.

Since ∠PCO = ∠PEO < ∠PEA < 90◦, the angle PCO is acute. Similarly, angle PBO is acute. Therefore
∠PBO = ∠PCO, so that ∠OBC = ∠OCB and O is on the right bisector of BC. Since

DO = 2R1 sin∠DPO = 2R2 sin∠OPE = EO

, the point O is on the right bisector of DE, which is also the angle bisector of ∠BAC.

Since the quadrilaterals OBDP and OCEP are concyclic,

∠BOC = 360◦ − ∠BOP − ∠COP

= 36◦ − (180◦ − ∠BDP )− (180◦ − ∠CEP )
= ∠ADE + ∠AED = 180◦ − ∠BAC .

Hence quadrilaterla ABOC is concyclic. Also ∠BCO = ∠CBO = 1
2∠BAC.

From Ptolemy’s Theorem, we have that

BC ·AO = AB · CO + AC ·BO = (AB + AB ·BO = AD ·BO .

Therefore

AO = AD · BO

BC
= AD · sin∠BCO

sinBOC
= AD ·

sin 1
2∠BAC

2 sin∠BAC
=

AD

2 cos 1
2∠BAC

= R .

Since O is on the right bisector of DE and AO = R, O is the circumcentre of triangle ADE. Therefore

∠BPC = ∠BPO + ∠CPO = ∠BDO + ∠CEO = ∠OAB + ∠OAC = ∠A .

661. Let P be an arbitrary interior point of an equilateral triangle ABC. Prove that

|∠PAB − ∠PAC| ≥ |∠PBC − ∠PCB| .

Solution. The result is clear if P is on the bisector of the angle at A, since both sides of the inequality
are 0.
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Wolog, let P be closer to AB than AC, and let Q be the image of P under reflection in the bisector of
the angle A. Then

∠PAQ = ∠PAC − ∠QAC = ∠PAC − ∠PAB

and
∠PCQ = ∠QCB − ∠PCB = ∠PBC − ∠PCB .

Thus, it is required to show that ∠PAQ ≥ ∠PCQ.

Produce PQ to meet AB in R and AC in S. Consider the reflection R with axis RS. The circumcircle
C of ∆ARS is carried to a circle C′ with chord RS. Since ∠RCS < 60◦ = ∠RAS and the angle subtended
at the major arc of C′ by RS is 60◦, the point C must lie outside of C′. The circumcircle D of ∆APQ is
carried by R to a circle D′ with chord PQ. Since D is contained in C, D′ must be contained in C′, so C
must lie outside of D′. Hence ∠PCQ must be less than the angle subtended at the major arc of D′ by PQ,
and this angle is equal to ∠PAQ. The result follows.

662. Let n be a positive integer and x > 0. Prove that

(1 + x)n+1 ≥ (n + 1)n+1

nn
x .

Solution 1. By the Arithmetic-Geometric Means Inequality, we have that

1 + x

n + 1
=

n(1/n) + x

n + 1
≥

[(
1
n

)n

x

] 1
n+1

so that
(1 + x)n+1

(n + 1)n+1
≥ x

nn

and the result follows.

Solution 2. (by calculus) Let

f(x) = nn(1 + x)n+1 − (n + 1)n+1x for x > 0 .

Then
f ′(x) = (n + 1)[nn(1 + x)n − (n + 1)n] = (n + 1)nn[(1 + x)n − (1 +

1
n

)n]

so that f ′(x) < 0 for 0 < x < 1/n and f ′(x) > 0 for 1/n < x. Thus f(x) attains its minimum value 0 when
x = 1/n and so f(x) ≥ 0 when x > 0. The result follows.

Solution 3. (by calculus) Let g(x) = (1+x)n+1x−1. Then g′(x) = (1+x)nx−2[nx− 1], so that g(x) < 0
for 0 < x < 1/n and g′(x) > 0 for x > 1/n. Therefore g(x) assumes its minimum value of (n + 1)n+1n−n

when x = 1/n, and the result follows.

Solution 4. [G. Ghosn] We make the substituion t = (nx)1/(n+1) ⇔ x = tn+1/n. Then it is required to
prove that

1 +
tn+1

n
≥ (n + 1)t

n
.

Observe that

tn+1 − (n + 1)t− n = t(tn − 1)− n(t− 1) = (t− 1)(tn + tn−1 + · · ·+ t− n)

= (t− 1)[(tn − 1) + (tn−1 − 1) + · · ·+ (t− 1)]

= (t− 1)2[tn−1 + 2tn−2 + · · ·+ (n− 1)] ≥ 0 ,
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for t > 0. The desired result follows.

Solution 5. Let u = nx− 1 so that x = (1 + u)/n. Then

(1 + x)n+1 − (n + 1)n+1

nn
x = (1 +

1
n

+
u

n
)n+1 − (1 +

1
n

)n+1(1 + u)

= (1 +
1
n

)n+1 + (n + 1)(1 +
1
n

)n u

n
+

(
n + 1

2

)
(1 +

1
n

)n−1(
u

n
)2

+
(

n + 1
3

)
(1 +

1
n

)n−2(
u

n
)3 + · · · − (1 +

1
n

)n+1(1 + u)

=
(

n + 1
2

)
(1 +

1
n

)n−1(
u

n
)2 +

(
n + 1

3

)
(1 +

1
n

)n−2(
u

n
)3 + · · · .

This is clearly nonnegative when u ≥ 0. Suppose that −1 < u < 0. For 1 ≤ k ≤ n/2, we have that(
n + 1
2k

)
(1 +

1
n

)n−2k+1(
u

n
)2k +

(
n + 1
2k + 1

)
(1 +

1
n

)n−2k(
u

n
)2k+1

=
(n + 1)!(1 + 1/n)n−2k

(2k + 1)!(n + 1− 2k)!

(
u

n

)2k

[(2k + 1)(1 +
1
n

) + (n + 1− 2k)(
u

n
)] .

This will be nonnegative if and only if the quantity in square brackets is nonnegative. Since u > −1, this
quantity exceeds

(2k + 1)(1 +
1
n

)− (n + 1− 2k)(
1
n

) =
(

n + 1
n

)
(2k + 1− 1)− 2k

n
= 2k > 0 .

Thus, each consecutive pair of terms in the sequence(
n + 1

2

)
(1 +

1
n

)n−1(
u

n
)2 +

(
n + 1

3

)
(1 +

1
n

)n−2(
u

n
)3 + · · ·

has a positive sum and so the desired result follows.

663. Find all functions f : R −→ R such that

x2y2(f(x + y)− f(x)− f(y)) = 3(x + y)f(x)f(y)

for all real numbers x and y.

Solution. An obvious solution if f(x) ≡ 0. A less obvious solution is that f(0) is arbitrary and f(x) = 0
when x 6= 0. Henceforth, assume that f(x) 6= 0 for at least one nonzero value of x.

Setting y = 0 yields that 0 = 3xf(x)f(0) for all x, whence f(0) = 0. Setting y = −x yields that
x4[−f(x)− f(−x)] = 0, so that f(x) = −f(−x) for all nonzero x.

Setting y = x yields that

f(2x) =
6
x3

f(x)2 + 2f(x)

for all nonzero x, while the sum x = 2x + (−x) leads to

4x4[2f(x)− f(2x)] = 3xf(2x)f(−x) = −3xf(2x)f(x) .

Therefore

4x3

[
6
x3

f(x)2
]

= 3
[

6
x3

f(x)2 + 2f(x)
]
f(x)
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so that
8x3f(x)2 = 6f(x)3 + 2x3f(x)2

or
f(x)3 = x3f(x)2 .

Therefore, for each real x, either f(x) = 0 or f(x) = x3.

Suppose that f(z) = 0 for some real z. Select x so that f(x) 6= 0 and let y = z − x. Then, since
x2y2[−f(x)− f(y)] = 3zf(x)f(y), f(y) 6= 0. Thus f(x) = x3, f(y) = y3 so that

−x2y2(x3 + y3) = 3(x + y)x3y3 .

This simplifies to
0 = x2y2(x + y)(x2 + 2xy + y2) = x2y2(x + y)3

with the result that z = x + y = 0. Therefore f(x) = x3 for all real x (including 0).

664. The real numbers x, y, and z satisfy the system of equations

x2 − x = yz + 1;

y2 − y = xz + 1;

z2 − z = xy + 1.

Find all solutions (x, y, z) of the system and determine all possible values of xy + yz + zx + x + y + z
where (x, y, z) is a solution of the system.

Solution. First we dispose of the situation that not all the variables takes distinct values. If x = y = z,
then the equations reduce to x = −1, so that (x, y, z) = (−1,−1,−1) is a solution and x+y+z+xy+yz+zx =
0.

By subtracting equations in pairs, we find that

0 = (x− y)(x + y + z − 1) = (y − z)(x + y + z − 1) = (z − x)(x + y + z − 1) .

Suppose that x 6= y = z. Then we must have x + 2y = 1 and x2 − x = y2 + 1, so that 0 = 3y2 − 2y − 1 =
(3y + 1)(y− 1). This leads to the two soutions (x, y, z) = (−1, 1, 1), ( 5

3 ,− 1
3 ,− 1

3 . Symmetric permutations of
these also are solutions and we find that x + y + z + xy + yz + zx = 0.

Henceforth, assume that the values of x, y, z are distinct. Any solution x, y, z of the system must satisfy
the cubic equation

t3 − t2 − t = xyz .

In particular, from the coefficients, we find that x+ y + z = 1 and xy + yz + zx = −1 whence xy + yz + zx+
x + y + z = 1.

Conversely, suppose that we take any real number w. Let x, y, z be the roots of the cubic equation

t3 − t2 − t = w .

Then xyz = w. If w = 0, then the cubic equation has the roots {0, 1
2 (1 +

√
5), 1

2 (1 −
√

5)} and it can be
checked that assigning these as the values of x, y and z any order will yields a solution to the given equation.
If w 6= 0, then plugging the roots into the equation and dividing by it will yield the given system.

All that remains is to discover which values of w will yield three real roots for the cubic. Let f(t) =
t3 − t2 − t. This function assumes a maximum value of 5/27 at t = −1/3 and a minimum value of −1 when
t = 1. Thus f(t) assumes each value in the closed interval [−1, 5/27] three times, counting multiplicity, and
each other real value exactly once.
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Thus, the solutions of the system are the roots of the cubic equation t3 − t2 − t = w, where w is any
real number selected from the interval [−1, 5/27].

(Note, that the “extreme” solutions are (x, y, z) = (1, 1,−1), (−1/3,−1/3, 5/3). The only solution not
related to the cubic is (x, y, z) = (−1,−1,−1).)

Comment. G. Ajjanagadde, in the case of distinct values of x, y and z, obtained the equations x+y+z =
1 and xy + yz + zx = −1, whence, for given value of x, we get the system y + z = 1−x and yz = x2−x− 1,
so that y and z are solutions of the quadratic equation

t2 − (1− x)t + (x2 − x− 1) = 0 .

The discriminant of this quadratic is

(1− x)2 − 4(x2 − x− 1) = −3x2 + 2x + 5 = −(3x− 5)(x + 1) .

Thus, we will obtain real values of x, y, z if and only if x, y and z lies between −1 and 5/3 inclusive.

665. Let f(x) = x3 + ax2 + bx + b. Determine all integer pairs (a, b) for which f(x) is the product of three
linear factors with integer coefficients.

Solution. If b = 0, then the polynomial becomes x2(x + a), which satisfies the condition for all values of
a. This covers the situation for which x is a factor of the polynomial. Since the leading coefficient of f(x) is
1, the same must be true (up to sign) of its factors. Assume that f(x) = (x + u)(x + v)(x + w) for integers
u, v and w with uvw 6= 0. Since uvw = uv + vw + wu = b,

1
u

+
1
v

+
1
w

= 1 .

It is clearly not possible for all of u, v and w to be negative. Nor can it occur that two of them, say v and
w can be negative, for then the left side would be less than 1/u ≤ 1. Suppose that u and v are positive,
while w is negative. One possibility is that u = 1 and v = −w in which case f(x) = (x + 1)(x2 − v2) =
x3 + x2 − v2x − v2. If neither u nor v is equal to 1, then 1/u + 1/v + 1/w < 1/u + 1/v ≤ 1, and this case
is not possible. Finally, suppose that u, v and w are all positive, with u ≤ v ≤ w. Then 1 ≤ 3/u, so that
u ≤ 3. A little trial and error leads to the possibilities (u, v, w) = (3, 3, 3), (2, 4, 4) and (2, 3, 6). Thus the
possibilities for (a, b) are (u, 0), (1,−v2), (9, 27), (10, 32) and (11, 36). Indeed, x3 +9x2 +27x+27 = (x+3)3,
x3 + 10x2 + 32x + 32 = (x + 2)(x + 4)2 and x3 + 11x2 + 36x + 36 = (x + 2)(x + 3)(x + 6).

666. Assume that a face S of a convex polyhedron P has a common edge with every other face of P. Show
that there exists a simple (nonintersecting) closed (not necessarily planar) polygon that consists of edges
of P and passes through all the vertices.

Solution. Suppose that the face S has m vertices A1, A2, · · ·, Am listed in order, and that there are n
vertices of P not contained in S. We prove the result by induction on n. If n = 1, then every face abutting S
is a triangle. Let X be the vertex off S; then A1 · · ·AmXA1 is a polygonal path of the desired type. Suppose
that the result holds for any number of vertices m of S and for n vertices off S where 1 ≤ n ≤ k. Consider
the case n = k + 1.

Consider the graph G of all vertices of P and those edges of P not bounding S. Since there are no faces
bounded solely by these edges, the graph must be a tree (i.e., it contains no loops and there is a unique path
joining any pair of points). We show that there is at least one vertex X not in S for which every edge but
one must connect X to a vertex of S. Suppose otherwise. Then, let us start with such a vertex X and form
a sequence X1, X2, · · · of vertices not in S such that XiXi+1 are edges of P. Since the number of vertices
off S is finite, there must be i < j for which Xi = Xj so that XiXi+1 · · ·Xj−1Xj is a loop in G. But this
contradicts the fact that G is a tree.
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Hence there is a vertex X with at most one adjacent edge not connecting it to S. If there were no such
edge, then X would be the only vertex not in S, contradicting k + 1 ≥ 2. Hence there is a vertex Y not in
S such that XY is an edge of P. We may assume that Y is further from the plane of S than S. (If not,
suppose that S is in the plane z = 0 and that P lies in the quadrant z > 0, y > 0 with Y further than X
from the plane y = 0. We can transform P by a mapping of the type (x, y, z) → (x, y, z + λy) for suitable
positive λ. This will not alter the configuration of vertices and edges.) Extend Y X to a point Z in the plane
of S. Let Q be the convex hull of (smallest closed convex set containing) Z and P. This will have a side
T containing S of the form A1A2 · · ·ArZAs · · ·Am where r < s. The triangles XZAr and XZAs will be
coplanar with faces of P, and the convex hull will have at most k vertices not on T . Every face of Q will
abut T . By the induction hypothesis, we can construct a polygon containing each vertex of Q. If an edge of
this polygon is Y Z and so includes X, and if one edge is say ZAr, then we can replace these two edges by
Y XAsAs−1 · · ·Ar+1Ar. If Y Z is not an edge of this polygon, but ArZ and ZAs are, then we can replace
these edges by ArXAr+1 · · ·As. In both cases, we obtain a polygon of the required type for P.

667. Let An be the set of mappings f : {1, 2, 3, · · · , n} −→ {1, 2, 3, · · · , n} such that, if f(k) = i for some i, then
f also assumes all the values 1, 2, · · · , i−1. Prove that the number of elements of An is

∑∞
k=0 kn2−(k+1).

Solution 1. Let u0 = 1 and, for n ≥ 1, let un be the number of elements in An. Let 1 ≤ r ≤ n. Consider
the set of mappings in An for which the value 1 is assumed exactly r times. Then 1 ≤ r ≤ n. Then each
such mapping takes a set of n − r points onto a set of the form {2, 3, · · · , s} where s − 1 ≤ n − r ≤ n − 1.
Hence, there are un−r such mappings. Since there are

(
n
r

)
possible sets on which a mapping may assume the

value 1 r times,

un =
n∑

r=1

(
n

r

)
un−r =

n−1∑
r=0

(
n

r

)
ur .

Now u0 = 1 =
∑∞

k=0 1/2k+1. Assume, as an induction hypothesis, that ur =
∑∞

k=0 kr/2k+1. Then

un =
n−1∑
r=0

(
n

r

)
ur =

n−1∑
r=0

(
n

r

) ∞∑
k=0

kr

2k+1

=
∞∑

k=0

1
2k+1

n−1∑
r=0

(
n

r

)
kr =

∞∑
k=0

1
2k+1

[(1 + k)n − kn]

=
∞∑

k=0

(1 + k)n

2k+1
−

∞∑
k=0

kn

2k+1
=

∞∑
k=1

kn

2k
−

∞∑
k=1

kn

2k+1

=
∞∑

k=1

kn

2k+1

and the result follows. (The interchange of the order of summation and rearrangement of terms in the infinite
sum can be justified by the absolute convergence of the series.)

Solution 2. For 1 ≤ i, let vi be the number of mappings of {1, 2, · · · , n} onto a set of exactly i elements.
Observe that vi = 0 when i ≥ n + 1. There are kn mappings of {1, 2, · · · , n} into {1, 2, · · · , k}, of which vk

belong to An. The other kn − vk mappings will leave out i numbers in the range for some 1 ≤ i ≤ k − 1,
and the i numbers not found can be selected in

(
k
i

)
ways. Thus

kn =
k∑

i=1

(
k

i

)
vi .

Hence
∞∑

k=0

kn

2k+1
=

∞∑
k=0

k∑
i=1

(
k
i

)
vi

2k+1
=

∞∑
k=0

n∑
i=1

(
k
i

)
vi

2k+1

=
n∑

i=1

( ∞∑
k=0

(
k
i

)
2k+1

)
vi =

n∑
i=1

( ∞∑
k=i

(
k
i

)
2k+1

)
vi .
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We evaluate the inner sum. Fix the positive integer i. Suppose that we flip a fair coin an indefinite number
of times, and consider the event that the (i + 1)th head occurs on the (k + 1)th toss. Then the previous i
heads could have occurred in

(
k
i

)
posible positions, so that the probability of the event is

(
k
i

)
2−(k+1). Since

the (i + 1)th head must occur on some toss with probability 1,
∑∞

k=i

(
k
i

)
2−(k+1) = 1. Hence

∞∑
k=0

kn

2k+1
=

n∑
i=1

vi = #An .

Solution 3. [C. Deng] Let sn =
∑∞

k=0 kn2−(k+1); note that s0 = s1 = 1. Let w0 = 1 and wn = #An for
n ≥ 1, so that, in particular, w1 = 1.

For n ≥ 0,

sn+1 = 2sn+1 − sn+1 = 2
∞∑

k=0

kn+12−(k+1) −
∞∑

k=0

kn+12−(k+1)

=
∞∑

k=0

[(k + 1)n+1 − kn+1]2−(k+1)

=
∞∑

k=0

( n∑
i=0

(
n + 1

i

)
ki

)
2−(k+1)

=
n∑

i=0

( ∞∑
k=0

(
n + 1

i

)
ki2−(k+1)

)

=
n∑

i=0

(
n + 1

i

)
si .

We now show that wn satisfies the same recursion. Suppose that g is an arbitrary element of An+1 and
that its maximum appears n+1− i times, where 0 ≤ i ≤ n. Then there are

(
n+1

i

)
ways to fill in i remaining

slots with numbers without leaving gaps in the range, and then we can fill in the remaining n + 1 − i slots
with one more than the largest number in the range of the i slots. Thus, we find that wn+1 =

∑n
i=0

(
n+1

i

)
wi.

The desired result now follows, since s0 − w0.

668. The nonisosceles right triangle ABC has ∠CAB = 90◦. The inscribed circle with centre T touches the
sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle meets
UV produced in S. Prove that

(a) ST ‖ BC;

(b) |d1− d2| = r, where r is the radius of the inscribed circle and d1 and d2 are the respective distances
from S to AC and AB.

(a) Solution 1. Wolog, suppose that the situation is as diagrammed. ∠BAC = ∠AUT = ∠AV T = 90◦,
so that AUV T is a rectangle with AU = AV and UT = V T . Hence AUTV is a square with diagonals AT
and UV which right-bisect each other at W . Since SW right-bisects AT , by reflection in the line SW , we
see that ∆ASU ≡ ∆UST , and so ∠UTS = ∠UAS.

Let M be the midpoint of BC. Then M is the circumcentre of ∆ABC, so that MA = MC and
∠MCA = ∠MAC. Since AS is tangent to the circumcircle of ∆ABC, AS ⊥ AM . Hence

∠UTS = ∠UAS = ∠SAM − ∠BAM = 90◦ − ∠BAM = ∠MAC = ∠MCA .

Now UT ⊥ AB implies that UT‖AC. Since ∠UTS = ∠ACB, it follows that ST‖BC.

Solution 2. Wolog, suppose that S is on the opposite side of AB to C.
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BT , being a part of the diameter produced of the inscribed circle, is a line of reflection that takes the
circle to itself and takes the tangent BA to BC. Hence ∠UBT = 1

2∠ABC. Let α = ∠ABT . By the tangent-
chord theorem applied to the circumscribed circle, ∠XAC = ∠ABC = 2α, so that ∠SAU = 90◦ − 2α.

Consider triangles SAU and STU . Since AUTV is a square (see the first solution), AU = UT and
∠AUV = ∠TUV = 45◦ so ∠SUA = ∠SUT = 135◦. Also SU is common. Hence ∆SAU ≡ ∆STU , so
∠STU = ∠SAU = 90◦ − 2α. Therefore,

∠STB = ∠UTB − ∠STU = (90◦ − α)− (90◦ − 2α) = α = ∠TBC

from which it results that ST‖BC.

Solution 3. As before ∆AUS ≡ ∆TUS, so ∠SAU = ∠STU . Since UT‖AC, ∠STU = ∠SY A. Also, by
the tangent-chord theorem, ∠SAB = ∠ACB. Hence ∠SY A = ∠STU = ∠SAB = ∠ACB, so ST‖BC.

Solution 4. In the Cartesian plane, let A ∼ (0, 0), B ∼ (0,−b), C ∼ (c, 0). The centre of the circum-
scribed circle is at M ∼ (c/2,−b/2). Since the slope of AM is −b/c, the equation of the tangent to the
circumscribed circle through A is y = (c/b)x. Let r be the radius of the inscribed circle. Since AU = AV , the
equation of the line UV is y = x− r. The abscissa of S is the solution of x− r = (cx)/b, so S ∼ ( br

b−c , cr
b−c ).

Since T ∼ (r,−r), the slope of ST is b/c and the result follows.

(b) Solution 1. [· · ·] denotes area. Wolog, suppose that d1 > d2, as diagrammed.

Let r be the inradius of ∆ABC. Then [AV U ] = 1
2r2, [AV S] = 1

2rd1 and [AUS] = 1
2rd2. From

[AV U ] = [AV S]− [AUS], it follows that r2 = rd1 − rd2, whence r = d1 − d2.

Solution 2. [F. Crnogorac] Suppose that the situation is as diagrammed. Let P and Q be the respective
feet of the perpendiculars from S to AC and AB. Since ∠PV S = 45◦ and ∠SPV = 90◦, ∆PSV is isosceles
and so PS = PV = PA + AV = SQ + AV , i.e., d1 = d2 + r.

Solution 3. Using the coordinates of the fourth solution of (a), we find that

d1 =
∣∣∣∣ cr

b− c

∣∣∣∣ and d2 =
∣∣∣∣ br

b− c

∣∣∣∣
whence |d2 − d1| = r as desired.

(b) Solution. [M. Boase] Wolog, assume that the configuration is as diagrammed.

Since ∠SUB = ∠AUV = 45◦, SU is parallel to the external bisector of ∠A. This bisector is the locus
of points equidistant from AB and CA produced. Wolog, let PS meet this bisector in W , as in the diagram.
Then PW = PA so that PS − PA = PS − PW = SW = AU and thus d1 − d2 = r.

669. Let n ≥ 3 be a natural number. Prove that

1989|nnnn

− nnn

,

i.e., the number on the right is a multiple of 1989.

Solution 1. Let N = nnnn

− nnn

. Since 1989 = 32 · 13 · 17,

N ≡ 0 (mod 1989) ⇔ N ≡ 0 (mod 9, 13 & 17) .

We require the following facts:
(i) xu ≡ 0 (mod 9) whenever u ≥ 2 and x ≡ 0 (mod 3).
(ii) x6 ≡ 1 (mod 9) whenever x 6≡ 0 (mod 3).
(iii) xu ≡ 0 (mod 13) whenever x ≡ 0 (mod 13).
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(iv) x12 ≡ 1 (mod 13) whenever x 6≡ 0 (mod 13), by Fermat’s Little Theorem.
(v) xu ≡ 0 (mod 17) whenever x ≡ 0 (mod 17).
(vi) x16 ≡ 1 (mod 17) whenever x 6≡ 0 (mod 17), by FLT.
(vii) x4 ≡ 1 (mod 16) whenever x = 2y + 1 is odd. (For, (2y + 1)4 = 16y3(y + 2) + 8y(3y + 1) + 1 ≡ 1
(mod 16).)

Note that

N = nnn

[
n(nnn

−nn) − 1
]

= nnn

[
nnn(nnn−n−1) − 1

]
.

Modulo 17. If n ≡ 0 (mod 17), then nnn ≡ 0, and so N ≡ 0 (mod 17).

If n is even, n ≥ 4, then nn ≡ 0 (mod 16), so that

nnn(nnn−n−1) ≡ 1(nnn−n−1) ≡ 1

so N ≡ 0 (mod 17).

Suppose that n is odd. Then nn ≡ n (mod 4)

⇒ nn − n = 4r for some r ∈ N

⇒ nnn−n = n4r ≡ 1 (mod 16)

⇒ nnn−n − 1 ≡ 0 (mod 16)

⇒ nnn(nnn−n−1) ≡ 1 (mod 17

⇒ N ≡ 0 (mod 17) .

Hence N ≡ 0 (mod 17) for all n ≥ 3.

Modulo 13. If n ≡ 0 (mod 13), then nnn ≡ 0 and N ≡ 0 (mod 13).

Suppose that n is even. Then nn ≡ 0 (mod 4), so that nnn − nn ≡ 0 (mod 4). Suppose that n is odd.
Then nnn−n − 1 ≡ 0 (mod 16) and so nnn − nn ≡ 0 (mod 4).

If n ≡ 0 (mod 3), then nn ≡ 0 so nn(nnn−n − 1) ≡ 0 (mod 3). If n ≡ 1 (mod 3), then nnn−n ≡ 1 so
nn(nnn−n−1) ≡ 0 (mod 3). If n ≡ 2 (mod 3), then, as nn−n is always even, nnn−n ≡ 1 so nn(nnn−n−1) ≡ 0
(mod 3). Hence, for all n, nnn − nn ≡ 0 (mod 3).

It follows that nnn − nn ≡ 0 (mod 12) for all values of n. Hence, when n is not a multiple of 13,
n(nnn

−n) ≡ 1 so N ≡ 0 (mod 13).

Modulo 9. If n ≡ 0 (mod 3), then nnn ≡ 0 (mod 9), so N ≡ 0 (mod 9). Let n 6≡ 0 (mod 9). Since
nnn − nn is divisible by 12, it is divisible by 6, and so n(nnn

−nn) ≡ 1 and N ≡ 0 (mod 9). Hence N ≡ 0
(mod 9) for all n.

The required result follows.

670. Consider the sequence of positive integers {1, 12, 123, 1234, 12345, · · ·} where the next term is constructed
by lengthening the previous term at the right-hand end by appending the next positive integer. Note
that this next integer occupies only one place, with “carrying”occurring as in addition. Thus, the ninth
and tenth terms of the sequence are 123456789 and 1234567900 respectively. Determine which terms of
the sequence are divisible by 7.

Solution 1. For positive integer n, let xn be the nth term of the sequence, and let x0 = 0. Then, for
n ≥ 0, xn+1 = 10xn + (n + 1) so that xn+1 ≡ 3xn + (n + 1) (mod 7). Suppose that m is a nonnegative
integer and that x7m = a. Then

x7m+1 ≡ 3a + 1 x7m+2 ≡ 2a + 5 x7m+3 ≡ 6a + 4 x7m+4 ≡ 4a + 2
x7m+5 ≡ 5a + 4 x7m+6 ≡ a + 4 x7m+7 ≡ 3a + 5
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In particular, we find that, modulo 7, {x7m} is periodic with the values {0, 5, 6, 2, 4, 3} repeated, so that
0 ≡ x0 ≡ x42 ≡ x84 ≡ · · ·. Hence, modulo 7, x7m+1 ≡ 0 iff a ≡ 2, x7m+2 ≡ 0 iff a ≡ 1, x7m+3 ≡ 0 iff a ≡ 4,
x7m+4 ≡ 0 iff a ≡ 3, x7m+5 ≡ 0 iff a ≡ 2 and x7m+6 ≡ 0 iff a ≡ 3. Putting this all together, we find that
xn ≡ 0 (mod 7) if and only if n ≡ 0, 22, 26, 31, 39, 41 (mod 42).

Solution 2. [C. Deng] Recall the formula

rn−1 + 2rn−2 + · · ·+ (n− 1)r + n =
rn+1 − r − (r − 1)n

(r − 1)2
.

[Derive this.] Noting that

an = 1 · 10n−1 + 2 · · · 10n−2 + · · ·+ (n− 1) · 10 + n ,

we find that
81an = 10n+1 − 10− 9n

for each positive integer n. Therefore

81(an+42 − an) = 10n+1((106)7 − 1)− 9(42)

for each positive integer n. Since 106 ≡ 1 (modulo 7), it follows that an+42 ≡ an (modulo 7), so that the
sequence has period 42 (modulo 7). Thus, the value of n for which an is divisible by 7 are the solutions of
the congruence 3n+1 ≡ 2n + 3 (modulo 7). These are n ≡ 22, 26, 31, 39, 41, 42 (modulo 7).

671. Each point in the plane is coloured with one of three distinct colours. Prove that there are two points
that are unit distant apart with the same colour.

Solution 1. Suppose that the points in the plane are coloured with three colours. Select any point P .

We form two rhombi PQSR and PUWV , one the rotated image of the other for which all of the
following segments have unit length: PQ, PR, SQ, SR, QR, PU , PV , WU , WV , UV , SW . If P,Q,R are
all coloured differently, then either the result holds or S must have the same colour as P . If P,U, V are all
coloured differently, then either the result holds or W must have the same colour as P . Hence, either one of
the triangles PQR and PUV has two vertices the same colour, or else S and W must be coloured the same.

Solution 2. Suppose, if possible, the planar points can be coloured without two points unit distance
apart being coloured the same. Then if A and B are distant

√
3 apart, then there are distinct points C

and D such that ACD and BCD are equilateral triangles (ABCD is a rhombus). Since A and B must be
coloured differently from the two colours of C and D, A and B must have the same colour. Hence, if O is
any point in the plane, every point on the circle of radius

√
3 consists of points coloured the same as O. But

there are two points on this circle unit distant apart, and we get a contradiction of our initial assumption.

Solution 3. Suppose we can colour the points of the plane with three colours, red, blue and yellow so
that the result fails. We show that three collinear points at unit distance are coloured with three different
colours. Let P,Q,R be three such points, and let P,R be opposite sides of a unit hexagon ABPCDR whose
centre is Q.

If, say, Q is red, B and A must be coloured differently, as are A and R, R and D, D and C, C and P ,
P and B. Thus, B, R, C, are one colour, say, blue, and A, D, P the other, say yellow. The preliminary
result follows.

Now consider any isosceles triangle UV W with |UV | = |UW | = 3 and |V W | = 2. It follows from the
preliminary result that U and V must have the same colour, as do U and W . But V and W cannot have
the same colour and we reach a contradiction.

Solution 4. [D. Arthur] Suppose that the result is false. Let A, B be two points with |AB| = 3. Within
the segment AB select PQ with |AP | = |PQ| = |QB| = 1, and suppose that R and S are points on the same
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side of AB with ∆RAP and ∆SPQ equilateral. Then |RS| = 1. Suppose if possible that A and Q have the
same colour. Then P must have a second colour and R and S the third, leading to a contradiction. Hence
A must be coloured differently from both P and Q. Similarly B must be coloured differently from both P
and Q. Since P and Q are coloured differently, A and B must have the same colour.

Now consider a trapezoid ABCD with |CB| = |AB| = |AD| = 3 and |CD| = 1. By the foregoing
observation, C, A, B, D must have the same colour. But this yields a contradiction. The result follows.

672. The Fibonacci sequence {Fn} is defined by F1 = F2 = 1 and Fn+2 = Fn+1+Fn for n = 0,±1,±2,±3, · · ·.
The real number τ is the positive solution of the quadratic equation x2 = x + 1.

(a) Prove that, for each positive integer n, F−n = (−1)n+1Fn.

(b) Prove that, for each integer n, τn = Fnτ + Fn−1.

(c) Let Gn be any one of the functions Fn+1Fn, Fn+1Fn−1 and F 2
n . In each case, prove that Gn+3+Gn =

2(Gn+2 + Gn+1).

(a) Solution. Since F0 = F2 − F1 = 0, the result holds for n = 0. Since F−1 = F1 − F0 = 1, the result
holds for n = 1. Suppose that we have established the result for n = 0, 1, 2, · · · r. Then

F−(r+1) = F−r−1 = F−r+1 − F−r = (−1)rFr−1 − (−1)r+1Fr = (−1)r+2(Fr−1 + Fr) = (−1)r+2Fr+1 .

The result follows by induction.

(b) Solution 1. The result holds for n = 0, n = 1 and n = 2. Suppose that it holds for n = 0, 1, 2, · · · , r.
Then

τ r+1 = τ r + τ r−1 = (Fr + Fr−1)τ + (Fr−1 + Fr−2) = Fr+1τ + Frτ .

This establishes the result for positive values of n. Now τ−1 = τ − 1 = F−1τ + F−2, so the result holds for
n = −1. Suppose that we have established the result for n = 0,−1,−2, · · · ,−r. Then

τ−(r+1) = τ−(r−1) − τ−r = (F−(r−1) − F−r)τ + (F−r − F−(r+1)) = F−(r+1)τ + F−(r+2) .

Solution 2. The result holds for n = 1. Suppose that it holds for n = r ≥ 0. Then

τ r+1 = τ r · τ = (Frτ + Fr−1)τ = Frτ
2 + Fr−1τ

= (Fr + Fr−1)τ + Fr = Fr+1τ + Fr .

Now consider nonpositive values of n. We have that τ0 = 1, τ−1 = τ − 1, τ−2 = 1− τ−1 = 2− τ . Suppose
that we have shown for r ≥ 0 that τ−r = F−rτ + F−r−1. Then

τ−(r+1) = τ−1τ−r = F−r + F−r−1(τ − 1) = F−r−1τ + (F−r − F−r−1)

= F−r−1τ + F−r−2 = F−(r+1)τ + F−(r+1)−1 .

By induction, it follows that the result holds for both positive and negative values of n.

(c) Solution. Let Gn = FnFn+1. Then

Gn+3 + Gn = Fn+4Fn+3 + Fn+1Fn

= (Fn+3 + Fn+2)(Fn+2 + Fn+1) + (Fn+3 − Fn+2)(Fn+2 − Fn+1)
= 2(Fn+3Fn+2 + Fn+2Fn+1) = 2(Gn+2 + Gn+1) .

Let Gn = Fn+1Fn−1. Then

Gn+3 + Gn = Fn+4Fn+2 + Fn+1Fn−1

= (Fn+3 + Fn+2)(Fn+1 + Fn) + (Fn+3 − Fn+2)(Fn+1 − Fn)
= 2(Fn+3Fn+1 + Fn+2Fn) = 2(Gn+2 + Gn+1) .
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Let Gn = F 2
n . Then

Gn+3 + Gn = F 2
n+3 + F 2

n = (Fn+2 + Fn+1)2 + (Fn+2 − Fn+1)2

= F 2
n+2 + 2Fn+2Fn+1 + F 2

n+1 + F 2
n+2 − 2Fn+2Fn+1 + F 2

n+1 = 2(Gn+2 + Gn+1) .

Comments. Since F 2
n = FnFn−1 + FnFn−2, the third result of (c) can be obtained from the first two. J.

Chui observed that, more generally, we can take Gn = Fn+uFn+v where u and v are integers. Then

Gn+3 + Gn − 2(Gn+1 + Gn+2)
= (Fn+3+uFn+3+v + Fn+uFn+v)− 2(Fn+2+uFn+2+v + Fn+1+uFn+1+v)
= (2Fn+1+u + Fn+u)(2Fn+1+v + Fn+v) + Fn+uFn+v

− 2(Fn+1+u + Fn+u)(Fn+1+v + Fn+v)− 2Fn+1+uFn+1+v

= 0 ,

so that Gn+3 + Gn = 2(Gn+2 + Gn+1).

673. ABC is an isosceles triangle with AB = AC. Let D be the point on the side AC for which CD = 2AD.
Let P be the point on the segment BD such that ∠APC = 90◦. Prove that ∠ABP = ∠PCB.

Solution 1. Produce BA to E so that BA = AE and join EC. Then D is the centroid of ∆BEC
and BD produced meets EC at its midpoint F . Since AE = AC, ∆CAE is isosceles and so AF ⊥ EC.
Also, since A and F are midpoints of their respective segments, AF‖BC and so ∠AFB = ∠DBC. Because
∠AFC and ∠APC are both right, APCF is concyclic so that ∠AFP = ∠ACP .

Hence ∠ABP = ∠ABC − ∠DBC = ∠ABC − ∠AFB = ∠ACB − ∠ACP = ∠PCB.

Solution 2. Let E be the midpoint of BC and let F be a point on BD produced so that AF‖BC. Since
triangle ADF and CDB are similar and CD = 2AD, then AF = EC and AECF is a rectangle.

Since ∠APC = ∠AFC = 90◦, the quadrilateral APCF is concyclic, so that ∠AFB = ∠ACB. Since
AF‖BC, ∠AFB = ∠FBC. Therefore

∠ABP = ∠ABC − ∠PBC = ∠ABC − ∠FBC = ∠ACB − ∠ACP = ∠PCB .

Solution 3. [S. Sun] The circle with diameter AC has as its centre the midpoint O of AC. It intersects
BC at the midpoint E (since AB = AC and AE ⊥ BC). Let EO produced meet the circle again at F ; then
AECF is concyclic.

Suppose FB meets AC at G. The triangles AGF and CGB are similar. Since BC = 2AF , then
CG = 2GA, so that G and D coincide. Because AF‖BC and AFCP is concyclic, ∠DBC = ∠DFA =
∠PFA = ∠PCA. Therefore

∠ABP = ∠ABC − ∠DBC = ∠ABC − ∠PCA = ∠PCB .

Solution 4. Assign coordinates: A ∼ (0, a), B ∼ (−1, 0), C ∼ (1, 0). Then D ∼ ( 1
3 , 2a

3 ). Let P ∼ (p, q).
Then, since P lies on the lines y = a

2 (x + 1), q = a
2 (p + 1). The relation AP ⊥ PC implies that

−1 =
(

q − a

p

)(
q

p− 1

)
=

[
a(p− 1)

2p

][
a(p + 1)
2(p− 1)

]
=

a2(p + 1)
4p

=
aq

2p

whence p = −a2/(a2 + 4) and q = 2a/(a2 + 4). Now

tan∠ABP =
a− (a/2)
1 + (a2/2)

=
a

2 + a2
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while
tan∠PCB =

−q

p− 1
=

−2a

−a2 − (a2 + 4)
=

a

a2 + 2
= tan ∠ABP .

The result follows.

Solution 5. [C. Deng] Let A ∼ (0, b), B ∼ (−a, 0), C ∼ (a, 0) so that D ∼ (a/3, 2b/3). The midpoint M
of AC has coordinates (a/2, b/2). It can be checked that the point with coordinates(

−ab2

4a2 + b2
,

2a2b

4a2 + b2

)
is the same distance from M as the points AB so that it is on the circle with diameter AC and AP‖CP .
Since this point also lies on the line with equation 2ay = bx + ba through B and D, it is none other than
the point P . The circle with equation

x2 +
(

y +
a2

b

)2

= a2 +
a4

b2

is tangent to AB and AC at B and C respectively and contains the point P . Hence ∠PCB = ∠PBA =
∠DBA, as desired.

674. The sides BC, CA, AB of triangle ABC are produced to the poins R, P , Q respectively, so that
CR = AP = BQ. Prove that triangle PQR is equilateral if and only if triangle ABC is equilateral.

Solution . Suppose that triangle ABC is equilateral. A rotation of 60◦ about the centroid of ∆ABC
will rotate the points R, P and Q. Hence ∆PQR is equilateral. On the other hand, suppose, wolog, that
a ≥ b ≥ c, with a > c. Then, for the internal angles of ∆ABC, A ≥ B ≥ C. Suppose that |PQ| = r,
|QR| = p and |PR| = q, while s is the common length of the extensions. Then

p2 = s2 + (a + s)2 + 2s(a + s) cos B

and
r2 = s2 + (c + s)2 + 2s(c + s) cos A .

Since a > c and cos B ≥ cos A, we find that p > r, and so ∆PQR is not equilateral.

675. ABC is a triangle with circumcentre O such that ∠A exceeds 90◦ and AB < AC. Let M and N be
the midpoints of BC and AO, and let D be the intersection of MN and AC. Suppose that AD =
1
2 (AB + AC). Determine ∠A.

Solution. Assign coordinates: A ∼ (0, 0), B ∼ (2 cos θ, 2 sin θ), C ∼ (2u, 0) where 90◦ < θ < 180◦ and
u > 1. First, we determine O as the intersection of the right bisectors of AB and AC. The centre of AB
has coordinates (cos θ, sin θ) and its right bisector has equation

(cos θ)x + (sin θ)y = 1 .

The centre of segment AC has coordinates (u, 0) and its right bisector has equation x = u. Hence, we find
that

O ∼
(

u,
1− u cos θ

sin θ

)
N ∼

(
1
2
u,

1− u cos θ

2 sin θ

)
M ∼ (u + cos θ, sin θ)
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and
D ∼ (u + 1, 0) .

The slope of MD is (sin θ)/(cos θ − 1). The slope of ND is (u cos θ − 1)/((u + 2) sin θ). Equating these two
leads to the equation

u(cos2 θ − sin2 θ − cos θ) = 2 sin2 θ + cos θ − 1

which reduces to
(u + 1)(2 cos2 θ − cos θ − 1) = 0 .

Since u + 1 > 0, we have that 0 = 2 cos2 θ − cos θ − 1 = (2 cos θ + 1)(cos θ − 1). Hence cos θ = −1/2 and so
∠A = 120◦.

676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

for all real x and y.
Solution. Let u and v be any pair of real numbers. We can solve x + y = u and x− y = v to obtain

(x, y) =
(

1
2
(u + v),

1
2
(u− v)

)
.

From the functional equation, we find that vf(u)− uf(v) = (u2 − v2)uv, whence

f(u)
u

− u2 =
f(v)

v
− v2 .

Thus (f(x)/x)− x2 must be some constant a, so that f(x) = x3 + ax. This checks out for any constant a.

677. For vectors in three-dimensional real space, establish the identity

[a× (b−c)]2 +[b× (c−a)]2 +[c× (a−b)]2 = (b×c)2 +(c×a)2 +(a×b)2 +(b×c+c×a+a×b)2 .

Solution 1. Let u = b× c, v = c× a and w = a×b. Then, for example, a× (b− c) = a×b− a× c =
a× b + c× a = v + w. The left side is equal to

(v+w) · (v+w)+(u+w) · (u+w)+(u+v) · (u+v) = 2[(u ·u)+(v ·v)+(w ·w)+(u ·v)+(v ·w)+(w ·u)]

while the right side is equal to

(u · u) + (v · v) + (w ·w) + (u + v + w)2

which expands to the final expression for the left side.

Solution 2. For vectors u, v, w, we have the identities

(u× v)×w = (u ·w)v − (v ·w)u

and
u · (v ×w) = (u× v) ·w .

Using these, we find for example that

[a× (b− c)] · [a× (b− c)] = [a× (b− c)× a] · (b− c)
= {(a · a)(b− c)− [(b− c) · a]a} · (b− c)

= |a|2[|b|2 + |c|2 − 2(b · c)]− [(b · a− c · a]2

= |a|2[|b|2 + |c|2 − 2(b · c)]− (b · a)2 − (c · a)2 + 2(b · a)(c · a) .
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Also
(b× c) · (b× c) = [(b · b)c− (c · b)b] · c

= |b|2|c|2 − (c · b)2

and

(b× c) · (c× a) = [(b× c)× c] · a = (b · c)(c · a)− (c · c)(b · a) .

From these the identity can be checked.

678. For a, b, c > 0, prove that
1

a(b + 1)
+

1
b(c + 1)

+
1

c(a + 1)
≥ 3

1 + abc
.

Solution 1. It is easy to verify the following identity

1
a(1 + b)

+
1

1 + abc
=

1
1 + abc

(
1 + a

a(1 + b)
+

b(1 + c)
1 + b

)
.

This and its analogues imply that

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

+
3

1 + abc
=

1
1 + abc

(
1 + a

a(1 + b)
+

b(1 + c)
1 + b

+
1 + b

b(1 + c)
+

c(1 + a)
1 + c

+
1 + c

c(1 + a)
+

a(1 + b)
1 + a

)
.

The arithmetic-geometric means inequality yields

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

+
3

1 + abc
≥ 6× 1

1 + abc
.

Miraculously, subtracting 3/(1 + abc) from both sides yields the required inequality. ♥

Solution 2. Multiplying the desired inequality by (1+abc)a(b+1)b(c+1)c(a+1), after some manipulation,
produces the equivalent inequality:

abc(bc2 + ca2 + ab2) + (bc + ca + ab) + (abc)2(a + b + c) + (bc2 + ca2 + ab2)
≥ 2abc(a + b + c) + 2abc(bc + ca + ab) .

Pairing off the terms of the left side and applying the arithemetic-geometric means inequality, we get

(a2b3c + bc) + (ab2c3 + ac) + (a3bc2 + ab) + (a3b2c2 + ab2)

+ (a2b3c2 + bc2) + (a2b2c3 + ca2)

≥ 2ab2c + 2abc2 + 2a2bc + 2a2b2c + 2ab2c2 + 2a2bc2

= 2abc(a + b + c) + 2abc(ab + bc + ca)

as required.
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Solution 3. [C. Deng] Taking the difference between the two sides yields, where the summation is a
cyclic one,∑ (

1
a(b + 1)

− 1
1 + abc

)
=

∑ 1 + abc− a(b + 1)
a(b + 1)(1 + abc)

=
1

1 + abc

∑ (
b

b + 1
(c− 1)− 1

a(b + 1)
(a− 1)

)
=

1
1 + abc

∑ (
c

c + 1
(a− 1)− 1

a(b + 1)
(a− 1)

)
=

1
1 + abc

∑
(a− 1)

(
c

c + 1
− 1

a(b + 1)

)
=

1
1 + abc

∑ (
a2 − 1

a

)(
abc + ac− c− 1

(a + 1)(b + 1)(c + 1)

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ (
a2bc + a2c +

c

a
+

1
a
− ac− a− bc− c

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ (
a2bc + a2c− 2ab− 2a +

b

c
+

1
c

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ b + 1
c

(a2c2 − 2ac + 1)

=
1

(1 + abc)(1 + a)(1 + b)(1 + c)

∑ b + 1
c

(ac− 1)2 ≥ 0 ,

as desired.

Solution 4. [S. Seraj] Using the Arithmetic-Geometric Means Inequality, we obtain a2c+a2b2c3 ≥ 2a2bc2

and ab + a3bc2 ≥ 2a2bc and the two cyclic variants of each. Adding the six inequalities yields that

a2c + a2b2c3 + ab2 + a3b2c2 + bc2 + a2b3c2 + ab + a3bc2 + bc + a2b3c + ac + ab2c3

≥ 2a2bc2 + 2a2b2c + 2ab2c2 + 2a2bc + 2ab2c + 2abc2 .

Adding the same terms to both sides of the equations, and then factoring the two sides leads to

(1 + abc)(3abc + a2bc + ab2c + abc2 + a2c + ab2 + bc2 + ab + bc + ca)
≥ 3abc(abc + ac + bc + ab + a + b + c + 1) = 3abc(a + 1)(b + 1)(c + 1) .

Carrying out some divisions and strategically grouping terms in the numerator yields that

(abc2 + bc2 + abc + bc) + (a2bc + a2c + abc + ac) + (ab2c + ab2 + abc + ab)
abc(a + 1)(b + 1)(c + 1)

≥ 3
1 + abc

.

Factoring each bracket and simplifying leads to the desired inequality.

679. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.

Solution. Let H1 be the reflection of F1 in the tangent PG1, and H2 be the reflection of F2 in the
tangent PG2. We have that PH1 = PF1 and PF2 = PH2. By the reflection property, ∠PG1F2 =
∠F1G1Q = ∠H1G1Q, where Q is a point on PG1 produced. Therefore, H1F2 intersects the ellipse in G1.
Similarly, H2F1 intersects the ellipse in K2. Therefore

H1F2 = H1G1 + G1F2 = F1G1 + G1F2

= F1G2 + G2F2 = F1G2 + G2H2 = H2F1 .

29



Therefore, triangle PH1F2 and PF1H2 are congruent (SSS), so that ∠H1PF2 = ∠H2PF1. It follows that

2∠F1PG1 = ∠H1PF1 = ∠H2PF2 = 2∠F2PG2

and the desired result follows.

680. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 1. Suppose that we have a supply of white and of blue coaches, each of length 1, and of red
coaches, each of length 2; the coaches of each colour are indistinguishable. Let vn be the number of trains
of total length n that can be made up of red, white and blue coaches of total length n. Then v0 = 1, v1 = 2
and v2 = 5 (R, WW, WB, BW, BB). In general, for n ≥ 1, we can get a train of length n + 1 by appending
either a white or a blue coach to a train of length n or a red coach to a train of length n − 1, so that
vn+1 = 2vn + vn−1. Therefore vn = un for n ≥ 0.

We can count vn in another way. Suppose that the train consists of i white coaches, j blue coaches
and k red coaches, so that i + j + 2k = n. There are (i + j + k)! ways of arranging the coaches in order;
any permutation of the i white coaches among themselves, the j blue coaches among themselves and k red
coaches among themselves does not change the train. Therefore

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 2. Let f(t) =
∑∞

n=0 untn. Then

f(t) = u0 + u1t + (2u1 + u0)t2 + (2u2 + u1)t3 + · · ·
= u0 + u1t + 2t(f(t)− u0) + t2f(t) = u0 + (u1 − 2u0)t + (2t + t2)f(t)

= 1 + (2t + t2)f(t) ,

whence
f(t) =

1
1− 2t− t2

=
1

1− t− t− t2

=
∞∑

n=0

(t + t + t2)n =
∞∑

n=0

tn
[∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}]
.

Solution 3. Let wn be the sum in the problem. It is straightforward to check that u0 = w0 and u1 = w1.
We show that, for n ≥ 1, wn+1 = 2wn + wn−1 from which it follows by induction that un = wn for each n.
By convention, let (−1)! = ∞. Then, for i, j, k ≥ 0 and i + j + 2k = n + 1, we have that

(i + j + k)!
i!j!k!

=
(i + j + k)(i + j + k − 1)!

i!j!k!

=
(i + j + k − 1)!

(i− 1)!j!k!
+

(i + j + k − 1)!
i!(j − 1)!k!

+
(i + j + k − 1)!

i!j!(k − 1)!
,

whence

wn+1 =
∑ {

(i + j + k − 1)!
(i− 1)!j!k!

: i, j, k ≥ 0, (i− 1) + j + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!(j − 1)!k!
: i, j, k ≥ 0, i + (j − 1) + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!j!(k − 1)!
: i, j, k ≥ 0, i + j + 2(k − 1) = n− 1

}
= wn + wn + wn−1 = 2wn + wn−1
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as desired.

681. Let a and b, the latter nonzero, be vectors in R3. Determine the value of λ for which the vector equation

a− (x× b) = λb

is solvable, and then solve it.

Solution 1. If there is a solution, we must have a · b = λ|b|2, so that λ = (a · b)/|b|2. On the other
hand, suppose that λ has this value. Then

0 = b× a− b× (x× b)
= b× a− [(b · b)x− (b · x)b]

so that
b× a = |b|2x− (b · x)b .

A particular solution of this equation is

x = u ≡ b× a
|b|2

.

Let x = z be any other solution. Then

|b|2(z− u) = |b|2z− |b|2u
= (b× a + (b · z)b)− (b× a + (b · u)b)
= (b · z)b

so that z− u = µb for some scalar µ.

We check when this works. Let x = u + µb for some scalar µ. Then

a− (x× b) = a− (u× b) = a− (b× a)× b
|b|2

= a +
b× (b× a)

|b|2

= a +
(b · a)b− (b · b)a

|b|2

= a +
(

b · a
|b|2

)
b− a = λb ,

as desired. Hence, the solutions is

x =
b× a
|b|2

+ µb ,

where µ is an arbitrary scalar.

Solution 2. [B. Yahagni] Suppose, to begin with, that {a,b} is linearly dependent. Then a = [(a ·
b)/|b|2]b. Since (x×b) ·b = 0 for all x, the equation has no solutions except when λ = (a ·b)/|b|2. In this
case, it becomes x× b = 0 and is satisfied by x = µb, where µ is any scalar.

Otherwise, {a,b,a× b} is linearly independent and constitutes a basis for R3. Let a solution be

x = αa + µb + β(a× b) .
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Then
x× b = α(a× b) + β[(a× b)× b] = α(a× b) + β(a · b)b− β(b · b)a

and the equation becomes
(1 + β|b|2)a− β(a · b)b− α(a× b) = λb .

Therefore α = 0, µ is arbitrary, β = −1/|b|2 and λ = −β(a · b) = (a · b)/|b|2.

Therefore, the existence of a solution requires that λ = (a · b)/|b|2 and the solution then is

x = µb− 1
|b|2

(a× b) .

Solution 3. Writing the equation in vector components yields the system

b3x2 − b2x3 = a1 − λb1 ;

−b3x1 + b1x3 = a2 − λb2 ;

b2x1 − b1x2 = a3 − λb3 .

The matrix of coefficients of the left side is of rank 2, so that the corresponding homogeneous system of
equations has a single infinity of solutions. Multiplying the three equations by b1, b2 and b3 respectively and
adding yields

0 = a1b1 + a2b2 + a3b3 − λ(b2
1 + b2

2 + b2
3) .

Thus, for a solution to exist, we require that

λ =
a1b1 + a2b2 + a3b3

b2
1 + b2

2 + b2
3)

.

In addition, we learn that the corresponding homogeneous system is satisfied by

(x1, x2, x3) = µ(b1, b2, b3)

where µ is an arbitrary scalar.

It remains to find a particular solution for the nonhomogeneous system. Multiplying the third equation
by b2 and subtracting the second multiplied by b3, we obtain that

(b2
2 + b2

3)x1 = b1(b2x2 + b3x3) + (a3b2 − a2b3) .

Therefore, setting b2
1 + b2

2 + b2
3 = b2, we have that

b2x1 = b1(b1x1 + b2x2 + b3x3) + (a3b2 − a2b3) .

Similarly
b2x2 = b2(b1x1 + b2x2 + b3x3) + (a1b3 − a3b1) ,

b2x3 = b3(b1x1 + b2x2 + b3x3) + (a2b1 − a1b2) .

Observing that b1x1 + b2x2 + b3x3 vanishes when

(x1, x2, x3) = (a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) ,

we obtain a particular solution to the system:

(x1, x2, x3) = b−2(a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) .
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Adding to this the general solution of the homogeneous system yields the solution of the nonhomogeneous
system.

682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

Solution. Suppose that there are x, y and z lines in the three families. Assume that no point is common
to three distinct lines. The x+ y lines of the first two families partition the plane into (x+1)(y +1) regions.
Let λ be one of the lines of the third family. It is cut into x+y +1 parts by the lines in the first two families,
so the number of regions is increased by x + y + 1. Since this happens z times, the number of regions that
the plane is partitioned into by the three families of

n = (x + 1)(y + 1) + z(x + y + 1) = (x + y + z) + (xy + yz + zx) + 1 .

Let u = x + y + z and v = xy + yz + zx. Then (by the Cauchy-Schwarz Inequality for example),
v ≤ x2 + y2 + z2, so that u2 = x2 + y2 + z2 + 2v ≥ 3v. Therefore, n ≤ u + 1

3u2 + 1. This takes the value
2002 when u = 76. However, when (x, y, z) = (26, 26, 25), then u = 77, v = 1976 and n = 2044. Therefore,
we need at least 77 lines, but a suitably chosen set of 77 lines will suffice.

683. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

Solution 1. [A. Remorov] Let f(x) = a(x− r)(x− s). Then

f(x)f(x + 1) = a2(x− r)(x− s + 1)(x− r + 1)(x− s)

= a2(x2 + x− rx− sx + rs− r)(x2 + x− rx− sx + rs− s)

= a2[(x2 − (r + s− 1)x + rs)− r][(x2 − (r + s− 1)x + rs)− s]
= g(h(x)) ,

where g(x) = a2(x− r)(x− s) = af(x) and h(x) = x2 − (r + s− 1)x + rs.

Solution 2. Let f(x) = ax2 + bx + c, g(x) = px2 + qx + r and h(x) = ux2 + vx + w. Then

f(x)f(x + 1) = a2x4 + 2a(a + b)x3 + (a2 + b2 + 3ab + 2ac)x2 + (b + 2c)(a + b)x + c(a + b− c)

g(h(x)) = p(ux2 + vx + w)2 + q(ux + vx + w) + r

= pu2x4 + 2puvx3 + (2puw + pv2 + qu)x2 + (2pvw + qv)x + (pw2 + qw + r) .

Equating coefficients, we find that pu2 = a2, puv = a(a + b), 2puw + pv2 + qu = a2 + b2 + 3ab + 2ac,
(b + 2c)(a + b) = (2pw + q)v and c(a + b + c) = pw2 + qw + r. We need to find just one solution of this
system. Let p = 1 and u = a. Then v = a + b and b + 2c = 2pw + q from the second and fourth equations.
This yields the third equation automatically. Let q = b and w = c. Then from the fifth equation, we find
that r = ac.

Thus, when f(x) = ax2 + bx + c, we can take g(x) = x2 + bx + ac and h(x) = ax2 + (a + b)x + c.

Solution 3. [S. Wang] Suppose that

f(x) = a(x + h)2 + k = a(t− (1/2))2 + k ,

where t = x + h + 1
2 . Then f(x + 1) = a(x + 1 + h)2 + k = a(t + (1/2))2 + k, so that

f(x)f(x + 1) = a2(t2 − (1/4))2 + 2ak(t2 + (1/4)) + k2

= a2t4 +
(
− a2

2
+ 2ak

)
t2 +

(
a2

16
+

ak

2
+ k2

)
.
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Thus, we can achieve the desired representation with h(x) = t2 = x2 + (2h + 1)x + 1
4 and g(x) = a2x2 +

(−a2

2 + 2ak)x + (a2

16 + ak
2 + k2).

Solution 4. [V. Krakovna] Let f(x) = ax2 + bx + c = au(x) where u(x) = x2 + dx + e, where b = ad
and c = ae. If we can find functions v(x) and w(x) for which u(x)u(x + 1) = v(w(x)), then f(x)f(x + 1) =
a2v(w(x)), and we can take h(x) = w(x) and g(x) = a2v(x).

Define p(t) = u(x + t), so that p(t) is a monic quadratic in t. Then, noting that p′′(t) = u′′(x + t) = 2,
we have that

p(t) = u(x + t) = u(x) + u′(x)t +
u′′(x)

2
t2 = t2 + u′(x)t + u(x) ,

from which we find that

u(x)u(x + 1) = p(0)p(1) = u(x)[u(x) + u′(x) + 1]

= u(x)2 + u′(x)u(x) + u(x) = p(u(x)) = u(x + u(x)) .

Thus, u(x)u(x + 1) = v(w(x)) where w(x) = x + u(x) and v(x) = u(x). Therefore, we get the desired
representation with

h(x) = x + u(x) = x2 +
(

1 +
b

a

)
x +

c

a

and
g(x) = a2v(x) = a2u(x) = af(x) = a2x2 + abx + ac .

Solution 5. [Generalization by J. Rickards.] The following statement is true: Let the quartic polynomial
f(x) have roots r1, r2, r3, r4 (not necessarily distinct). Then f(x) can be expressed in the form g(h(x) for
quadratic polynomials g(x) and h(x) if and only if the sum of two of r1, r2, r3, r4 is equal to the sum of the
other two.

Wolog, suppose that r1 + r2 = r3 + r4. Let the leading coefficient of f(x) be a. Define h(x) =
(x− r1)(x− r2) and g(x) = ax(x− r2

3 + r1r3 + r2r3 − r1r2). Then

g(h(x)) = a(x− r1)(x− r2)[(x− r1)(x− r2)− r2
3 + r1r3 + r2r3 − r1r2

= a(x− r1)(x− r2)[x2 − (r1 + r2)x− r2
3 + r1r3 + r2r3)

= a(x− r1)(x− r2)[x2 − (r3 + r4)x + r3(r1 + r2 − r3)]

= a(x− r1)(x− r2)(x2 − (r3 + r4)x + r3r4

= a(x− r1)(x− r2)(x− r3)(x− r4)

as required.

Conversely, assume that we are given quadratic polynomials g(x) = b(x− r5)(x− r6) and h(x) and that
c is the leading coefficient of h(x). Let f(x) = g(h(x)).

Suppose that
h(x)− r5 = c(x− r1)(x− r2)

and that
h(x)− r6 = c(x− r3)(x− r4) .

Then
f(x) = g(h(x)) = bc2(x− r1)(x− r2)(x− r3)(x− r4) .

We have that

h(x) = c(x− r1)(x− r2) + r5 = cx62− c(r1 + r2)x + cr1r2 + r5
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and
h(x) = c9x− r3)(x− r4) + r6 = cx2 − c(r3 + r4)x + cr3r4 + r6 ,

whereupon it follows that r1 + r2 = r3 + r4 and the desired result follows.

Comment. The second solution can also be obtained by looking at special cases, such as when a = 1 or
b = 0, getting the answer and then making a conjecture.
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