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Notes: Given a triangle, extend two nonadjacent sides. The circle tangent to these two sides and to
the third side of the triangle is called an excircle, or sometimes an escribed circle. The centre of the circle
is called the excentre and lies on the angle bisector of the opposite angle and the bisectors of the external
angles formed by the extended sides with the third side. Every triangle has three excircles along with their
excentres.

The incircle of a polygon is a circle inscribed inside of the polygon that is tangent to all of the sides of
a polygon. While every triangle has an incircle, this is not true of all polygons.

The greatest common divisor of two integers m, n, denoted by gcd (m,n) is the largest positive integer
which divides (evenly) both m and n. The least common multiple of two integers m, n, denoted by lcm
(m,n) is the smallest positive integer which is divisible by both m and n.

Let n be a positive integer. It can be written uniquely as a sum of powers of 2, i.e. in the form

n = εk · 2k + εk−1 · 2k−1 + · · ·+ ε1 · 2 + ε0

where each εi takes one of the values 0 and 1. This is known as the binary representation of n and is denoted
(εk, εk−1, · · · , ε0)2. The numbers εi are known as the (binary) digits of n.

The circumcircle of a triangle is the centre of the circle that passes through the three vertices of the
triangle; the incentre of a triangle is centre of the circle within the triangle that is tangent to the three sides;
the orthocentre of a triangle is the intersection point of its three altitudes.

The function f defined on the real numbers and taking real values is increasing if and only if, for x < y,
f(x) ≤ f(y).

423. Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y + 1) ≤ (x + 1)2, then y(y − 1) ≤ x2.

424. Simplify
x3 − 3x + (x2 − 1)

√
x2 − 4− 2

x3 − 3x + (x2 − 1)
√

x2 − 4 + 2

to a fraction whose numerator and denominator are of the form u
√

v with u and v each linear polyno-
mials. For which values of x is the equation valid?

425. Let {x1, x2, · · · , xn, · · ·} be a sequence of nonzero real numbers. Show that the sequence is an arithmetic
progression if and only if, for each integer n ≥ 2,

1
x1x2

+
1

x2x3
+ · · ·+ 1

xn−1xn
=

n− 1
x1xn

.
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426. (a) The following paper-folding method is proposed for trisecting an acute angle.

(1) transfer the angle to a rectangular sheet so that its vertex is at one corner P of the sheet with
one ray along the edge PY ; let the angle be XPY ;

(2) fold up PY over QZ to fall on RW , so that PQ = QR and PY ‖QZ‖RW , with QZ between
PY and RW ;

(3) fold across a line AC with A on the sheet and C on the edge PY so that P falls on a point P ′

on QZ and R on a point R′ on PX;

(4) suppose that the fold AC intersects the fold QZ at B and carries Q to Q′; make a fold along
BQ′.

It is claimed that the fold BQ′ passes through P and trisects angle XPY .

Explain why the fold described in (3) is possible. Does the method work? Why?

(b) What happens with a right angle?

(c) Can the method be adapted for an obtuse angle?

427. The radius of the inscribed circle and the radii of the three escribed circles of a triangle are consecutive
terms of a geometric progression. Determine the largest angle of the triangle.

428. a, b and c are three lines in space. Neither a nor b is perpendicular to c. Points P and Q vary on a
and b, respectively, so that PQ is perpendicular to c. The plane through P perpendicular to b meets c
at R, and the plane through Q perpendicular to a meets c at S. Prove that RS is of constant length.

429. Prove that
n∑

k=1

(−1)k+1

(
n

k

)(
kn

n

)
= (−1)n+1nn .

430. Let triangle ABC be such that its excircle tangent to the segment AB is also tangent to the circle whose
diameter is the segment BC. If the lengths of the sides BC, CA and AB of the triangle form, in this
order, an arithmetic sequence, find the measure of the angle ACB.

431. Prove the following trigonometric identity, for any natural number n:

sin
π

4n + 2
· sin 3π

4n + 2
· sin 5π

4n + 2
· · · sin (2n− 1)π

4n + 2
=

1
2n

.

432. Find the exact value of:

(a) √
1
6

+
√

5
18

−

√
1
6
−
√

5
18

;

(b) √
1 +

2
5
·
√

1 +
2
6
·
√

1 +
2
7
·
√

1 +
2
8
· · ·

√
1 +

2
57

·
√

1 +
2
58

.

433. Prove that the equation
x2 + 2y2 + 98z2 = 77777 . . . 777

does not have a solution in integers, where the right side has 2006 digits, all equal to 7.

434. Find all natural numbers n for which 2n + n2004 is equal to a prime number.

2



435. A circle with centre I is the incircle of the convex quadrilateral ABCD. The diagonals AC and BD
intersect at the point E. Prove that, if the midpoints of the segments AD, BC and IE are collinear,
then AB = CD.

436. In the Euro-African volleyball tournament, there were nine more teams participating from Europe than
from Africa. In total, the European won nine times as many points as were won by all of the African
teams. In this tournamet, each team played exactly once against each other team; there were no ties;
the winner of a game gets 1 point, the loser 0. What is the greatest possible score of the best African
team?

437. Let a, b, c be the side lengths and ma, mb, mc the lengths of their respective medians, of an arbitrary
triangle ABC. Show that

3
4

<
ma + mb + mc

a + b + c
< 1 .

Furthermore, show that one cannot find a smaller interval to bound the ratio.

438. Determine all sets (x, y, z) of real numbers for which

x + y = 2 and xy − z2 = 1 .

439. A natural number n, less than or equal to 500, has the property that when one chooses a number m
randomly among {1, 2, 3, · · · , 500}, the probability that m divides n (i.e., n/m is an integer) is 1/100.
Find the largest such n.

440. You are to choose 10 distinct numbers from {1, 2, 3, · · · , 2006}. Show that you can choose such numbers
with a sum greater than 10039 in more ways than you can choose such numbers with a sum less than
10030.

441. Prove that, no matter how 15 points are placed inside a circle of radius 2 (including the boundary),
there exists a circle of radius 1 (including the boundary) containing at least 3 of the 15 points.

442. Prove that the regular tetrahedron has minimum diameter among all tetrahedra that circumscribe a
given sphere. (The diameter of a tetrahedron is the length of its longest edge.)

443. For n ≥ 3, show that n− 1 straight lines are sufficient to go through the interior of every square of an
n× n chessboard. Are n− 1 lines necessary?

444. (a) Suppose that a 6×6 square grid of unit squares (chessboard) is tiled by 1×2 rectangles (dominoes).
Prove that it can be decomposed into two rectangles, tiled by disjoint subsets of the dominoes.

(b) Is the same thing true for an 8× 8 array?

(c) Is the same thing true for a 6× 8 array?

445. Two parabolas have parallel axes and intersect in two points. Prove that their common chord bisects
the segments whose endpoints are the points of contact of their common tangent.

446. Suppose that you have a 3×3 grid of squares. A line is a set of three squares in the same row, the same
column or the same diagonal; thus, there are eight lines.

Two players A and B play a game. They take alternate turns, A putting a 0 in any unoccupied square
of the grid and B putting a 1. The first player is A, and the game cannot go on for more than nine
moves. (The play is similar to noughts-and-crosses, or tictactoe.) A move is legitimate if it does not
result in two lines of squares being filled in with different sums. The winner is the last player to make
a legitimate move.

(For example, if there are three 0s down the diagonal, then B can place a 1 in any vacant square provided
it completes no other line, for then the sum would differ from the diagonal sum. If there are two zeros
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at the top of the main diagonal and two ones at the left of the bottom line, then the lower right square
cannot be filled by either player, as it would result in two lines with different sums.)

(a) What is the maximum number of legitimate moves possible in a game?

(b) What is the minimum number of legitimate moves possible in a game that would not leave a
legitimate move available for the next player?

(c) Which player has a winning strategy? Explain.

447. A high school student asked to solve the surd equation
√

3x− 2−
√

2x− 3 = 1

gave the following answer: Squaring both sides leads to

3x− 2− 2x− 3 = 1

so x = 6. The answer is, in fact, correct.

Show that there are infinitely many real quadruples (a, b, c, d) for which this method leads to a correct
solution of the surd equation √

ax− b−
√

cx− d = 1 .

448. A criminal, having escaped from prison, travelled for 10 hours before his escape was detected. He was
then pursued and gained upon at 3 miles per hour. When his pursuers had been 8 hours on the way,
they met an express (train) going in the opposite direction at the same rate as themselves, which had
met the criminal 2 hours and 24 minutes earlier. In what time from the beginning of the pursuit will the
criminal be overtaken? [from The high school algebra by Robertson and Birchard, approved for Ontario
schools in 1886]

449. Let S = {x : x > −1}. Determine all functions from S to S which both

(a) satisfies the equation f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x, y ∈ S, and

(b) f(x)/x is strictly increasing or strictly decreasing on each of the two intervals {x : −1 < x < 0} and
{x : x > 0}.

450. The 4-sectors of an angle are the three lines through its vertex that partition the angle into four equal
parts; adjacent 4-sectors of two angles that share a side consist of the 4-sector through each vertex that
is closest to the other vertex.

Prove that adjacent 4-sectors of the angles of a parallelogram meet in the vertices of a square if and
only if the parallelogram has four equal sides.

451. Let a and b be positive integers and let u = a + b and v = lcm (a, b). Prove that

gcd (u, v) = gcd (a, b) .

452. (a) Let m be a positive integer. Show that there exists a positive integer k for which the set

{k + 1, k + 2, . . . , 2k}

contains exactly m numbers whose binary representation has exactly three digits equal to 1.

(b) Determine all intgers m for which there is exactly one such integer k.

453. Let A, B be two points on a circle, and let AP and BQ be two rays of equal length that are tangent
to the circle that are directed counterclockwise from their tangency points. Prove that the line AB
intersects the segment PQ at its midpoint.
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454. Let ABC be a non-isosceles triangle with circumcentre O, incentre I and orthocentre H. Prove that
the angle OIH exceeds 90◦.

455. Let ABCDE be a pentagon for which the position of the base AB and the lengths of the five sides are
fixed. Find the locus of the point D for all such pentagons for which the angles at C and E are equal.

456. Let n + 1 cups, labelled in order with the numbers 0, 1, 2, · · · , n, be given. Suppose that n + 1 tokens,
one bearing each of the numbers 0, 1, 2, · · · , n are distributed randomly into the cups, so that each cup
contains exactly one token.

We perform a sequence of moves. At each move, determine the smallest number k for which the cup
with label k has a token with label m not equal to k. Necessarily, k < m. Remove this token; move all
the tokens in cups labelled k + 1, k + 2, · · · ,m to the respective cups labelled k, k + 1,m − 1; drop the
token with label m into the cup with label m. Repeat.

Prove that the process terminates with each token in its own cup (token k in cup k for each k) in not
more that 2n − 1 moves. Determine when it takes exactly 2n − 1 moves.

457. Suppose that u1 > u2 > u3 > · · · and that there are infinitely many indices n for which un ≥ 1/n.
Prove that there exists a positive integer N for which

u1 + u2 + u3 + · · ·+ uN > 2006 .

458. Let ABC be a triangle. Let A1 be the reflected image of A with axis BC, B1 the reflected image of B
with axis CA and C1 the reflected image of C with axis AB. Determine the possible sets of angles of
triangle ABC for which A1B1C1 is equilateral.

459. At an International Conference, there were exactly 2006 participants. The organizers observed that: (1)
among any three participants, there were two who spoke the same language; and (2) every participant
spoke at most 5 languages. Prove that there is a group of at least 202 participants who speak the same
language.

460. Given two natural numbers x and y for which

3x2 + x = 4y2 + y ,

prove that their positive difference is a perfect square. Determine a nontrivial solution of this equation.

461. Suppose that x and y are integers for which x2 + y2 6= 0. Determine the minimum value of the function

f(x, y) ≡ |5x2 + 11xy − 5y2| .

462. For any positive real numbers a, b, c, d, establish the inequality√
a

b + c
+

√
b

c + d
+

√
c

d + a
+

√
d

a + b
> 2 .

463. In Squareland, a newly-created country in the shape of a square with side length of 1000 km, there are
51 cities. The country can afford to build at most 11000 km of roads. Is it always possible, within this
limit, to design a road map that provides a connection between any two cities in the country?

464. A square is partitioned into non-overlapping rectangles. Consider the circumcircles of all the rectangles.
Prove that, if the sum of the areas of all these circles is equal to the area of the circumcircle of the
square, then all the rectangles must be squares, too.
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465. For what positive real numbers a is
3
√

2 +
√

a + 3
√

2−
√

a

an integer?

466. For a positive integer m, let m denote the sum of the digits of m. Find all pairs of positive integers
(m.n) with m < n for which (m)2 = n and (n)2 = m.

467. For which positive integers n does there exist a set of n distinct positive integers such that

(a) each member of the set divides the sum of all members of the set, and

(b) none of its proper subsets with two or more elements satisfies the condition in (a)?

468. Let a and b be positive real numbers satisfying a + b ≥ (a− b)2. Prove that

xa(1− x)b + xb(1− x)a ≤ 1
2a+b−1

for 0 ≤ x ≤ 1, with equality if and only if x = 1
2 .

469. Solve for t in terms of a, b in the equation√
t3 + a3

t + a
+

√
t3 + b3

t + b
=

√
a3 − b3

a− b

where 0 < a < b.

470. Let ABC, ACP and BCQ be nonoverlapping triangles in the plane with angles CAP and CBQ right.
Let M be the foot of the perpendicular from C to AB. Prove that lines AQ, BP and CM are concurrent
if and only if ∠BCQ = ∠ACP .

471. Let I and O denote the incentre and the circumcentre, respectively, of triangle ABC. Assume that
triangle ABC is not equilateral. Prove that ∠AIO ≤ 90◦ if and only if 2BC ≤ AB + CA, with equality
holding only simultaneously.

472. Find all integers x for which

(4− x)4−x + (5− x)5−x + 10 = 4x + 5x .

473. Let ABCD be a quadrilateral; let M and N be the respective midpoint of AB and BC; let P be the
point of interesection of AN and BD, and Q be the point of intersection of DM amd AC. Suppose the
3BP = BD and 3AQ = AC. Prove that ABCD is a parallelogram.

474. Solve the equation for positive real x:

(2log5 x + 3)log5 2 = x− 3 .

475. Let z1, z2, z3, z4 be distinct complex numbers for which |z1| = |z2| = |z3| = |z4|. Suppose that there is
a real number t 6= 1 for which

|tz1 + z2 + z3 + z4| = |z1 + tz2 + z3 + z4| = |z1 + z2 + tz3 + z4| .

Show that, in the complex plane, z1, z2, z3, z4 lie at the vertices of a rectangle.

476. Let p be a positive real number and let |x0| ≤ 2p. For n ≥ 1, define

xn = 3xn−1 −
1
p2

x3
n−1 .
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Determine xn as a function of n and x0.

477. Let S consist of all real numbers of the form a + b
√

2, where a and b are integers. Find all functions
that map S into the set R of reals such that (1) f is increasing, and (2) f(x + y) = f(x) + f(y) for all
x, y in S.

478. Solve the equation √
2 +

√
2 +

√
2 + x +

√
3

√
2−

√
2 +

√
2 + x = 2x

for x ≥ 0

Solutions

423. Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y + 1) ≤ (x + 1)2, then y(y − 1) ≤ x2.

Solution 1. The statement is true. The result holds when y ≤ 1 since y(y− 1) ≤ 0 ≤ x2. Assume y ≥ 1,
so that

√
y(y − 1)− 1 > 0. We have that 4y(y + 1) < (2y + 1)2, so that 2

√
y(y + 1) < 2y + 1. Hence

y(y − 1) < y2 + y − 2
√

y(y + 1) + 1 = (
√

y(y + 1)− 1)2 .

Since y(y + 1) ≤ (x + 1)2 and |x + 1| ≤ |x|+ 1, it follows that

y(y + 1) ≤ (|x|+ 1)2 =⇒
√

y(y + 1)− 1 ≤ |x|

whence
y(y − 1) < |x|2 = x2 .

Thus the assertion holds.

Solution 2. [D. Dziabenko] The statement holds. If 0 ≤ y ≤ 1, then y(y − 1) ≤ 0 ≤ x2. Assume
henceforth that y > 1. If x + 1

2 ≤ y, then

y(y − 1) = y(y + 1)− 2y ≤ (x + 1)2 − 2
(

x +
1
2

)
= x2 .

If x + 1
2 > y, then x > y − 1

2 > 0, whence

x2 >

(
y − 1

2

)2

= y(y − 1) +
1
4

> y(y − 1) .

Solution 3. [G. Ghosn] The result holds. Let y > 0. The region in the cartesian plane defined by
y(y + 1) ≤ (x + 1)2 lies between the x−axis and the upper branch of the hyperbola with equation(

y +
1
2

)2

− (x + 1)2 =
1
4

.

The region in the cartesian plane defined by y(y− 1) ≤ x2 lies between the x−axis and the upper branch of
the hyperbola with equation (

y − 1
2

)2

− x2 =
1
4
.

The second hyperbola lies above the first when x = −1. Thus, if it can be shown that the two hyperbolas do
not intersect, then the top branch of the second hyperbola lies above top branch of the first, and the result
will follow.
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But solving y(y+1) = (x+1)2 and y(y−1) = x2 leads to y = x+ 1
2 and ultimately to (x+ 1

2 )2−(x+ 1
2 ) = x2

which has no solution (being equivalent to −1/4 = 0).

424. Simplify
x3 − 3x + (x2 − 1)

√
x2 − 4− 2

x3 − 3x + (x2 − 1)
√

x2 − 4 + 2

to a fraction whose numerator and denominator are of the form u
√

v with u and v each linear polyno-
mials. For which values of x is the equation valid?

Solution. For a real expression, we require that x2 ≥ 2. Observe that x3 − 3x + 2 = (x− 1)2(x + 2) and
that x3− 3x− 2 = (x + 1)2(x− 2). Thus, the denominator vanishes when x = −2, and we must exclude this
value. Suppose, first, that x ≥ 2. Then

x3 − 3x + (x2 − 1)
√

x2 − 4− 2
x3 − 3x + (x2 − 1)

√
x2 − 4 + 2

=
(x + 1)2(x− 2) + (x2 − 1)

√
x2 − 4

(x− 1)2(x + 2) + (x2 − 1)
√

x2 − 4

=
[(x + 1)

√
x− 2][(x + 1)

√
x− 2 + (x− 1)

√
x + 2]

[(x− 1)
√

x + 2][(x− 1)
√

x + 2 + (x + 1)
√

x− 2]

=
(x + 1)

√
x− 2

(x− 1)
√

x + 2
.

Now suppose that x ≤ −2. Then

x3 − 3x + (x2 − 1)
√

x2 − 4− 2
x3 − 3x + (x2 − 1)

√
x2 − 4 + 2

==
−(x + 1)2(2− x) + (x2 − 1)

√
(2− x)(−2− x)

−(x− 1)2(−2− x) + (x2 − 1)
√

(2− x)(−2− x)

=
[(x + 1)

√
2− x][−(x + 1)

√
2− x + (x− 1)

√
−2− x]

[(1− x)
√
−2− x][(x− 1)

√
−2− x− (x + 1)

√
2− x]

=
(x + 1)

√
2− x

(1− x)
√
−2− x

.

Comment. Most solvers neglected to ensure that the quantities under the radical were nonnegative.
This is the sort of ”easy” question where many marks can be lost because of inattention to detail.

425. Let {x1, x2, · · · , xn, · · ·} be a sequence of nonzero real numbers. Show that the sequence is an arithmetic
progression if and only if, for each integer n ≥ 2,

1
x1x2

+
1

x2x3
+ · · ·+ 1

xn−1xn
=

n− 1
x1xn

.

Solution. A constant sequence is an arithmetic progression and clearly satisfies the condition. Suppose
that the sequence is a nonconstant arithmetic progression with common difference d. Then, for each positive
index i, we have that

d

xixi+1
=

xi+1 − xi

xixi+1
=

1
xi
− 1

xi+1
.

Hence, for each n ≥ 2,

d

n−1∑
i=1

1
xixi+1

=
n−1∑
i=1

(
1
xi
− 1

xi+1

)
=

(
1
x1

− 1
xn

)
=

xn − x1

x1xn
=

(n− 1)d
x1xn

,
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from which the condition follows.

On the other hand, suppose that the condition holds. Let d = x2 − x1, and suppose that we have
established that xn − x1 = (n− 1)d (this is true for n = 2). Then, we have that

n

x1xn+1
− n− 1

x1xn
=

1
xnxn+1

so that
nxn − (n− 1)xn+1 = x1 =⇒ (n− 1)(xn+1 − x1) = n(xn − x1) = n(n− 1)d

from which xn+1 − x1 = nd. It follows, by induction, that the {xn} is an arithmetic progression.

426. (a) The following paper-folding method is proposed for trisecting an acute angle.
(1) transfer the angle to a rectangular sheet so that its vertex is at one corner P of the sheet with

one ray along the edge PY ; let the angle be XPY ;
(2) fold up PY over QZ to fall on RW , so that PQ = QR and PY ‖QZ‖RW , with QZ between

PY and RW ;
(3) fold across a line AC with A on the sheet and C on the edge PY so that P falls on a point P ′

on QZ and R on a point R′ on PX;
(4) suppose that the fold AC intersects the fold QZ at B and carries Q to Q′; make a fold along

BQ′.
It is claimed that the fold BQ′ passes through P and trisects angle XPY .
Explain why the fold described in (3) is possible. Does the method work? Why?

(b) What happens with a right angle?

(c) Can the method be adapted for an obtuse angle?

Solution. [F. Barekat] Let ∠XPY = 3θ. Select B on QZ so that ∠PBR = 4θ and draw the circle with
centre B that passes through P and R. Suppose that this circle intersects QZ at P ′ and XP at R′. Since
∠PBR = 4θ, ∠P ′PY = ∠PP ′Q = 1

2∠PP ′R = θ. Also, ∠P ′RR′ = ∠XPP ′ = ∠XPY − ∠P ′PY = 2θ, so
that ∠R′RW = ∠P ′RR′ − ∠WRP ′ = θ.

Hence PP ′ and RR′ are parallel chords in the circle, and their right bisectors pass through B and
defines the required fold to interchange P and P ′, and R and R′. Since BP = BP ′, ∠BPY = ∠QBP =
∠BPP ′ + ∠BP ′P = 2∠BP ′P = 2θ, so that ∠BPR′ = θ and BP trisects the angle.

The fold (reflection) fixes B and interchanges P and P ′, and Q and Q′. Since P ′, B, Q are collinear, so
are P,B,Q′. Hence the line through B and Q′ also passes through P and so trisects the angle.

(b) When ∠XPY = 90◦, then X lies on PR and R and R′ coincide. We have that PR = P ′R = P ′P ,
so that triangle PP ′R is equilateral and RC is an altitude. Hence Q′ is the midpoint of P ′R and ∠Q′PP ′ =
30◦ = ∠P ′PX.

(c) One way to trisect an obtuse angle is to trisect its supplement, and subtract the result from 60◦..

427. The radius of the inscribed circle and the radii of the three escribed circles of a triangle are consecutive
terms of a geometric progression. Determine the largest angle of the triangle.

Solution 1. [F. Barekat] Let r be the inradius and ra, rb, rc the respective exradii of the circles touching
the sides a, b, c. Let s be the semiperimeter and ∆ the area of the triangle. Recall that

∆ = rs = ra(s− a) = rb(s− b) = rc(s− c)

[derive this], from which
1
ra

+
1
rb

+
1
rc

=
s− a

∆
+

s− b

∆
+

s− c

∆
=

s

∆
=

1
r

9



so that r is the smallest term in the geometric progression. Suppose that A ≤ B ≤ C. Then

ra = s tan(A/2) ≤ rb = s tan(B/2) ≤ rc = s tan(C/2) .

Hence there is a number t > 1 for which ra = tr, rb = t2r, rc = t3r and s− b = t(s− c), s− a = t2(s− c),
s = t3s. By Heron’s formula,

t3r(s− c) = rc(s− c) = rs = ∆

=
√

s(s− a)(s− b)(s− c) =
√

t6(s− c)4 = t3(s− c)2 .

Hence r = s− c, and so tan(C/2) = r/(s− c) = 1. Thus C = 90◦.

Solution 2. [D. Dziabenko] Define the symbols as in the first solution. The equation r−1
a +r−1

b +r−1
c = r−1

leads to t3 = t2 + t + 1. Now

∆ =
1
2
ab sinC =

1
2
[(s− b + s− c)(s− a + s− c) sinC

=
1
2
[(t + 1)(t2 + 1)(s− c)2 sinC] = t3(s− c)2 sinC .

On the other hand, by Heron’s formula, we find that

∆ =
√

t6(s− c)4 = t3(s− c)2 .

Comparing the two expressions leads to sinC = 1, so that C = 90◦.

Solution 3. [G. Ghosn; A. Remorov] With r ≤ ra ≤ rb ≤ rc as in the previous solutions and from the
inverse proportionality of r : ra : rb : rc and s : (s−a) : (s− b) : (s− c), we have that (s−a)(s− b) = s(s− c),
whence

ab = (a + b− c)s =⇒ 2ab = (a + b)2 − c2 =⇒ c2 = a2 + b2 .

Hence the triangle is right, and its largest angle, C, is 90◦.

428. a, b and c are three lines in space. Neither a nor b is perpendicular to c. Points P and Q vary on a
and b, respectively, so that PQ is perpendicular to c. The plane through P perpendicular to b meets c
at R, and the plane through Q perpendicular to a meets c at S. Prove that RS is of constant length.

Solution. Let the point P on line a be given by p + su and the point Q on line b be given by q + tv,
where p, q, u and v are fixed vectors and s, t parameters determining the points. Let r be a point on c and
w be the direction vector for c. Wolog, we can normalize u and v so that u ·w = v ·w = 1.

By hypothesis, [(p + su)− (q + tv] ·w = 0, whence s− t = (q− p) ·w. Let R be given by r + mw and
S by r + nw. Then

[(p + su)− (r + mw)] · v = 0

so that m = (p− r) · v + s(u · v). Also

[(q + tv)− (r + mw)] · u = 0

so that n = (q− r) · u + t(v · u). Hence

m− n = (p− r).v − (q− r).u + (u · v)[(q− p).w

is independent of s and t and the result follows.

429. Prove that
n∑

k=1

(−1)k+1

(
n

k

)(
kn

n

)
= (−1)n+1nn .

10



Solution 1. Let f(x) = (1− (1 + x)n)n. Since (1− (1 + x)n) = −nx + x2g(x), for some polynomial g(x),
we have that

f(x) = (−1)nnnxn + xn+1h(x)

for some polymonial h(x). On the other hand,

f(x) =
n∑

k=0

(−1)k

(
n

k

)
(1 + x)nk

=
n∑

k=0

(−1)k

(
n

k

) nk∑
j=0

(
nk

j

)
xj

=
n2∑

j=0

[ n∑
k=dj/ne

(−1)k

(
n

k

)(
nk

j

)]
xj .

Comparing the coefficients of xn in the two expressions for f(x) yields that (−1)nnn =
∑n

k=1(−1)k
(
n
k

)(
nk
n

)
,

from which the desired result follows.

Solution 2. Consider a set of n2 distinct objects arranged in a n×n square array. There are nn ways of
choosing n of them so that one is chosen from each row. We count this in a different way, using the Principle
of Inclusion-Exclusion. Let f(r) be the number of ways of selecting the n objects so that they come from at
most r distinct rows. There are

(
n
r

)
ways of selecting the r rows containing the objects, and rn objects to

choose from. Hence f(r) =
(
n
r

)(
rn
n

)
. [Note that this doublecounts choices involving fewer than r rows.]

There are f(n) =
(
n2

n

)
ways of choosing n objects from the array without restriction. But this includes

the f(n− 1) selections where they are drawn from at most n− 1 rows. But then f(n)− f(n− 1) subtracts
off those from n−2 rows twice, so we need to add f(n−2) back. But then, in f(n)− f(n−1)+ f(n−2), we
have added in each selection from n− 3 rows

(
3
3

)
times in f(n), subtracted in

(
3
2

)
times in f(n− 1), added

it back
(
3
1

)
times. So we need to add it back. Continuing in this way, we find that

nn =
n∑

k=0

(−1)n−kf(k) =
n∑

k=0

(−1)n−k

(
n

k

)(
kn

k

)
from which the desired result follows.

Solution 4. [G. Ghosn] Let P (x) = (xn − 1)n =
∑n

k=0

(
n
k

)
xkn(−1)n−k. We calculate the nth derivative

of the two expressions.

Recall Leibniz’ Rule that Dn(QR) =
∑n

k=0

(
n
k

)
Dn−k(Q)Dk(R). Taking Q(x) = (x − 1)n and R(x) =

(xn−1 + xn−2 + · · ·+ 1)n, we have that

Dn[(xn − 1)n] = Dn[(x− 1)n(xn−1 + · · ·+ x + 1)n]

= n!(xn−1 + · · ·+ x + 1)n + (x− 1)S(x) ,

for some polynomial S(x). When x = 1, this takes the value n!nn.

On the other hand,

Dn

[ n∑
k=0

(−1)n−k

(
n

k

)
xkn

]
=

n∑
k=0

(−1)n−k

(
n

k

)
(kn)(kn− 1) · · · (kn− n + 1)xkn−n

=
n∑

k=0

(−1)n−k

(
n

k

)
(kn)!

(kn− n)!
xkn−n

=
n∑

k=0

(−1)n−k

(
n

k

)(
kn

n

)
n!xkn−n .
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When x = 1, this takes the value n!
∑n

k=0(−1)n−k
(
n
k

)(
kn
n

)
. The desired result follows.

430. Let triangle ABC be such that its excircle tangent to the segment AB is also tangent to the circle whose
diameter is the segment BC. If the lengths of the sides BC, CA and AB of the triangle form, in this
order, an arithmetic sequence, find the measure of the angle ACB.

Solution. Let M be the midpoint of BC, E the centre of the excircle tangent to AB and r its radius,
T , S and K the respective points of tangency of this excircle to CB, CA and AB respectively, and P the
point of tangency of the two circles of the problem. Following convention, let a, b, c be the sidelengths of
the sides of triangle ABC and s its semiperimeter. We have that |CS| = |CT | = s, |AK| = |AS| = s − b
and |BK| = |BT | = s− a. Then

[ABC] = [ACE] + [BCE]− [ABE] =
1
2
rb +

1
2
ra− 1

2
rc = r(s− c) .

Consider the right triangle MET . We have that |ME| = |MP |+ |PE| = a
2 +r, |MT | = |MB|+ |BC| =

a
2 + s− a = s− a

2 and |ET | = r, so that(
r +

a

2

)2

= r2 +
(

s− a

2

)2

=⇒ ra = s(s− a) .

Using Heron’s formula, we find that

r(s− c) = [ABC] =
√

s(s− a)(s− b)(s− c) ,

so that
s(s− a)(s− c)

a
=

√
s(s− a)(s− b)(s− c) =⇒ s(s− a)(s− c) = a2(s− b) .

Since a, b, c are in arithmetic progression, for some number d, a = b− d, c = b + d and 2s = 3b, so that

3b

2

(
b

2
− d

)(
b

2
+ d

)
= (b− d)2

(
b

2

)
=⇒ 3b(b2 − 4d2) = 4b(b− d)2

=⇒ 3b2 − 12d2 = 4b2 − 8bd + 4d2

=⇒ 0 = b2 − 8bd + 16d2 = (b− 4d)2 .

Hence (a, b, c) = (3d, 4d, 5d) so that triangle ABC is right and ∠C = 90◦.

431. Prove the following trigonometric identity, for any natural number n:

sin
π

4n + 2
· sin 3π

4n + 2
· sin 5π

4n + 2
· · · sin (2n− 1)π

4n + 2
=

1
2n

.

Solution 1. [F. Barekat] Let θ = π/(4n + 2). For each integer m, we have that

sinmθ =
sin 2mθ

2 cos mθ
=

sin 2mθ

2 sin(π
2 −mθ)

.

When m = 2k − 1 (1 ≤ k ≤ n),

π

2
−mθ =

π

2

[
1− 2k − 1

2n + 1

]
=

π

2

[
2(n + 1− k)

2n + 1

]
= 2(n + 1− k)θ .

12



Hence
n∏

k=1

sin
(2k − 1)π

4n + 2
=

n∏
k=1

sin(2k − 1)θ =
n∏

k=1

sin 2(2k − 1)θ
2 sin 2(n + 1− k)θ

=
∏n

k=1 sin 2(2k − 1)θ∏n
k=1 2 sin 2(n + 1− k)θ

=
1
2n

∏n
k=1 sin 2(2k − 1)θ∏n

k=1 sin 2kθ
=

1
2n

n∏
k=1

sin 2(2k − 1)θ
sin 2kθ

=
1
2n

∏{
sin 2iθ

sin 2iθ
: i odd, 1 ≤ i ≤ n

}
·
∏{

sin 2(2n + i− j)θ
sin 2jθ

: j even, 2 ≤ j ≤ n

}
.

Since 2(2n + 1− j)θ + 2jθ = (4n + 2)θ = π, all fractions in the products are equal to unity, and the required
value is 1/2n.

Solution 2. We first illustrate the argument for n = 3. Consider a regular heptagon ABCDEFG
with |AB| = a, |AC| = b and |AD| = c, Let M be the midpoint of DE so that AM right bisects DE
as well as the parallel diagonals CF and BG. Being one-quarter of the angle subtended by a side at
the centre of the circumcircle, ∠DAM = π/14. Since 1

2 |BC| = |AB| sin∠BAM , 1
2b = a sin 5π

14 . Since
1
2 |CF | = |AC| sin∠CAM , 1

2c = b sin 3π
14 . Since 1

2 |DE| = |AD| sin∠DAM , 1
2a = c sin π

14 . Multiplying these
equations yields that

1
23

= sin
π

14
sin

3π

14
sin

5π

14
.

In general, consider a regular (2n + 1)−gon AB1B2 · · ·BnCn · · ·C2C1, with M the midpoint of BnCn.
Observe that the segments BkCk (1 ≤ k ≤ n) are all parallel. Suppose that θ = π/(4n + 2). Then, for
1 ≤ k ≤ n,

∠BkAM =
[2n− (2k − 1)]π

4n + 2
= [2n− (2k − 1)]θ = [2(n + 1− k)− 1]θ .

Therefore,
1
2
|BkCk| = |ABk| sin[2(n + 1− k)− 1]θ .

The chord ABk has k − 1 vertices of the polygon on one side and 2n − k vertices on the other side, while
the chord BkCk has 2k − 1 vertices of the polygon on one side and 2(n − k) vertices on the other. Hence
|ABk| = |BjCj | where j = 1

2 [2n + 1− k] when k is odd and j = 1
2k when k is even. The sequence {|ABk|}

is a permutation of the sequence {|BkCk|}. Hence

1
2n

n∏
k=1

|ABk| =
1
2n

n∏
k=1

|BkCk| =
n∏

k=1

1
2
|BkCk|

=
n∏

k=1

|ABk| sin[2(n + 1− k)− 1]θ =
n∏

k=1

|ABk|
n∏

k=1

sin(2k − 1)θ ,

from which the result follows.

432. Find the exact value of:

(a) √
1
6

+
√

5
18

−

√
1
6
−
√

5
18

;

(b) √
1 +

2
5
·
√

1 +
2
6
·
√

1 +
2
7
·
√

1 +
2
8
· · ·

√
1 +

2
57

·
√

1 +
2
58

.
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Solution. (a) √
1
6

+
√

5
18

=
1
6

√
6 + 2

√
5 =

1
6
(1 +

√
5)

and √
1
6
−
√

5
18

=
1
6

√
6− 2

√
5 =

1
6
(
√

5− 1) ,

so that the difference is equal to 1/3.

(b) For each n,
√

1 + (2/n) =
√

(n + 2)/n, so that the product is equal to√
7
5
· 8
6
· 9
7
· · · 59

57
· 60
58

=

√
59
5
· 60

6
=
√

118 .

433. Prove that the equation
x2 + 2y2 + 98z2 = 77777 . . . 777

does not have a solution in integers, where the right side has 2006 digits, all equal to 7.

Solution. Since, modulo 7, squares have the values 0, 1, 2, 4, x2+2y2 ≡ 0 (mod 7) implies that x ≡ y ≡ 0
(mod 7), whence x = 7u and y = 7v for some integers u and v. Hence

0 ≡ 7u2 + 14v2 + 14z2 = 11111 . . . 111

(mod 7). However 111111 = 7× 15873 ≡ 0 (mod 7), and 2006 = 6× 334 + 2. Thus,

11111 . . . 111 = 11 + 111111(102 + 108 + · · ·+ 102000) ≡ 11 ≡ 4

(mod 7), and we arrive at a contradiction.

434. Find all natural numbers n for which 2n + n2004 is equal to a prime number.

Solution. Let N = 2n + n2004. If n is even, then N is even and composite. Let n be odd and not a
multiple of 3. Then N ≡ 2n + (n2)1003 ≡ 2 + 1 ≡ 0 (mod 3). When n = 1, N = 3 and is prime, while when
n > 1, N exceeds 3 and is composite.

Finally, let n be a multiple of 3. Then n = 3k for some integer k and N = (2k)3 + (n668)3 is properly
divisible by 2k + n668. Hence N is prime exactly when n = 1.

435. A circle with centre I is the incircle of the convex quadrilateral ABCD. The diagonals AC and BD
intersect at the point E. Prove that, if the midpoints of the segments AD, BC and IE are collinear,
then AB = CD.

Solution. Let M be the midpoint of AD and N the midpoint of BC. Since the mindpoints of AD, BC
and IE are collinear, I and E are on opposite sides of MN . Wolog, let I lie inside AMNB and E lie inside
DMNC.

We have that
[MIN ] = [AMNB]− [ABI]− [AMI]− [BNI]

= [AMNB]− [ABI]− 1
2
([ADI] + [BCI])

= [AMNB]− 1
2
[ABI]− 1

2
([ABI] + [ADI] + [BCI])

= [AMNB]− 1
2
[ABI]− 1

2
([ABCD]− [CDI]) .
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Similarly,

[MEN ] = [DMNC]− 1
2
[DCE]− 1

2
([ABCD]− [ABE]) .

Since MN bisects IE, I and E are equidistant from MN and [MIN ] = [MEN ]. Now

[AMNB] = [AMN ] + [ABN ] =
1
2
[AND] +

1
2
[ABC]

and
[DMNC] = [MDN ] + [DNC] =

1
2
[AND] +

1
2
[DBC] .

Hence

[AND] + [ABC]− [ABI]− [ABCD] + [CDI] = [AND] + [DBC]− [DEC]− [ABCD] + [ABE] ,

whence
[ABC] + [CDI] + [DEC] = [DBC] + [ABE] + [ABI] .

Since
[ABC] + [DEC] = [ABCDE] = [DBC] + [ABE] ,

[CDI] = [ABI]. But I is equidistant from CD and AB whence AB = CD,

436. In the Euro-African volleyball tournament, there were nine more teams participating from Europe than
from Africa. In total, the European won nine times as many points as were won by all of the African
teams. In this tournamet, each team played exactly once against each other team; there were no ties;
the winner of a game gets 1 point, the loser 0. What is the greatest possible score of the best African
team?

Solution. Let a be the number of teams from Africa, so that a + 9 is the number of teams from Europe.
Supose that there were k African wins over Europeans. Then the total number of points taken by the African
teams is

(
a
2

)
+ k = 1

2a(a− 1) + k, while the Europeans won(
a + 9

2

)
+ [a(a + 9)− k] =

(a + 9)(3a + 8)
2

− k .

By the given conditions,
(a + 9)(3a + 8)

2
− k = 9

[
a(a− 1)

2
+ k

]
,

which simplifies to 3a2 − 22a + (10k− 36) = 0. This is a quadratic equation in a with discriminant equal to
916− 120k = 4(229− 30k). There are integer values of a satisfying the quadratic only if 229− 30k is square
with k > 0. Thus, k = 2 or k = 6.

When k = 2, 0 = 3a2− 22a− 16 = (a− 8)(3a + 2) so a = 8. In this case, there are 8 African teams, and
any of these teams can get at most 7 + 2 = 9 points, which can occur when one African team vanquishes
all the other African teams as well as two European teams.

When k = 6, 0 = 3a2− 22a + 24 = (a− 6)(3a− 4) so a = 6. In this case, there are 6 African teams, and
any of these teams can get at most 5 + 6 = 11 points, which can occur when one African team vanquishes
all the other African teams as well as six European teams.

Thus the greatest possible score for an African team is 11.

437. Let a, b, c be the side lengths and ma, mb, mc the lengths of their respective medians, of an arbitrary
triangle ABC. Show that

3
4

<
ma + mb + mc

a + b + c
< 1 .
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Furthermore, show that one cannot find a smaller interval to bound the ratio.

Solution. We use the property that the intersection of the medians trisects the medians. From the
triangle inequality, we obtain

a <
2
3
mb +

2
3
mc b <

2
3
mc +

2
3
ma c <

2
3
ma +

2
3
mb .

Summing these inequalities and manipulating gives the left inequality.

For the right inequality, extend a median, say mb to the same length on the other side of AC. Joining A
and C to the endpoint D of the extended median gives a parallellogram ABCD with diagonal AD of length
2mb and sides a and c. Do the same with the other two medians. From the triangle inequality, we have that

2mb < a + c 2mc < a + b 2ma < b + c .

Summing the inequalities will lead to the right inequality.

To see that the inequality cannot be improved, consider the isosceles triangle ABC with sides AB and
AC of length 1 and angle A equal to 2θ, where 0 < θ < 90◦. Then

(a, b, c) = (2 sin θ, 1, 1)

and
(ma,mb,mc) = (cos θ, f(θ), f(θ))

where f(θ) = 1
2

√
5− 4 cos 2θ. Observe that

lim
θ→0

f(θ) =
1
2

and lim
θ→90◦

f(θ) =
3
2

.

We have that
ma + mb + mc

a + b + c
=

cos θ + 2f(θ)
2(1 + sin θ)

.

When θ is close to 0◦, this ratio is close to 1, and when θ is close to 90◦, the ratio is close to 3/4.

438. Determine all sets (x, y, z) of real numbers for which

x + y = 2 and xy − z2 = 1 .

Solution. From the second equation, z2 = xy − 1 = x(2 − x) − 1 = −(x − 1)2. Since squares are
nonnegative, we must have z = 0 = (x− 1), so that (x, y, z) = (1, 1, 0).

439. A natural number n, less than or equal to 500, has the property that when one chooses a number m
randomly among {1, 2, 3, · · · , 500}, the probability that m divides n (i.e., n/m is an integer) is 1/100.
Find the largest such n.

Solution. The number n must have 5 divisors. If the prime factorization of n is pα1
1 pα2

2 · · · pαk

k , then n
has (α1 + 1)(α2 + 1) · · · (αk + 1) divisors. To obtain five divisors, n must have the form p4 for some prime
p. The largest such n is therefore n = 34 = 81, as 54 > 500.

440. You are to choose 10 distinct numbers from {1, 2, 3, · · · , 2006}. Show that you can choose such numbers
with a sum greater than 10039 in more ways than you can choose such numbers with a sum less than
10030.
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Solution. Let M be the set {1, 2, 3, · · · , 2006}, let S be the set of 10−tuples of distinct elements of M
with sum less than 10030, and L be the set of 10−tuples of distinct elements of M with sum greater than
10039. Define a function f on S by

f(a1, a2, · · · , a10) = (2007− a1, 2007− a2, · · · , 2007− a10) .

Each f(a1, a2, · · · , a10) consists of ten distinct numbers in M and the sum of the numbers is

10 · 2007−
10∑

i=1

ai > 27000− 10030 = 10040 .

Hence the range of f is a subset of L. Since (999, 1000, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1009) is in L,
but not in the range of f , the range of f is a proper subset of L. As f is injective and the sets are finite, it
follows that S has fewer elements than L.

441. Prove that, no matter how 15 points are placed inside a circle of radius 2 (including the boundary),
there exists a circle of radius 1 (including the boundary) containing at least 3 of the 15 points.

Solution. We will cover the circle of radius 2 entirely with seven circles of radius 1. By the Pigeonhole
Principle, at least one of these circles will contain at least three of the fifteen points.

Construct the circle of radius 1 concentric with the circle of radius 2; denote the centre of these circles
by O. For each of the six 60◦−sectors, construct a circle as follows. Let A and B be on the inner circle with
∠AOB = 60◦, and let OA and OB produced meet the outer circle at C and D respectively; let E be the
midpoint of CD. The following triangles are equilaterial with side length 1: BOA, EAC, EBA, EDB. The
inner circle and the circle with centre E and radius 1 together cover the sector COD.

442. Prove that the regular tetrahedron has minimum diameter among all tetrahedra that circumscribe a
given sphere. (The diameter of a tetrahedron is the length of its longest edge.)

Solution. Let T be the tetrahedron with volume V and surface area S; suppose that r is the radius of
the sphere inscribed within T . Let one vertex of T be at the origin and let the other three vertices and the
centre of the sphere be given by the position vectors A, B, C and P , respectively. Then P = αA+βB +γC,
with α, β, γ > 0 and α + β + γ < 1.

Suppose that A× B points into T . Then, since P can be written as the orthogonal sum of a vector in
the plane of A and B and a vector of length r perpendicular to this plane from the point of tangency of the
insphere,

r|A×B| = P · (A×B) = γC · (A×B) = 6γV ,

and likewise
r|B × C| = P · (B × C) = 6αV ,

r|C ×A| = P · (C ×A) = 6βV ,

r|(C −A)× (B −A)| = (P −A) · ((C −A)× (B −A)) .

Since P −A = (α + β + γ − 1)A + β(B −A) + γ(C −A),

(P −A) · ((C −A)× (B −A)) = (α + β + γ − 1)A · ((C −A)× (B −A))
= (1− α− β − γ)(O −A) · ((C −A)× (B −A)
= 6(1− α− β − γ)V .

The total surface area S is equal to

1
2
[|A×B|+ |B × C|+ |C ×A|+ |(C −A)× (B −A)|] = 3V/r
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so that r = 3V/A. The triangle of given perimeter with maximum area is equilateral and (it is possible to
show that) the tetrahedron of given surface area with maximum volume is regular. The desired result follows
immediately from the last formula.

443. For n ≥ 3, show that n− 1 straight lines are sufficient to go through the interior of every square of an
n× n chessboard. Are n− 1 lines necessary?

Solution. Let the corners of the board be (−n, n), (0, n), (−n, 0), (0, 0). Draw n− 2 lines Li with slope
1/2, the first intersecting the base line at (−9/2, 0), and the rest spaced so that the vertical distance between
the lines is 3/2 units. Li has equation y = 1

2x+ 9
4 + 3i

2 , for i = 0, 1, 2, · · · , n−3. (Li+1 is obtained by shifting
Li one unit to the left and then one unit up.) L1 goes through the points (−9/2, 0), (−4, 1/4), (−3, 3/4),
(−5/2, 1), (−2, 5/4), (−1, 7/4), (−1/2, 2), (0, 9/4). Ln−3 goes through the point (−n + 9/2, n). (Thus, the
arrangement is symmetric under 180 degree rotation.) Leaving out the two rightmost squares in the lowest
row an the two leftmost squares in the top row, every unit square has an interior point on one or other of
the lines. The (n− 1)th line can be drawn to pass through the interiors of the four squares.

To prove necessity, we need an inductive argument. Let there be m rows and n columns with m ≤ n,
and let f(m,n) be the minimum number of lines needed to cover an m × n board, in the sense that some
interior point of every unit square is on one or another of the lines. Since any line going from one side to
the other with ends in adjacent rows crosses both squares in a column exactly once, f(1, n) = 1, f(2, n) = 2,
f(n−1, n) ≤ n−1. It can be shown that f(3, 4) = 3, f(4, 5) = 4, f(5, 6) = 5. Thus, f(3, n) = 3, f(4, n) = 4,
f(5, n) = 5. If f(n− 1, n) = n− 1, then f(m,n) is determined for all m,n: f(n− k, n) = n− k, if 0 < k < n,
n ≥ 3; f(n, n) = n− 1.

444. (a) Suppose that a 6×6 square grid of unit squares (chessboard) is tiled by 1×2 rectangles (dominoes).
Prove that it can be decomposed into two rectangles, tiled by disjoint subsets of the dominoes.

(b) Is the same thing true for an 8× 8 array?

(c) Is the same thing true for a 6× 8 array?

Solution. (a) There are 18 dominoes and 10 interior lines in the grid. For the decomposition not to
occur, each of the lines must be straddled by at least one domino. We argue that, in fact, at least two
dominos must straddle each line. Since no domino can straddle more than one line, this would require 20
dominos and so yield a contradiction.

Each interior line has six segments. For a line next to the side of the square grid, an adjacent domino
between it and the side must either cross one segment or be adjacent to two segments. Since the number of
segments is even, evenly many dominos must cross a segment. For the next line in, an adjacent domino must
be adjacent to two segments, be adjacent to one segment and cross the previous line, or cross one segment.
Since the number of dominoes straddling the previous line is even, there must be evenly many that cross the
segment. In this way, we can work our way from one line to the next.

Comment. F. Barekat had the following argument. Consider a subrectangle determined by one interior
line. It contains an even number of unit squares. Since each domino covers two unit squares, there must be
an even number of unit squares belonging to dominoes that straddle the internal line.

(b) Number the squares in the grid by pairs ij of digits where the square is in the ith row and jth
column. Here is a tiling with dominos in which each interior line is straddled and no decomposition into
subrectangles is possible:

(11− 12), (13− 14), (15− 16), (17− 27), (18− 28), (21− 31), (22− 32), (23− 33),

(24− 34), (25− 26), (35− 45), (36− 46), (37− 38), (41− 42), (43− 44), (47− 57),

(48− 58), (51− 61), (52− 53), (54− 55), (56− 66), (62− 72), (63− 73), (64− 74),

(65− 75), (67− 68), (71− 81), (76− 77), (78− 88), (82− 83), (84− 85), (86− 87) .
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(c) [J. Schneider; C. Sun] Using a similar notation as in (b), we have the example for which no decom-
position into subrectangles is possible. Note that there are 12 interior lines and 24 dominoes, so that, for
each example, each interior line is straddled by exactly two dominoes.

(11− 21), (12− 13), (14− 15), (16− 26), (17− 18), (22− 32), (23− 24), (25, 35),

(27− 28), (31− 41), (33− 34), (36− 37), (38− 48), (42− 43), (44− 54), (45− 46),

(47− 57), (51− 52), (53− 63), (55− 56), (58− 68), (61− 62), (64− 65), (66− 67) .

Here are two coverings that exhibit symmetry due respectively to P. Chen and K. Huynh. The first is

(11− 21), (12− 22), (13− 14), (15− 16), (17− 18), (23− 33), (24− 25), (26− 27),

(28− 38), (31− 32), (34− 44), (35− 45), (36− 37), (41− 51), (42− 43), (46− 56),

(47− 48), (52− 53), (54− 55), (57− 67), (58− 68), (61− 62), (63− 64), (65− 66) .

The second is

(11− 21), (12− 13), (14− 15), (16− 17), (18− 28), (22− 32), (23− 24), (25− 26),

(27− 37), (31− 41), (33− 34), (35− 36), (38− 48), (42− 43), (44− 54), (45− 55),

(46− 47), (51− 52), (53− 63), (56− 66), (57− 58), (61− 62), (64− 65), (67− 78) .

445. Two parabolas have parallel axes and intersect in two points. Prove that their common chord bisects
the segments whose endpoints are the points of contact of their common tangent.

Solution 1. Wolog, we may assume that the parabolas have the equations y = ax2 and y = b(x−1)2 +c.
The common chord has equation

a[b(x− 1)2 + c− y]− b[ax2 − y] = 0 ,

or
(a− b)y + 2abx− a(b + c) = 0 . (1)

Consider a point (u, au2) on the first parabola. The tangent at this point has equation y = 2aux− au2.
The abscissa of the intersection point of this tangent with the parabola of equation y = b(x−1)2 + c is given
by the question

bx2 − 2(b + au)x + (au2 + b + c) = 0 .

This has coincident roots if and only if

(b + au)2 = b(au2 + b + c) ⇐⇒ a(a− b)u2 + 2abu− bc = 0 . (2)

In this situation, the coincident roots are x = 1 + (au)/b and the point of contact of the common tangent
with the second parabola is (

1 +
au

b
,
a2u2

b
+ c

)
.

The midpoint of the segment joining the two contact points is(
b + au + bu

2b
,
abu2 + a2u2 + bc

2b

)
.

19



Plugging this into the left side of (1) and using (2) yields that

[1/(2b)][(a− b)a(a + b)u2 + (a− b)bc + 2ab2 + 2ab(a + b)u− 2ab(b + c)]

= [(a + b)/(2b)][a(a− b)u2 + 2abu− bc] = 0 .

Thus, the coordinates of the midpoint of the segment satisfy (1) and the result follows.

Solution 2. [A. Feizmohammadi] Let the two parabolas have equations y = ax(x−u) and y = bx(x−v).
Since the two parabolas must open the same way for the situation to occur, wolog, we may suppose that
a, b > 0. The parabolas intersect at the points (0, 0) and ((au − bv)/(a − b), (ab(au − bv)(u − v)/(a − b)2),
and the common chord has equation (a− b)y − ab(u− v)x = 0.

Let y = mx+k be the equation of the common tangent. Then both of the equations ax2−(au+m)x−k =
0 and bx2 − (bv + m)x− k = 0 have double roots. Therefore (au + m)2 + 4ak = (bv + m)2 + 4bk = 0, from
which (by eliminating k),

ab(au2 − bv2) + 2ab(u− v)m + (b− a)m2 = 0 .

The common tangent of equation y = mx + k touches the first parabola at(
au + m

2a
,
m2 − a2u2

4a

)
and the second parabola at (

bv + m

2b
,
m2 − b2v2

4b

)
.

The midpoint of the segment joining these two points is(
ab(u + v) + (a + b)m

4ab
,
(a + b)m2 − ab(au2 + bv2)

8ab

)
.

Using these coordinates as the values of x and y, we find that

8ab[(a− b)y − ab(u− v)x] = (a− b)[(a + b)m2 − ab(au2 + bv2)]− 2a2b2(u− v)(u + v)
− 2ab(a + b)(u− v)m

= (a2 − b2)m2 − 2ab(a + b)(u− v)m

− [(a− b)a2bu2 + (a− b)ab2v2 + 2a2b2u2 − 2a2b2v2]

= (a2 − b2)m2 − 2ab(a + b)(u− v)m− [a3bu2 + a2b2u2 − a2b2v2 − ab3v2]

= (a + b)[(a− b)m2 − 2ab(u− v)m]− [ab(a(a + b)u2 − ab(b(a + b)v2]

= (a + b)[(a− b)m2 − 2ab(u− v)m− ab(au2 − bv2)] = 0 .

Solution 3. [J. Kileel] We may assume that both parabolas have vertical axes and that one has equation
y = x2. The second has an equation of the form y = ax2 + bx + c, where a > 0 and a 6= 1. (The latter
ensures two points of intersection.)

The equation of the chord through the points (d, d2) and (e, e2) is y = (d + e)x− de. The abscissae x1

and x2 of the intersection points of the two parabolas are the roots of the quadratic (a− 1)x2 + bx + c = 0,
so that

x1 + x2 =
−b

a− 1
and x1x2 =

c

a− 1
.

The line passing through the points (x1, x
2
1) and (x2, x

2
2) is

(1− a)y = bx + c . (1)
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The equation of a line tangent to the first parabola at (u, u2) is

y = 2ux− u2 , (2)

and to the second parabola at (v, av2 + bv + c) is

y = (2av + b)x + (c− av2) . (3)

For the common tangent, these two equations are identical, whence

2u = 2av + b (4)

and
u2 = av2 − c . (5)

Eliminating v from (4) and (5) yields

4(1− a)u2 − 4bu− 4ac + b2 = 0 . (6)

The chord and common tangent intersect at the point(
au2 − u2 − c

2au− 2u + b
,− 2uc + bu2

2au− 2u + b

)
.

(Solve (1) and (2).) The midpoint of the segment of the common tangent joining the two points of tangency
has, by (4), the abscissa,

u + v

2
=

2au + 2u− b

4a
.

Now
au2 − u2 − c

2au− 2u + b
− 2au + 2u− b

4a

=
4a2u2 − 4au2 − 4ac− 4a2u2 + (2u− b)2

4a(2au− 2u + b

=
4(1− a)u2 − 4bu− 4ac + b2

4a(2au− 2u + b)
= 0 ,

by (6). Hence the abscissae of the intersection point and the midpoint of the common tangent are equal and
the result follows.

Comment. This can be solved using projective geometry, as it holds for any conic. To capture the idea
of midpoint, we use harmonic range involving points at infinity.

446. Suppose that you have a 3×3 grid of squares. A line is a set of three squares in the same row, the same
column or the same diagonal; thus, there are eight lines.

Two players A and B play a game. They take alternate turns, A putting a 0 in any unoccupied square
of the grid and B putting a 1. The first player is A, and the game cannot go on for more than nine
moves. (The play is similar to noughts-and-crosses, or tictactoe.) A move is legitimate if it does not
result in two lines of squares being filled in with different sums. The winner is the last player to make
a legitimate move.

(For example, if there are three 0s down the diagonal, then B can place a 1 in any vacant square provided
it completes no other line, for then the sum would differ from the diagonal sum. If there are two zeros
at the top of the main diagonal and two ones at the left of the bottom line, then the lower right square
cannot be filled by either player, as it would result in two lines with different sums.)
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(a) What is the maximum number of legitimate moves possible in a game?

(b) What is the minimum number of legitimate moves possible in a game that would not leave a
legitimate move available for the next player?

(c) Which player has a winning strategy? Explain.

Solution. (a) A game cannot continue to nine moves. Otherwise, the line sum must be three times the
value on the centre square of the grid (why?) and so must be 0 or 3. But some line must contain both zeros
and ones, yielding a contradiction. [An alternative argument is that, if the array is filled, not all the rows
can have the same numbers of 0s and 1s, and therefore cannot have the same sums.] However, an 8-move
grid is possible, in which one player selects the corner squares and the other the squares in the middle of the
edges.

(b) After three or fewer moves have occurred, there are at most three additional squares that would
complete a line and the next player can avoid all of these. Consider any game after four moves have occurred
and it is A’s turn to play a zero. Suppose, first of all, that no lines have been filled with numbers. The only
way an inaccessible square can occur is if it is the intersection of two lines each having the other two squares
filled in. This can happen in at most one way. So A would have at least four possible squares to fill in. On
the other hand, if three of the first four moves complete a line, the fourth number can bar at most three
squares for A in the three lines determined by the fourth number and one of the other three. Thus, A would
have at least two possible positions to fill. Thus, a game must go to at least five moves.

A five-move game can be obtained when A has placed three 0’s down the left column and B has 1 in the
centre square and another square of the middle column. Each remaining position is closed to B as it would
complete a line whose sum is not 0. Other configurations where no further move is possible are the one in
which the top row starts with two 1s and the middle row has three 0s, and where the top row has three 0s
and the bottom row has a 1 at each end.

(c) A has a winning strategy. A places 0 in the middle square. For the next four moves, he plays
symmetrically, completing the line through the centre initiated by B. After the fifth move, up to rotation
and reflection, there are four possible configurations (where * denotes a vacant square, and the rows are
listed from left to right):

α : (1, 1, ∗/∗, 0, ∗/∗, 0, 0)

β : (1, ∗, 1/∗, 0, ∗/0, ∗, 0)

γ : (1, ∗, ∗/0, 0, 1/∗, ∗, 0)

δ : (∗, 1, ∗/0, 0, 1/∗, 0, ∗)

In the case of α, A can respond symmetrically to B if B plays in the middle row, and can achieve

(1, 1, ∗/∗, 0, 0/1, 0, 0)

if B plays in the bottom row. B cannot move. In the case of β, B has only one move and A can counter
by a move in the middle row. As for γ and δ, A can respond respond symetrically to B and then B has no
further move.

447. A high school student asked to solve the surd equation

√
3x− 2−

√
2x− 3 = 1

gave the following answer: Squaring both sides leads to

3x− 2− 2x− 3 = 1

so x = 6. The answer is, in fact, correct.
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Show that there are infinitely many real quadruples (a, b, c, d) for which this method leads to a correct
solution of the surd equation √

ax− b−
√

cx− d = 1 .

Solution 1. Solving the general equation properly leads to
√

ax− b−
√

cx− d = 1 =⇒ ax− b = 1 + cx− d− 2
√

cx− d

=⇒ (a− c)x = (b + 1− d)− 2
√

cx− d .

To make the manipulation simpler, specialize to a = c + 1 and d = b + 1. Then the equation becomes

x2 = 4(cx− d) =⇒ 0 = x2 − 4cx + 4d .

Using the student’s “method” to solve the same equation gives ax − b − cx − d = 1 which yields
x = (1 + b + d)/(a− c) = 2d. So, for the “method” to work, we need

0 = 4d2 − 8cd + 4d = 4d(d− 2c + 1)

which can be achieved by making 2c = d + 1. So we can take

(a, b, c, d) = (t + 1, 2(t− 1), t, 2t− 1)

for some real t. The original problem corresponds to t = 2.

The equation √
(t + 1)x− 2(t− 1)−

√
tx− (2t− 1) = 1

is satisfied by x = 2 and x = 4t − 2. The first solution works for all values of t, while the second is valid if
and only if t ≥ 1

2 . The equation (t + 1)x− 2(t− 1)− tx− (2t− 1) = 1 is equivalent to x = 4t− 2.

Solution 2. [G. Goldstein] Analysis. We want to solve simultaneously the equations
√

ax− b−
√

cx− d = 1 (1)

and
ax− b− cx− d = 1 . (2)

From (1), we find that
ax− b = 1 + (cx− d) + 2

√
cx− d . (3)

From (2) and (3), we obtain that d =
√

cx− d, so that x = (d2 + d)/c. From (2), we have that x =
(1 + b + d)/(a− c).

Select a, c, d so that d > 0 and ac(a− c) 6= 0, and choose b to satisfy

d2 + d

c
=

1 + b + d

a− c
.

Let

x =
d2 + d

c
=

1 + b + d

a− c
=

(d2 + d) + (1 + b + d)
c + (a− c)

=
(d + 1)2 + b

a
.

Then √
ax− b−

√
cx− d =

√
(d + 1)2 −

√
d2 = (d + 1)− d = 1

and
ax− b− cx− d = (d + 1)2 + b− b− d2 − d− d = 1 .
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Comments. In Solution 2, if we take c = d = 1, we get the family of parameters (a, b, c, d) = (a, 2a −
4, 1, 1). R. Barrington Leigh found the set of parameters given in Solution 1. A. Feizmohammadi and Y.
Wang provided the parameters (a, b, c, d) = (2c, 0, c, 1). J. Schneider took (a, b, c, d) = (n, n − 4, 2, 1), with
both equations satisfied by x = 1. A. Tavakoli had the paramatrization (a, b, c, d) = (2c, b, c,

√
1 + b) =

(2c, d2 − 1, c, d), with c 6= 0 and b > −1. A. Remorov offered (a, b, c, d) = (a, 1, 2a/5, 1) with a 6= 0 and
x = 5/a, while D. Shi offered (a, b, c, d) = (d + 2, d + 1, d, d) with d > 0. But C. Sun had the simplest family
of all with (a, b, c, d) = (a, b, 0, 0) with a > 0 and b > 0.

If a = c, then ax − b − cx − d = 1 is satisfied by any value of x as long as 1 + b + d = 0. The surd
equation becomes √

ax− b−
√

ax + (b + 1) = 1

=⇒ ax− b = ax + (b + 1) + 1 + 2
√

ax + (b + 1)

=⇒ b + 1 = −
√

ax + (b + 1)

=⇒ (b + 1)2 = ax + (b + 1) =⇒ x =
(b + 1)b

a
.

Since ax− b = b2 and ax+(b+1) = (b+1)2, we should take b ≤ −1 in order to satisfy the equation. This is
a singular case in which the linear equation has infinitely many solutions and the surd equation either zero
or one solution.

448. A criminal, having escaped from prison, travelled for 10 hours before his escape was detected. He was
then pursued and gained upon at 3 miles per hour. When his pursuers had been 8 hours on the way,
they met an express (train) going in the opposite direction at the same rate as themselves, which had
met the criminal 2 hours and 24 minutes earlier. In what time from the beginning of the pursuit will the
criminal be overtaken? [from The high school algebra by Robertson and Birchard, approved for Ontario
schools in 1886]

Solution 1. It will take 20 hours to catch the criminal, so that he is at large for 30 hours. Let t be
the time in hours from the time the pursuit begins until the time of capture, and let x be the speed of the
criminal in miles per hour. Then

(10 + t)x = t(x + 3) =⇒ 10x = 3t .

Consider the situation 2.4 hours before the pursuers met the express. The distance between the pursuers
and criminal is the distance the pursuers can travel in 4.8 hours, namely 4.8(x + 3) miles (note that the
train and pursuers travel equal distances during the 2.4 to a common meeting point). Since the relative
speed of the pursuers relative to the criminal is 3 miles per hour, it will take the pursuers an additional
(1/3)(4.8)(x + 3) = 1.6(x + 3) hours to close in. Hence

t = (8− 2.4) + 1.6(x + 3) =⇒ t = 10.4 + 1.6x .

Since x = 0.3t, it follows that 104 = 0.52t and t = 20.

Solution 2. We note that the information that the pursuers travel 3 miles per hour faster than the
criminal turns out to be redundant. Let u be the speed of the criminal and v be the speed of the pursuers
and of the freight train. The distance from the prison to the place where the freight train encountered the
criminal is

8v + (2.4)v = (18− 2.4)u = 15.6u =⇒ 10.4v = 15.6u =⇒ 2v = 3u .

After 8 hours of pursuit, the distance between the criminal and his pursuers is

18u− 8v = t(v − u)

for some value of t. This equation reduces to

(18 + t)u = (t + 8)v
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which with the earlier equation yields t = 12. Thus after 8 hours, the distance between the criminal and his
pursuers is 18u− 8v = 12(v− u). Since the pursuers are travelling at speed v− u relative to the criminal, it
will take them 12 hours to close the gap. Hence it will take 20 hours after the pursuers begin to catch the
criminal.

Solution 3. [J. Schneider] Let t be the elapsed time in hours since the escape of the criminal, u the speed
of the criminal in miles per hour, and z the distance from the prison at time t in miles. For convenience,
project the train’s motion so that it reaches the prison at time s; since the train takes the same length of
time (8 hours) to reach the prison from its encounter with the pursuers as the pursuers take to reach the
train, s = 10 + 8 + 8 = 26. (This can also be obtained from equating (u + 3)8 = −(u + 3)(18− s).)

When t ≥ 10, the criminal is distant from the prison vt miles, the pursuers (u + 3)(t − 10) miles and
the train −(u + 3)(t− 26) miles. Since the train and criminal meet at t = 15.6,

15.6u = −(u + 3)(15.6− 26) = 10.4(u + 3) ,

so that 3u = 2(u+3) and u = 6. When the pursuers catch the criminal, we have that 6t = 9(t− 10), so that
t = 30. Thus, it takes the pursuers 20 hours to catch the criminal.

Solution 4. [F. Ban] Let the speed of the criminal be u miles per hour and of the pursuers u + 3 miles
per hour. When the criminal met the express, both were 15.6u miles from the prisoner and the pursuers
were 5.6(u + 3) miles from the prison. Since the express and the pursuers went at the same speed, they met
at a distance 8(u + 3) from the prison, which is exactly halfway between the former position of the pursuers
at 5.6(u + 3) and of the criminal at 15.6u. Thus

15.6u− 8(u + 3) = 8(u + 3)− 5.6(u + 3) =⇒ 15.6u = 10.4(u + 3) =⇒ u = 6, u + 3 = 9 .

If the time taken to catch the criminal after the pursuers start out is t, then the distance from the prison at
time t is

9t = (10 + t)6 =⇒ t = 20 ,

so that it takes the pursuers 20 hours after setting out to catch the criminal.

Comment. P. Chen set up the equation

8(u + 3) + 2.4(u + 3) = 15.6u .

449. Let S = {x : x > −1}. Determine all functions from S to S which both

(a) satisfies the equation f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x, y ∈ S, and

(b) f(x)/x is strictly increasing or strictly decreasing on each of the two intervals {x : −1 < x < 0} and
{x : x > 0}.

Solution. We first check that the function is viably defined. Suppose such a function f(x) exists. Then
for all x, y ∈ S,

1 + x + f(y) + xf(y) = (1 + x)(1 + f(y)) > 0 ,

so that x + f(y) + xf(y) ∈ S. Similarly, y + f(x) + yf(x) ∈ S.

If we set x = y, then we have, for all x ∈ S.

f(x + f(x) + xf(x)) = x + f(x) + xf(x) .

Thus, there is at least one number a ∈ S for which f(a) = a. Let b = a+f(a)+af(a) = 2a+a2 = a(a+2) =
(a + 1)2 − 1. Then b ∈ S and f(b) = b.
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Suppose, if possible, that a > 0; then b > a > 0. However, f(a)/a = f(b)/b = 1, which contradicts
condition (b). Suppose, if possible, that −1 < a < 0; then −1 < b < a < 0. However, as before,
we get a contradiction with condition (b). Hence, the only remaining possibility is that a = 0, so that
x + f(x) + xf(x) = 0 for all x ∈ S. Hence

f(x) =
−x

1 + x
=

1
1 + x

− 1

for x > −1.

We verify that this function works. We have that

x + f(y) + xf(y) = (1 + x)(1 + f(y))− 1 =
1 + x

1 + y
− 1

and
y + f(x) + yf(x) =

1 + y

1 + x
− 1 .

Hence

f(x + f(y) + xf(y)) =
(1 + y)− (1 + x)

1 + x
= y + f(x) + yf(x) .

Note that f(x)/x = −1/(1 + x) increases on S\{0}.

Comment. We can establish more directly that f(0) = 0. First, note that f(x) is one-one. Suppose
that f(a) = f(b). Then, for all x ∈ S, x + f(a) + xf(a) = x + f(b) + xf(b). Aplying f yields that
a + f(x) + af(x) = b + f(x) + bf(x), so that (a − b)(1 + f(x)) = 0. Hence a = b. For all x ∈ S,
f(x + f(0) + xf(0)) = f(x), so that f(0)(1 + x) = 0 and f(0) = 0. One immediate consequence of this is
that f(f(x)) = x for all x ∈ S.

K. Huynh began by letting f(0) = k. Setting (x, y) = (0, 0) led to f(k) = k, and (x, y) = (0, k) to
0 = k(k + 1), whence k = 0. Thus f(0) = 0, from which f(f(y)) = y for all y ∈ S.

450. The 4-sectors of an angle are the three lines through its vertex that partition the angle into four equal
parts; adjacent 4-sectors of two angles that share a side consist of the 4-sector through each vertex that
is closest to the other vertex.

Prove that adjacent 4-sectors of the angles of a parallelogram meet in the vertices of a square if and
only if the parallelogram has four equal sides.

Solution 1. Let the parallelogram be ABCD and let its diagonals intersect at P . Suppose that ABCD
has equal sides, so that ABCD is a rhombus and its diagonals right bisect each other. The intersection of
the adjacent 4-sectors are the respective incentres I, J , K, L of the triangle ABP , BCP , CDP , DAP . Since
IP , JP , KP , LP bisect the respective angles APB, BPC, CPD, DPA, it follows that each of the angles
IPJ , JPK, KPL, LPI is equal to 90◦. The four triangles APB, BPC, CPD, DPA are congruent with
corresponding angles at P . Hence IP = JP = KP = LP and IJKL is square.

Suppose that IJKL is square. Observe that ∠BAI + ∠ABI, being one quarter of the sum of adjacent
angles of a parallelogram, is equal to 45◦, whence ∠AIB = 135◦. Similarly, ∠BJC = 135◦. Wolog,
assume that AB ≥ AD = BC. Then, by similar triangles, BAI and BCI, we have that BJ ≤ BI, so that
∠BIJ ≤ ∠BJI. Similarly, AI ≥ AL, so that ∠CJK = ∠ALI ≤ ∠AIL. Hence

90◦ = ∠LIJ = 360◦ − (∠AIL + ∠AIB + ∠BIJ)
≥ 360◦ − (∠CJK + ∠BJC + ∠BJI) = ∠IJK = 90◦ .

We must have equality throughout, so that

∠BIJ = ∠BJI =⇒ BI = BJ =⇒ AB = BC

26



and ABCD is a rhombus.

Solution 2. [A. Tavakoli] Use the same notation as in Solution 1. Suppose that the angles at A and C
are 4α and at B and D are 4β. Since the angle sum of the parallelogram is 360◦, α + β = 45◦. Hence

∠AIB = ∠BJC = ∠CKD = ∠DLA = 135◦ .

From the Sine Law, we have that

|BI| =
√

2(sinα)a |BJ | =
√

2(sinα)b

|AI| =
√

2(sinβ)a |AL| =
√

2(sinβ)b .

Assume that IJKL is a square. Then, since |IJ | = |IL|, the Cosine Law reveals that

|BI|2 + |BJ |2 − 2|BI||BJ | cos 2β = |AI|2 + |AL|2 − 2|AI||AL| cos 2α ,

whence
2a2 sin2 α + 2b2 sin2 α− 4ab sin2 α cos 2β = 2a2 sin2 β + 2b2 sin2 β − 4ab sin2 β cos 2α

=⇒ (a2 + b2)(sin2 α− sin2 β) = 2ab[sin2 α(1− 2 sin2 β)− sin2 β(1− 2 sin2 α)] = 2ab(sin2 α− sin2 β) .

If α = β, the parallelogram is a rectangle. Suppose that AD ≥ AB and P is the centre of the rectangle.
Compairing similar triangles AIB and ALD, we see that AL ≥ AI, with equality if and only if AD = AB.
Hence, since ∠IAL = 45◦,

∠AIL ≥ 67
1
2

◦
≥ ∠ALI ⇒ ∠LIP ≥ 45◦ ≤ ∠LIP

with equality if and only if AD = AB. Hence, IJKL is a square if and only if ABCD is a square.

Otherwise, (a− b)2 = a2 + b2 − 2ab = 0 and a = b.

Assume that ABCD is a rhombus, so that b = a. The triangles ABI, CBJ , ADL are congruent (ASA),
so that AI = AL and BI = BJ . Observe that, by the angle sum of triangles, 2α+2∠AIL = 2β +2∠BIJ =
180◦. Hence

∠LIJ = 360◦ − (∠AIL + ∠AIB + ∠BIJ) = 360◦ − (90◦ − α + 135◦ + 90◦ − β) = 90◦ .

By the Sine Law applied to triangle AIL, we have that

|IL| = sin 2α · |AI|
sin(90◦ − α)

=
2 sinα cos α

√
2(sinβ)a

cos α
= 2 sin α sinβ

√
2a .

Similarly, |IJ | = |JK| = |KL| = 2 sin α sinβ
√

2a = |IL|. Hence IJKL is a square.

Solution 3. [K. Huynh (first part)] Suppose that ABCD is a rhombus. Then its diagonals bisect its
opposite angles and ABCD has reflective symmetry about each diagonal. The four triangles AIB, CJB,
CKD, ALD are congruent (ASA); in particular, BI = BJ = DK = DL. The reflection about BD takes
A ↔ C, I ↔ J and K ↔ L, so that AC, IJ , LK are perpendicular to BD and IL = JK. Similarly BD,
LI and JK are perpendicular to AC, and IJ = KL. Hence IJKL is a rectangle.

Since BI bisects ∠ABD, I us equidistant from AB and BD. Similarly, I is equidistant from AB and
AC. Hence, I is equidistant from AC and BD. Since |IJ | is twice the distance from I to BD and |IL| twice
the distance from I to AC, IJ = JK and so IJKL is a square.

The reverse implication can be proved by a contradiction argument. Suppose that AD > AB. Determine
point D′ on segment AD and point C ′ on segment BC so that ABC ′D′ is a rhombus. Let IJKL be the
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internal figure determined by the 4-sectors for ABCD and I ′J ′K ′L′ for ABC ′D′. Observe that I ′ = I, that
IJ ′K ′L′ is a square and that L and J both lie within the angle L′I ′J ′ (since D′L′‖DL and C ′J ′‖CJ). Hence
∠LIJ < ∠L′IJ ′ = 90◦, so that IJKL is not a square. Thus, if IJKL is a square, then AD = AB and the
result follows.

451. Let a and b be positive integers and let u = a + b and v = lcm (a, b). Prove that

gcd (u, v) = gcd (a, b) .

Solution 1. Suppose that d|a and d|b. Then d divides any multiple of these two numbers and so divides
lcm(a, b) = v. Also, d|a + b. Hence d|gcd(u, v).

On the other hand, suppose that d|u and d|v. Let g = gcd(d, a) and d = gh. We have that

v = lcm(a, b) = a · b

gcd(a, b)
.

Since d divides v, h divides d and gcd(h, a) = 1, it follows that

h

∣∣∣∣ b

gcd(a, b)
.

Now g|a + b and g|a, so g divides b = (a + b) − b. Also h|a + b and h|b, so h also divides a. But, as
gcd(h, a) = 1, h = 1. Hence d|a. Similarly, d|b. Hence the pairs (a, b) and (u, v) have the same divisors and
the result follows.

Solution 2. Let d be the greatest common divisor of a and b, and write a = da1 and b = db1. The pair
(a1, b1) is coprime. We have that u = d(a1 + b1) and v = d(a1b1). The greatest common divisor of u and v
is equal to d · gcd(a1 + b1, a1b1).

Suppose, if possible, that there is a prime p that divides both a1 + b1 and a1b1. Then p must divide one
of the factors a1, b1 of the product, say a1. Then p must also divide b1 = (a1 + b1)− a1, which contradicts
the coprimality of the pair (a1, b1). Hence gcd(a1 + b1, a1b1) = 1, and the result follows.

Solution 3. Let gcd(a, b) =
∏

pk, where the product is taken over all primes dividing the left side and
pk is the largest power of the prime dividing it. Then pk divides a and b, and hence u and v, and so divides
gcd(u, v). Hence gcd(a, b)|gcd(u, v).

Suppose that gcd(u, v) =
∏

pr. Then pr+1 divides neither a nor b and pr divides at least one of a and
b, say a. Then, as pr divides u = a + b and a, it follows that pr divides b, and therefore divides gcd(a, b).
Hence gcd(u, v)|gcd(a, b). The result follows.

452. (a) Let m be a positive integer. Show that there exists a positive integer k for which the set

{k + 1, k + 2, . . . , 2k}

contains exactly m numbers whose binary representation has exactly three digits equal to 1.

(b) Determine all intgers m for which there is exactly one such integer k.

Solution 1. (a) For each positive integer k, let f(k) be the number of integers in the set

{k + 1, k + 2, . . . , 2k}

whose binary representation has exactly three digits equal to 1. When we move from k − 1 to k, the set
corresponding to k− 1 drops the number k and adds the numbers 2k− 1 and 2k to for the set correponding
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to k. Since k and 2k have exactly the same number of ones in their binary representations, we find that, for
k ≥ 2,

f(k) = f(k − 1)

when 2k − 1 does not have three digits equal to one, and

f(k) = f(k − 1) + 1

when 2k − 1 has exactly three digits equal to one (i.e., has the form 2a + 2b + 2c for distinct nonnegative
integers a, b, c. There are infinitely many numbers of this form.

Hence f(k) increases by 0 or 1 with every unit increase in k and takes arbitrarily large value. Since
f(1) = 0, the function f assumes every nonnegative integer.

(b) Suppose that f(k) assumes some value m exactly once. Then, there must be a positive integer r for
which f(r − 1) = m − 1, f(r) = m and f(r + 1) = m + 1, so that 2r − 1 = 2t + 2s + 1 for some positive
integers t and s with t > s > 0 (so t ≥ 2) and the binary representation of 2r + 1 = 2t + 2s + 2 + 1 has
exactly three digits equal to 1. This can happen only of s = 1, so that 2r − 1 = 2t + 3, 2r + 1 = 2t + 5 and
r = 2t−1 + 2.

We count the number of integers with three unit binary digits in

{2t−1 + 2 + 1, 2t−1 + 22, · · · , 2t, 2t + 1, 2t + 2, 2t + 2 + 1, 2t + 22} .

This set includes all the numbers with exactly t digits, except for 2t−1 and 2t−1 + 1, neither of which has
three unit digits, and exactly

(
t−1
2

)
of them have three unit digits (corresponding to all possible choices of

pairs of digit positions). There is one additional number 2t + 2 + 1 with three digits. Hence f(k) assumes
the value m exactly once if and only if m has the form 1 +

(
n
2

)
and k = 2n + 2.

Solution 2. (a) [A. Remorov] Let k = 2a + 2b + 1, where a > b ≥ 1. There are
(
a
2

)
numbers with exactly

three unit binary digits between 2a and 2a+1 inclusive, since there are a positions in which to place the last
two unit digits. There are

(
b
2

)
numbers between 2a and 2a +2b inclusive, since there are b positions available

for the last two unit digits. Thus there are
(
a
2

)
−

(
b
2

)
numbers with three unit digits between 2a + 2b and

2a+1 − 1 inclusive, and so (
a

2

)
−

(
b

2

)
− 1

numbers with three unit digits between k+1 = 2a +2b +2 and 2a+1−1 inclusive (the number k = 2a +2b +1
is not included).

There are
(
b+1
2

)
+ 2 numbers with three unit digits between 2a+1 and 2k = 2a+1 + 2b+1 + 2 inclusive,

since the last two ones can be chosen arbitrarily from the last b + 1 digits and since 2k − 1 and 2k are also
included. Hence the number of digits between k+1 and 2k inclusive is equal to

(
a
2

)
+b+1. Since b can be any

integer for which 1 ≤ b ≤ a − 1, the set of numbers m for which there are exactly m numbers with exactly
three unit digits between k +1 and 2k inclusive contain all the numbers between

(
a
2

)
+2 and

(
a
2

)
+a =

(
a+1
2

)
for a ≥ 2 (i.e., 3, 5, 6, 8, 9, 10, · · ·).

There is one such integer when k = 4 and two such integers when k = 6. When a ≥ 2 and k = 2a + 3,
there are

(
a
2

)
− 1 such integers between 2a + 4 and 2a+1− 1 inclusive and also 2 more, 2a+1 + 3 and 2a+1 + 6

for a total of
(
a
2

)
+ 1 between k + 1 and 2k inclusive. Hence, all values of m can be assumed.

Solution 3. [D. Shi] Let xm be the mth binary number that contains exactly two digits equal to 1 (so
that x1 = 3, x2 = 5, x3 = 6, x4 = 9). We prove that {xm + 1, xm + 2, · · · , 2xm} contains exactly m − 1
numbers with exactly three unit binary digits.

First, note that there are exactly n− 1 binary numbers with n digits with exactly two unit digits (the
left digit and one other). Suppose that 1 + 2 + · · ·+ (n− 1) < m ≤ 1 + 2 + · · ·+ n, so that m =

(
n
2

)
+ r for

1 ≤ r ≤ n. Then xm has n + 1 binary digits and so xm = 2n + 2r−1. In the set {xm + 1, · · · , 2xm}, there are

29



(r− 1) + r + · · ·+ (n− 1) =
(
n
2

)
−

(
r−1
2

)
numbers of the form 2n + 2a + 2b with a ≥ r− 1, a > b ≥ 0 and

(
r
2

)
numbers of the form 2n+1 + 2a + 2b with r − 1 ≥ a > b ≥ 0. Hence there are(

n

r

)
−

(
r − 1

2

)
+

(
r

1

)
=

(
n

r

)
− (r − 1) = m− 1

numbers in {xm+1, · · · , 2xm} with three unit digits.

The number m of numbers being an increasing function of k, the number m− 1 is unique if and only if
xm+1 = xm + 1. This occurs if r is chosen so that xm = 2n + 2r−1 + 1 has two digits equal to 1, which is
equivalent to r = 1. Hence, the numbers m which occur exactly once are of the form

(
n
2

)
+ 1 for n ≥ 2.

453. Let A, B be two points on a circle, and let AP and BQ be two rays of equal length that are tangent
to the circle that are directed counterclockwise from their tangency points. Prove that the line AB
intersects the segment PQ at its midpoint.

Solution 1. [D. Dziabenko, Y. Wang] If A and B are at opposite ends of a diameter, then AP and BQ
are mutual images with respect to a reflection in the centre of the circle and AB bisects PQ at the centre of
the circle. Otherwise, wolog, we may suppose that the arc from A to B is less than a semicircle.

Let the lines AP and BQ meet at C and suppose that PA is produced to D so that DP = 2AP . Since
(in triangle CDQ), DA : AC = AP : AC = BQ : CB, AB‖DQ. Suppose that AB meets PQ at K. Then
(in triangle PDQ), AK‖DQ, so that PA : AD = PK : KQ. Since PA = AD, PK = KQ as desired.

Solution 2. [K. Huynh] The rotation with centre O, the centre of circle, that takes A to B also takes
P to Q. Let β = ∠AOP . Consider the spiral similarity of a rotation about O with angle β followed by a
dilation of factor |OP |/|OA|. This takes triangle OAB to triangle OPQ and takes the midpoint M of AB
to the midpoint N of PQ. Our task is to show that A, B and N are collinear.

Since OP : OA = ON : OM and ∠AOP = ∠MON = β, triangles OAP and OMN are similar. Hence
∠OMN = ∠OAP = 90◦. Since triangle OAB is isosceles, OM ⊥ AB, so that ∠OMB = 90◦ = ∠OMN .
Hence A,M,B, N are collinear and the lines AB meets the segment PQ at its midpoint.

Solution 3. [P. Chu] Suppose that AB and PQ intersect at M , and that OP and AM intersect at X.
We have that ∆OAP ∼ ∆OBQ and ∆OAB ∼ ∆OPQ. Since ∠OAB = ∠OPQ and ∠OXA = ∠MXP ,
triangles OAX and MPX are similar, and so AX : OX = PX : MX. Since, also, ∠AXP = ∠OXM ,
triangles AXP and OXM are similar. Now,

∠MOP + ∠MPO = ∠MOX + ∠QPO = ∠XAP + ∠BAO = 90◦

whence ∠OMP = 90◦. Since OP = OQ, triangle POQ is isosceles and its altitude OM bisects the base
PQ. The result follows.

Solution 4. Let N be the midpoint of PQ. The half-turn (180◦ rotation) about N interchanges P and
Q and takes A to A′, so that N is the midpoint of AA′. We show that B lies on AA′.

Let O be the centre of the circle and let ∠AOB = 2α. The rotation with centre O that takes A to B
also takes P to Q, so that the angle between AP and BQ is equal to 2α. Since AP is carried to A′Q by the
half-turn about N , the angle formed by BQ and QA′ at Q is equal to 2α. This is an exterior angle to the
triangle BQA′.

Since BQ = PA = PA′, triangle BQA′ is isosceles and so ∠BA′Q = ∠QBA′. Hence

∠NAP = ∠A′AP = ∠AA′Q = ∠BA′Q =
1
2
(∠BA′Q + ∠QBA′) = α .

However, ∠BAP is equal to the angle between chord and tangent and so equal to half the angle subtended
by the chord at the centre O. Hence ∠BAP = α = ∠NAP , so that A,B, N are collinear and the result
follows.
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Solution 5. [C. Sun] Let AB intersect PQ at M . Note that triangle OAB and OPQ are similar isosceles
triangles.

∠MBO = 180◦ − ∠ABO = 180◦ − (90◦ − 1
2
∠AOB)

= 180◦ − (90◦ − 1
2
∠POQ) = 180◦ − ∠PQO

= 180◦ − ∠MQO .

Hence ∠MBO + ∠MQO = 180◦, so that the quadrilateral OBMQ is concyclic. Therefore ∠OMQ =
∠OBQ = 90◦, from which OM ⊥ PQ. Because triangle OPQ is isosceles, M is the midpoint of PQ, as
desired.

454. Let ABC be a non-isosceles triangle with circumcentre O, incentre I and orthocentre H. Prove that
the angle OIH exceeds 90◦.

Solution 1. Suppose that ∠A > 90◦. Then O and H are both external to the triangle on opposite sides
of BC. The points O and H are opposite vertices of a rectangle, two of whose sides are the altitude from A
to BC and the right bisector of BC. Since the angle bisector of angle BAC lies between these sides within
triangle ABC [why?], I lies inside the rectangle and within the circle of diameter OH. Hence ∠OIH > 90◦.
If ∠A = 90◦, then O is the midpoint of BC and H = A. he same argument can be used (noting that I is
not on OH since the triangle is not isosceles).

Suppose that ABC is an acute triangle with AB < AC < BC. Let the altitudes be AP , BQ, CR and
the medians AL, BM , CN . We have that AR < AN , BP < BL, AQ < AM . Hence H lies inside the
quadrilateral AMON . Since ∠RHP > 90◦, ∠PHC < 90◦. The parallelogram with sides AP , OL, CR, ON
has an acute angle at H and O and so is contained in the circle with diameter HO.

Since AB < AC, ∠BAP < ∠CAP and ∠BAL > ∠CAL, so that the bisector AI of the angle A lies
between AP and AL. Similarly, CI lies between CR and CN . Thus I lies within the parallelogram with
sides AP , OL, CR, ON and so is contained within the circle of diameter OH. Hence ∠OIH > 90◦.

Solution 2. Recall some preliminary facts. The nine-point circle of a triangle ABC passes through the
midpoints of the sides, the midpoints of the segments joining its vertices to the orthocentre H and the pedal
points (i.e., the feet of its altitudes to the sides). Its centre is the midpoint N of the segment joining the the
circumcentre O and the orthocentre H of the triangle. Its radius 1

2R is equal to half the circumradius R of
the triangle ABC and it touches internally the incircle with radius r (as well as all three excircles). (See the
book, H.S.M. Coxeter & S.L. Greitzer, Geometry revisited, MAA, 1967, §1.8, 5.6). The square of the length
of the segment OI is |OI|2 = R2 − 2Rr = R(R− 2r) (ibid, §2.1)

[Y. Wang] Produce OI to M so that OI = IM , and let R and r be be the circumradius and inradius,
respectively. Consider triangle OHM . Since N is the midpoint of OH and I is the midpoint of OM ,
NI‖HM so that |HM | = 2|NI| = R − 2r. Since |IM | = |OI| =

√
R(R− 2r) and

√
R(R− 2r) > R − 2r,

|IM | > |HM , so that ∠IHM > ∠MIH. Hence ∠MIH < 90◦ so that ∠OIH > 90◦.

Solution 3. [D. Dziabenko] See background information in Solution 2. The centre N of the nine-point
circle is the midpoint of OH, so that −→IH = 2−→IN −−→

IO. Since

−→
IN · −→IO = |−→IN ||−→IO| cos ∠OIN =

1
2
(R− 2r)

√
R2 − 2Rr cos ∠OIN ,

it follows that

|−→IH||−→IO| cos ∠OIH = −→
IH · −→IO = (2−→IN −−→

IO · −→IO)

= 2(−→IN · −→IO)− |IO|2

= (R− 2r)(
√

R2 − 2Rr) cos ∠OIN − (R2 − 2Rr)

≤ (R− 2r)
√

R2 − 2Rr − (R− 2r)R = (R− 2r)[
√

R2 − 2Rr −R] < 0 .
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Hence cos ∠OIH < 0 and so ∠OIH > 90◦.

455. Let ABCDE be a pentagon for which the position of the base AB and the lengths of the five sides are
fixed. Find the locus of the point D for all such pentagons for which the angles at C and E are equal.

Solution 1. [C. Bao] We use analytic geometry, with the assignment A ∼ (0, 0), B ∼ (1, 0), C ∼ (a, b),
D ∼ (x, y) and E ∼ (c, d). The lengths of the sides are |AB| = 1, |BC| = u, |CD| = v, |DE| = w and
|EA| = t. We have that u2 = (a−1)2 + b2, v2 = (x−a)2 +(y− b)2, w2 = (x− c)2 +(y−d)2 and t2 = c2 +d2.

Now −−→
CB · −−→CD = (a− 1, b) · (a− x, b− y) = (a− 1)(a− x) + b(b− y)

= a2 + b2 − ax− by + x− a

=
1
2
[(a− 1)2 + b2 + (x− a)2 + (b− y)2 − (x− 1)2 − y2]

=
1
2
[u2 + v2 − (x− 1)2 − y2] ,

so that

cos C =
u2 + v2 − [(x− 1)2 + y2]

2uv
.

Similarly,

cos E =
w2 + t2 − (x2 + y2)

2wt
.

Hence
(u2 + v2)wt− [(x− 1)2 + y2]wt = (w2 + t2)uv − [x2 + y2]uv

so that
(uv − wt)[x2 + y2] + 2wtx + [(u2 + v2 − 1)wt− (w2 + t2)uv] = 0 .

Thus, the point C ∼ (x, y) lies on a circle when uv − wt 6= 0 and on a straight line perpendicular to AB
when uv = wt.

456. Let n + 1 cups, labelled in order with the numbers 0, 1, 2, · · · , n, be given. Suppose that n + 1 tokens,
one bearing each of the numbers 0, 1, 2, · · · , n are distributed randomly into the cups, so that each cup
contains exactly one token.

We perform a sequence of moves. At each move, determine the smallest number k for which the cup
with label k has a token with label m not equal to k. Necessarily, k < m. Remove this token; move all
the tokens in cups labelled k + 1, k + 2, · · · ,m to the respective cups labelled k, k + 1,m − 1; drop the
token with label m into the cup with label m. Repeat.

Prove that the process terminates with each token in its own cup (token k in cup k for each k) in not
more that 2n − 1 moves. Determine when it takes exactly 2n − 1 moves.

Solution. Let (x0, x1, x2, · · · , xn) denote the arrangement of tokens in which token number xi is placed
in cup i. When n = 0, token 0 is in cup 0, and 0 = 20 − 1 moves are required. When n = 1, there are two
possible distributions of tokens, and at most 1 = 21 − 1 moves is needed, with this number required in the
case of (1, 0). We will establish the result by an induction argument.

First, observe that, for any arrangement (x0, x1, · · · , xi, · · · , xn), any token either remains stationary or
moves one cup to the left at each move until it reaches the leftmost cup to the right of tokens already in
their cups. Also, note that the number of moves required to first take token xi to the position from which
it first moves to its own cup depends only on the tokens x0, · · · , xi−1 to the left of it. This can be seen by
induction on i. This is clear for i = 1, since either x0 will move and x1 goes to cup 0, or x0 = 0 and x1 will
move to its own cup. Suppose that this is true for i = j− 1 ≥ 1. Then, if (x0, x1, · · · , xj−1) is a permutation
of 0, 1, · · · , j − 1), then xj will remain in position until its left neighbours are sorted, and then will move.
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Otherwise, xj will move one position to the left on the first occasion when on of the tokens on the left is
moved to the right of it. Since this token is now in cup j − 1, we can apply the induction hypothesis.

Back to the given problem, we suppose as an induction hypothesis that, for n = k, at most 2k − 1
moves are required, and this this number of moves is necessary if and only if the initial arrangement is
(1, 2, 3, · · · , k, 0).

Consider an initial arrangement (x0, x1, · · · , xk, xk+1) in the case n = k + 1. If xk+1 = k + 1, then
this token will never be moved and by the induction hypothesis, the remaining tokens will be put into their
proper cups in at most 2k − 1 < 2k+1− 1 moves. Suppose that xi = k +1 for 0 ≤ i ≤ k. Consider two initial
arrangements:

A = (x0, x1, · · · , xi−1, xi = k + 1, xi+1, · · · , xk+1)

and
B = (x0, x1, · · · , xi−1, xi+1, · · · , xk+1) ,

where B has k + 1 tokens numbered from 0 to k inclusive sorted into k + 1 cups. The number of moves
required to move xi in arrangement A to a position from which it moves to its own cup is equal to the
number of moves to move xi+1 in arrangement B to a similar position, namely, no more than 2k − 1. This
number of moves is actually equal to 2k − 1 if and only if B = (1, 2, · · · , k, 0) and A = (1, 2, · · · , k, k + 1, 0)
(i.e., i = k).

Thus, after at most 2k − 1 moves, we have an arrangement with token k + 1 in cup 0. One additional
move takes this token to cup k+1 and the rest all in the left cups. Finally, at most 2k−1 moves are required
to restore the remaining tokens to their proper cups. Thus, we make at most (2k−1)+1+(2k−1) = 2k+1−1
moves. This maximum is attained only if we begin with (1, 2, · · · , k, k + 1, 0). The first 2k − 1 moves take
us to (k + 1, 1, 2, · · · , k, 0); the next move yields (1, 2, · · · , k, 0, k + 1) and the final 2k − 1 moves takes us to
(0, 1, 2, · · · , k, k + 1).

457. Suppose that u1 > u2 > u3 > · · · and that there are infinitely many indices n for which un ≥ 1/n.
Prove that there exists a positive integer N for which

u1 + u2 + u3 + · · ·+ uN > 2006 .

Solution. Since there are infinitely many values of n for which un ≥ 1/n, we can select positive integers
ni such that ni+1 > 2ni for i = 1, 2, 3, · · ·. Then

ni+1∑
n=ni+1

un ≥
ni+1∑

n=ni+1

uni+1 ≥
ni+1 − ni

ni+1
>

1
2

for i ≥ 1. Let N = n4013. Then

N∑
n=1

un ≥
n4013∑

n=n1+1

un > (4012)(1/2) = 2006 .

458. Let ABC be a triangle. Let A1 be the reflected image of A with axis BC, B1 the reflected image of B
with axis CA and C1 the reflected image of C with axis AB. Determine the possible sets of angles of
triangle ABC for which A1B1C1 is equilateral.

Solution. We establish a preliminary result: For any angle θ,

cos 3θ = cos θ − 4 cos θ sin2 θ . (1)
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This is true, since
cos 3θ = cos 2θ cos θ − sin 2θ sin θ

= cos3 θ − sin2 θ cos θ − 2 sin2 θ cos θ

= cos3 θ − 3 sin2 θ cos θ = cos θ(cos2 θ − 3 sin2 θ)

= cos θ(1− 4 sin2 θ) .

Let a, b, c be the sides of the triangle and α, β, γ be the respective angles opposite these sides. Since the
triangles A1BC, AB1C and ABC1 are all congruent to the triangle ABC, we have that ∠C1AB1 = 3α or
|2π − 3α|, ∠A1BC1 = 3β or |2π − 3β|, and ∠B1CA1 = 3γ or |2π − 3γ|.

Applying the Cosine Law to triangle B1CA1 yields that

A1B
2
1 = a2 + b2 − 2ab cos 3γ (2) .

Where R is the circumradius of triangle ABC, the Cosine and the Sine Laws applied to that triangle yields
that

2ab cos γ = a2 + b2 − c2 (3)

and
sin γ =

c

2R
(4) .

Applying (1), (3), (4) to (1) yields that

A1B
2
1 = a2 + b2 − 2ab cos 3γ = a2 + b2 − 2ab cos γ(1− 4 sin2 γ

= a2 + b2 − (a2 + b2 − c2)(1− 4 sin2 γ)

= (a2 + b2)(1− 1 + 4 sin2 γ) + c2(1− 4 sin2 γ)

= (a2 + b2 − c2)(4 sin2 γ) + c2 =
(a2 + b2 − c2)c2

R2
+ c2 =

c2

R2
(a2 + b2 − c2 + R2) .

Similarly,

B1C
2
1 =

a2

R2
(b2 + c2 − a2 + R2)

and

C1A
2
1 =

b2

R2
(c2 + a2 − b2 + R2) .

It follows that A1B1 = B1C1 if and only if

c2(a2 + b2 − c2 + R2)− a2(b2 + c2 − a2 + R2) = 0 .

Factoring the left side yields that

(c2 − a2)(R2 + b2 − a2 − c2) = 0 .

The equality of other pairs of sides can be similarly handled. Thus, triangle A1B1C1 is equilateral if and
only if the following system of three equations is valid:

(c2 − a2)(R2 + b2 − a2 − c2) = 0 ;

(a2 − b2)(R2 + c2 − b2 − a2) = 0 ;

(b2 − c2)(R2 + a2 − b2 − c2 = 0 .

If a is unequal to both b and c, then

R = a2 + c2 − b2 = b2 + a2 − c2
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so that b = c. Hence, the triangle is isosceles in any case.

Wolog, assume that b = c. Then from the middle equation, we obtain that (a2 − b2)(R2 − a2) = 0.
Therefore, either a = b, in which case the triangle is equilateral, or R = a and sinα = a/2R = 1/2. Therefore,
α = 30◦ or α = 150◦. Thus, there are three possible sets of angles fo the triangle ABC: (60◦, 60◦, 60◦),
(30◦, 75◦, 75◦) and (150◦, 15◦, 15◦).

459. At an International Conference, there were exactly 2006 participants. The organizers observed that: (1)
among any three participants, there were two who spoke the same language; and (2) every participant
spoke at most 5 languages. Prove that there is a group of at least 202 participants who speak the same
language.

Solution 1. Consider an arbitrary participant, a. Suppose, first, that a can communicate with all other
participants. Then, as a speaks at most five languages, there will be at least d2006/5e = 402 > 202 who
speak one of the five languages.

On the other hand, if there is a participant, b, with whom a cannot communicate, then out of the
remaining 2004 people, everybody should be able to communicate with either a or b. Thus, one of the pair,
say a, can communicate with at least 1002 people. Since a speaks at most five languages, one of these five
must be spoken by at least lceil1002/5e = 201 of these 1002 people. Including a among the speakers of this
language yields the result.

Solution 2. [D. Dziabenko] Suppose, if possible, that the result is false. So, no language is spoken by
202 people. Let p be any person in the group. This person p spoke at least five languages, and can share
each language with at most 200 people. Let P be the set of people with whom p shares at least one language;
the set P has at most 1000 individuals.

Suppose that q 6∈ P . By a similar argument, the set Q of individuals with whom q shares at least one
language contains at most 1000 people. Thus the set R = P

⋃
Q

⋃
{p}

⋃
{q} contains at most 2002 people.

Let r 6∈ R. Then, since r 6∈ P , r and p do not share a language. Since r 6∈ Q, r and q do not share a language.
Since q 6∈ P , p and q do not share a language. Then {p, q, r} is a triplet that violates condition (1), and we
obtain a contradiction. Hence, there must be 202 people with a common language.

460. Given two natural numbers x and y for which

3x2 + x = 4y2 + y ,

prove that their positive difference is a perfect square. Determine a nontrivial solution of this equation.

Solution 1. [D. Dziabenko] Since 3(x − y)(x + y + 1) = y2, x > y. Let the greatest common divisor of
x and y be t, so that x = at, y = bt and (a, b) is a coprime pair with a > b. Since 3a2t2 + at = 4b2t2 + bt,
a− b = t(4b2 − 3a2). Therefore, a− b is divisible by t, so that a− b = st for some natural number s.

Since s = 4b2−3a2 = 4(b2−a2)+a2 = a2 +4st(a+b), a2 is divisible by s. Therefore, b2 = a2− (a2−b2)
is divisible by s. However, (a2, b2) is a coprime pair, whence s = 14 and so t = a − b, x = a(a − b) and
y = b(a− b). Therefore,

x− y = a(a− b)− b(a− b) = (a− b)2 ,

a perfect square, as desired.

To find a nontrivial solution, it is enough to find a solution (a, b) of the pellian equation (2b)2−3a2 = 1.
One such solution, which can be found by trial and error, is (a, b) = (15, 13), which leads to (x, y) = (30, 26).

Solution 2. We have that
0 = (3x2 + x)− (4y2 + y)

= 3(x2 − y2) + (x− y)− y2

= 4(x2 − y2) + (x− y)− x2 ,
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whence
x2 = (x− y)[4(x + y) + 1]

and
y2 = (x− y)[3(x + y) + 1] .

Multiplying these two equations yields that

(xy)2 = (x− y)2[4(x + y) + 1][3(x + y) + 1] .

The greatest common divisor of 4(x + y) + 1 and 3(x + y) + 1 must divide their difference x + y, and
hence must divide 1. Therefore 4(x+y)+1 and 3(x+y)+1 are coprime. Since their product times a square
is square, each must be a square. But then, since (x− y)[4(x + y) + 1] is square, so must also be x− y. The
result follows.

To find a solution, we observe that 3x2 + x = 4y2 + y is equivalent to

(8y + 1)2 = 48x2 + 16x + 1 .

Since 48x2 + 16x + 1 is a square less than (7x)2, let us consider the possibility that it might be equal to
(7x− 1)2. The condition

48x2 + 16x + 1 = (7x− 1)2 = 49x2 − 14x + 1

leads to x = 30. Plugging this into the original equation leads to

0 = 4y2 + y − 2730 = (y − 26)(4y + 25)

and so y = 26. Thus (x, y) = (30, 26) satisfies the equation.

Comment. We can use the theory of Pell’s equation to generate a whole raft of solutions. Manipulating
the given equation leads to

(8y + 1)2 = 16(3x2 + x) + 1 =⇒ 12(8y + 1)2 = 16(3x2 + 12x) + 12 = 16(6x + 1)2 − 4 .

Thus, we have to solve for positive integers the system of equations

u2 − 3v2 = 4 ;

u = 4(6x + 1) ;

v = 2(8y + 1) .

It can be shown, working modulo 4, that there are no solutions for which u and v are odd. Accordingly,
(u, v) = (2r, 2s) where (r, s) satisfies the pellian equation r2 − 3s2 = 1. The solutions of this equation
are given by (r, s) = (rk, sk) where rk +

√
3sk = (2 +

√
3)k. The first few solutions are given by (r, s) =

(2, 1), (7, 4), (26, 15), (97, 56), (362, 209), · · ·. Not all of these will yield integers x and y. However, (r, s) =
(362, 209) leads to (u, v) = (724, 418) and (x, y) = (30, 26). Show how you can extend this to determine an
infinite family of solutions (x, y).

461. Suppose that x and y are integers for which x2 + y2 6= 0. Determine the minimum value of the function

f(x, y) ≡ |5x2 + 11xy − 5y2| .

Solution. Say that f(x, y) represents n if it assumes the value n for some pair (x, y) of integers not
both zero. We make a number of observations. Note that f(x, y) = f(−y, x), so that it is enough to look at
nonnegative values of x and y. Since

5 = f(1, 0) = f(5,−2) = f(13,−5) = · · · ,
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the number 5 is representable. Since the discriminant of the quadratic 5x2 + 11xy− 5y2, namely 221, is not
square, 0 is not representable by f(x, y).

Suppose p = 2 or p = 3. If both x and y are multiples of p, then f(x, y) is divisible by p2, and so does
not represent p. If both x and y are not multiples of p, then x2 ≡ y2 ≡ 1 (mod p) and so f(x, y) ≡ |11xy| 6≡ 0
(mod p). Finally, if exactly one of x and y is a multiple of p, then f(x, y) does not represent p. Hence,
f(x, y) never represents either 2 or 3.

If either or both of x and y is odd, then f(x, y) must be odd. Therefore, if f(x, y) = 4, then (x, y) =
(2u, 2v) for some integer pair (u, v) and f(u, v) = 1. It can be deduced that 4 is representable if and only
if 1 is representable. Thus, the minimum representable value of f is either 1 or 5. Thus, we need to check
whether the equation 5x2 + 11xy − 5y2 = ±1 is solvable in integers.

If f(x, y) = 1, then 5y2 + 11xy − 5y2 = ±1, whence (10x + 11y)2 − 221y2 = ±20. Let z = 10x + 11y.
Since 221 is divisible by 13, z2 ≡ ±7 (mod 13). Raising each side to the sixth power and taking account of
the little Fermat theorem (that ap−1 ≡ 1 (mod p) for any prime p and a not divisible by p), we find that
1 ≡ 76 ≡ (−3)3 = −27 ≡ −1 (mod 13), a contradiction. Hence f(x, y) cannot assume the value 1.

462. For any positive real numbers a, b, c, d, establish the inequality√
a

b + c
+

√
b

c + d
+

√
c

d + a
+

√
d

a + b
> 2 .

Solution 1. From the arithemetic-geometric means inequality, we have that√
b + c

a
≤ 1 + (b + c)/a

2
=

a + b + c

2a
,

which implies that √
a

b + c
≥ 2a

a + b + c
>

2a

a + b + c + d
.

Applying an analogous inequality to the other terms of the left side, we obtain the desired result.

Solution 2. By the arithmetic-geometric means inequality, we have that√
a

b + c
+

√
c

d + a
=
√

a2 + ad +
√

bc + c2√
(b + c)(a + d)

≥ 2(
√

a2 + ad +
√

bc + c2)
a + b + c + d

and, similarly, that √
b

c + d
+

√
d

a + b
≥ 2(

√
ab + b2 +

√
cd + d2)

a + b + c + d
.

Hence the left side of the inequality is not less than 2t/s where t =
√

a2 + ad+
√

b2 + ab+
√

c2 + bc+
√

d2 + cd
and s = a + b + c = d.

We observe that

t2 = (a2 + b2 + c2 + d2) + (ad + ab + bc + cd)

+ 2(
√

a2 + ad
√

b2 + ab +
√

a2 + ad
√

c2 + bc +
√

a2 + ad
√

d2 + cd

+
√

b2 + ab
√

c2 + bc +
√

b2 + ab
√

d2 + cd +
√

c2 + bc
√

d2 + cd)

> (a2 + b2 + c2 + d2) + (ad + ab + bc + cd) + 2(ab + ac + ad + bc + bd + cd)

> (a + b + c + d)2 = s2 .
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Hence t > s, so that 2t/s > 2 and the result follows.

Comment. The special cases are of interest. If b = d = 0, the inequality becomes
√

a/c+
√

c/a > 2, and
the left side can be made arbitrarily close to 2 by making a close to c. If we take d = 0, we can parameterize

(a, b, c) = (x2, r2 sin2 θ, r2 cos2 θ)

and find that √
a

b + c
+

√
b

c
+

√
c

a
=

x

2
+ tan θ +

r cos θ

x

≥ tan θ + 2
√

cos θ .

Set f(θ) = tan θ + 2(cos θ)1/2; then f ′(θ) = (cos θ)−1/2(sec3/2 θ − sin θ) > 0, so f(θ) assumes its minimumn
value of 2 when θ = 0.

Some other special cases have interesting denouements. If a = c and b = d, we get√
a

a + b
+

√
b

a + b
+

√
a

a + b
+

√
b

a + b
= 2

(√
a +

√
b√

a + b

)
> 2 .

If a = b and c = d, we get√
a

a + c
+

√
a

2c
+

√
c

a + c
+

√
c

2a

=
√

a +
√

c√
a + c

+
1√
2

(√
a

c
+

√
c

a

)
> 1 +

2√
2

= 1 +
√

2 > 2 .

If you get stuck, it is often not a bad idea to try some special cases to see whether any light might be shed
on how to approach the general case. In this case, the special cases were not particularly helpful, but on a
contest, might help to garner a couple of marks that might not otherwise be had.

463. In Squareland, a newly-created country in the shape of a square with side length of 1000 km, there are
51 cities. The country can afford to build at most 11000 km of roads. Is it always possible, within this
limit, to design a road map that provides a connection between any two cities in the country?

Solution. [Yifan Wang] It is possible to design a road map that provides a connection between any two
cities so that the total length of the roads does not exceed 11000 km. We will provide an example.

Place the square map of the country on the Cartesian plane so that the corners are at the origin (0, 0)
and the points (1000, 0), (1000, 1000) and (0, 1000). Build six main roads as follows:

R1: A vertical road, a segment between the points (100, 0) and (100, 1000);
R2: A horizontal road, a segment between the points (100, 100) and (1000, 100);
R3: A horizontal road, a segment between the points (100, 300) and (1000, 300);
R4: A horizontal road, a segment between the points (100, 500) and (1000, 500);
R5: A horizontal road, a segment between the points (100, 700) and (1000, 700);
R6: A horizontal road, a segment between the points (100, 900) and (1000, 900).

The six main roads are connected and have a total length of 1000 + 900× 5 = 5500 km. Any of the 51
cities is at most 100 km away from one of the main roads, so the local roads that connect the cities to the
main road can be built with a length of at most 51× 100 = 5100 km. Thus, the length of all the roads will
not exceed 5500 + 5100 = 10600 < 11000 km.

464. A square is partitioned into non-overlapping rectangles. Consider the circumcircles of all the rectangles.
Prove that, if the sum of the areas of all these circles is equal to the area of the circumcircle of the
square, then all the rectangles must be squares, too.

38



Solution. Let s be the side length of the square and (ai, bi) be the dimensions of the ith rectangle. Then
s2 =

∑
aibi.

The circumcircle of the square has area (πs2)/2 and the circumcircle of the ith rectangle has area
(π(a2 + b2))/4. Hence, we have, using the arithmetic-geometric means inequality and the condition that the
sum of the rectangular circumcircle areas is equal to the square circumcircle area,

π

2
s2 =

π

2

∑
aibi ≤

π

4

∑
(a2

i + b2
i ) =

π

2
s2 .

Since the extreme members of this inequality are equal, we must have equality everywhere. In particular,
ai = bi for each i and all of the partitioning rectangles are square.

465. For what positive real numbers a is
3
√

2 +
√

a + 3
√

2−
√

a

an integer?

Solution 1. Let x = 3
√

2 +
√

a, y = 3
√

2−
√

a and z = x + y. Then

z3 = (x + y)3 = x3 + y3 + 3(4− a)1/3z = 4 + 3(4− a)1/3z .

Hence 27(4− a)z3 = (z3 − 4)3, whence

a = 4− (z3 − 4)3

27z3
=

108z3 − (z3 − 4)3

27z3
.

Since a ≥ 0, z must be either (1) a positive integer for which 108z3 ≥ (z3 − 4)3, or (2) a negative integer for
which 108z3 ≤ (z3 − 4)3.

Condition (1) forces 108 ≥ (z2 − (4/z))3 ≥ (z2 − 4)3, so that z = 1, 2. Condition (2) forces 108 ≥
(z2 − (4/z))3 ≥ z6, which is satisfied by no negative integer value of z. Hence, we must have that (z, a) =
(1, 5), (2, 100/27). Since z = x + y is equivalent to z3 = 4 + 3(4− a)1/3z, it is straightforward to check that
both these answers are correct. Hence a = 5 or a = 100/27.

Solution 2. [Yifan Wang] With x and y defined as in the first solution, note that x > y and that
x3 + y3 = (x + y)(x2 − xy + y2). Since x2 + y2 > (x + y)2/2 and −xy > −(x + y)2/4, we have that
4 > (x+ y)3/4, whence x+ y ≤ 2. Since x3 > −y3, x > −y, so that x+ y > 0. Hence x+ y = 1 or x+ y = 2.

When x + y = 1, x2 − xy + y2 = 4 and so xy = −1, and x = 1
2 (1 +

√
5), y = 1

2 (1 −
√

5). Therefore
4− a = x3y3 = −1 so that a = 5.

When x + y = 2, then x2 − xy + y2 = 2, so that xy = 2/3. Therefore x = 1
3 (3 +

√
3), y = 1

3 (3 −
√

3)
and 4− a = 8/27. Thus, a = 100/27. These solutions check out.

Solution 3. [A. Tavakoli] Denote the left side of the equation by f(a). When a ≥ 4,

0 ≤ f(a) = (
√

a + 2)1/3 − (
√

a− 2)1/3 =
4

(
√

a + 2)2/3 + (a− 4)1/3 + (
√

a− 2)2/3
≤ 41/3 < 3 .

Let 0 ≤ a ≤ 4; again f(a) > 0. Observe that

(
1
2
(u + v)

) 1
3

≥ 1
2
u

1
3 +

1
2
v

1
3

for all nonnegative values of u and v. (This can be seen by using the concavity of the function t1/3, or from
the power-mean inequality (1/2)(s + t) ≤ [(1/2)(s3 + t3)]1/3.) Setting u = 3

√
2 +

√
a and v = 3

√
2−

√
a, we
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find that 3 > 2× 21/3 ≥ f(a) > 0 with equality if and only if a = 0. Hence the only possible integer values
of f(a) are 0 and 1.

Let x = 3
√

2−
√

a, so that 2 +
√

a = 4− x3. Then

f(a) = 1 ⇐⇒ x + (4− x3)1/3 = 1

⇐⇒ 4− x3 = 1− 3x + 3x2 − x3

⇐⇒ x2 − x− 1 = 0 ⇐⇒ x = (1±
√

5)/2

⇐⇒ x3 = 2±
√

5 .

The larger root of the quadratic leads to x3 > 2 and so is extraneous. Hence x3 = 2−
√

5, and so
√

a =
√

5,
a = 5.

f(a) = 2 ⇐⇒ x + (4− x3)1/3 = 2

⇐⇒ 4− x3 = (2− x)3 = 8− 12x + 6x2 − x3

⇐⇒ 3x2 − 6x + 2 = 0 ⇐⇒ x =
3±

√
3

3
. .

Now, (
3±

√
3

3

)3

= 2± 10
√

3
9

.

The larger value of x leads to x3 > 2, and so is inadmissible. The smaller value of x leads to x3 = 2−(10
√

3/9)
and

√
a = (10

√
3/9), a = 100/27. Both values of a check out.

466. For a positive integer m, let m denote the sum of the digits of m. Find all pairs of positive integers
(m,n) with m < n for which (m)2 = n and (n)2 = m.

Solution. Let m = mk · · ·m1m0 where 0 ≤ mi ≤ 9 are the digits of m. Then

10k ≤ m < n = (mk + · · ·+ m0)2 ≤ [(k + 1)10]2 ,

whence 10k−2 ≤ (k + 1)2 and 0 ≤ k ≤ 3.

Hence m < n = (m3 + m2 + m1 + m0)2 ≤ (4× 9)2 = 362. Since m and n are both perfect squares, we
need only consider m = r2, where 1 ≤ r ≤ 36.

In the case that k = 3, m < 1 + 9 + 9 + 9 = 28. Since 282 < 1000 < m < n, there are no examples. In
the case that k = 2, m < 6 + 9 + 9 = 24 and so n2 ≤ 242. The only possibility is (m,n) = (169, 256). There
are no possibilities when k = 0 or k = 1.

Hence, the only number pair is (m,n) = (169, 256).

Comment. This is problem 621 from The College Mathematics Journal.

467. For which positive integers n does there exist a set of n distinct positive integers such that

(a) each member of the set divides the sum of all members of the set, and

(b) none of its proper subsets with two or more elements satisfies the condition in (a)?

Solution. When n = 1, condition (b) is satisfied vacuously, and any singleton will do. When n = 2,
such a set cannot be found. If a and b are any two positive integers, then condition (b) entails that both a
and b divide a + b, and so must divide each other. This cannot happen when a and b are distinct.
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When n ≥ 3, a set of the required type can be found. For example, let

Sn = {1, 2, 2× 3, 2× 32, · · · 2× 3n−3, 3n−2 .

The sum of the elements in Sn is 2× 3n−2, which is divisible by each member of Sn.

Consider any proper subset R of Sn with at least three numbers. If 3n−2 belongs to R, then the sum of
the elements of R must be strictly between 3n−2 and 2× 3n−2, and so not divisible by 3n−2. If R does not
contain 3n−2, then its largest entry has the form 2 × 3k with 1 ≤ k ≤ n − 3. Then the sum of R is greater
than 2× 3k and does not exceed 1 + 2(1 + 3 + · · ·+ 3k) = 3k+1 < 2(2× 3k). Hence this sum is not divisible
by 2× 3k. As we have seen, no doubleton satisfies the condition. Hence (b) is satisfied for all subsets of Sn.

Comment. This is problem 1504 in the October, 1996 issue of Mathematics Magazine.

468. Let a and b be positive real numbers satisfying a + b ≥ (a− b)2. Prove that

xa(1− x)b + xb(1− x)a ≤ 1
2a+b−1

for 0 ≤ x ≤ 1, with equality if and only if x = 1
2 .

Comment. Denote the left side by f(x). When a = b, f(x) = 2xa(1 − x)a, which is maximized when
x = 1/2, its maximum value being 2 × 4−a. In the general case, the solution can be obtained by calculus.
Since f(0) = f(1) = 0 and the function possesses a derivative everywhere, the maximum occurs when
f ′(x) = 0 and 0 < x < 1. Wolog, assume that a < b. We have that

f ′(x) = xa−1(1− x)a−1[(a− (a + b)x)(1− x)b−a + (b− (a + b)x)xb−a] .

This solution can be found in Mathematics Magazine 70:4 (October, 1997), 301-302 (Problem 1505), and
is fairly technical. It would be nice to have a more transparent argument. Is there a solution that avoids
calculus, at least for rational a and b?

A second solution, employs the substitution 2x = 1− y to get the equivalent inequality

(1− y)a(1 + y)b + (1− y)b(1 + y)a ≤ 2

for |y| ≤ 1. Wolog, we can let a = b + c with c ≥ 0. Then the condition becomes 2b ≥ c2 − c. Then the
inequality is equivalent to

(1− y2)b[(1− y)c + (1 + y)c] ≤ 2 ,

for |y| ≤ 1.

Let 0 ≤ c ≤ 1. Then, for t > 0, the function tc is concave, so that, for u, v > 0,(
u + v

2

)c

≥ uc + vc

2
.

Setting (u, v) = (1 − y, 1 + y), we find that (1 − y)c + (1 + y)c ≤ 2 for |y| ≤ 1. Hence the inequality holds,
with equality occurring when y = 0 (x = 1/2).

When c > 1, I do not have a clean solution. First, it suffices to consider the inequality when b is replaced
by 1

2 (c2 − c). Thus, we need to establish that

(1− y2)(1/2)(c2−c)[(1− y)c + (1− y)c] ≤ 2 (∗)

for |y| ≤ 1. The derivative of the natural logarithm of the left side is a positive multiple of

g(y) = (1 + y)c(1− cy)− (1− y)c(1 + cy) .
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If this can be shown to be nonpositive, then the result will follow. An equivalent inequality is(
1− 2y

1 + y

)2

=
(

1− y

1 + y

)c

≥
(

1− cy

1 + cy

)
=

(
1− 2cy

1 + cy

)
,

for c > 1 and |y| ≤ 1.

469. Solve for t in terms of a, b in the equation√
t3 + a3

t + a
+

√
t3 + b3

t + b
=

√
a3 − b3

a− b

where 0 < a < b.

Solution 1. The equation is equivalent to√
t2 − at + a2 +

√
t2 − bt + b2 =

√
a2 + ab + b2 .

Square both sides of the equation, collect the nonradical terms on one side and the radical on the other and
square again. Once the polynomials are expanded and like terms collected, we obtain the equation

0 = t2(a + b)2 − 2ab(a + b)t + a2b2 = [t(a + b)− ab]2 ,

whence t = ab/(a + b). This can be checked by substituting it into the equation.

Solution 2. [Y. Wang] As in solution 1, we can find an equivalent equation, which can then be manipu-
lated to√

(t− (a/2))2 + (
√

3a/2)2 +
√

(t− (b/2))2 + (−
√

3b/2)2 =
√

(a/2− b/2)2 + (
√

3a/2 +
√

3b/2) .

If we consider the points A ∼ (a/2,
√

3a/2), B ∼ (b/2,−
√

3b/2) and T ∼ (t, 0), then we can interpret this
equation as stating that AT + BT = AB. By the triangle inequality, we see that T must lie on AB, so that
the slopes of AT and BT are equal. Thus

√
3a

a− 2t
=

√
3b

2t− b
,

whence t = ab/(a + b).

470. Let ABC, ACP and BCQ be nonoverlapping triangles in the plane with angles CAP and CBQ right.
Let M be the foot of the perpendicular from C to AB. Prove that lines AQ, BP and CM are concurrent
if and only if ∠BCQ = ∠ACP .

Solution 1. [A. Tavakoli] Let BP and AQ intersect at K. Let ∠BCQ = α, ∠ACP = β and ∠BCA = γ.
By the trigonometric form of Ceva’s theorem, CM , AP and BQ are concurrent if and only if

sin∠BCM

sin∠ACM
· sin∠KAC

sin∠KAB
· sin∠KBA

sin∠KBC
= 1 . (1)

This holds whether K lies inside or outside of the triangle.

We have that sin∠BCM = cos ∠CBA, sin∠ACM = cos ∠CAB, and, by the Law of Sines applied to
triangles ACQ and ABQ,

sin∠KAC = sin∠QAC = (sin∠ACQ)(|QC|)/(|AQ|) ,
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and
sin∠KAB = sin∠QAB = (sin∠ABQ)(|QB|)/(|AQ|) .

Therefore

sin∠KAC

sin∠KAB
=

(
sin∠ACQ

sin∠ABQ

)
·
(
|QC|
|QB|

)
=

(
sin(γ + α)

sin(∠ABC + 90◦)

)
·
(

1
sinα

)
=

− sin(γ + α)
(cos ∠CBA) sinα

.

Similarly,
sin∠KBA = sin∠BAP (|AP |/|BP |)

sin∠KBC = sin∠BCP (|PC|/|BP |)

and so
sin∠KBA

sin∠KBC
=

sin(∠BAC + 90◦)
sin(β + γ)

· |AP |
|PC|

=
− cos(∠BAC) sinβ

sin(β + γ)
.

Hence the condition for concurrency becomes

sin(γ + α)
sinα

· sinβ

sin(γ + β)
= 1

⇐⇒ sin γ cot α + cos γ = sin γ cot β + cos γ

⇐⇒ cot α = cot β ⇐⇒ ∠BCQ = α = β = ∠ACP .

This is the required result.

Solution 2. We do some preliminary work. Suppose that PB and AQ intersect at O, and that X and
Y are the respective feet of the perpendiculars from C to PB and AQ. Since ∠CXP = ∠CAP = 90◦,
CAXP is concyclic and so ∠ACP = ∠AXP . Similarly CQBY is concyclic and so ∠BCQ = ∠BY Q. Since
∠CXO = ∠CY O = 90◦, X and Y lie on the circle with diameter CO. Hence ∠Y CO = ∠Y XO = ∠Y XB.

Now suppose that ∠BCQ = ∠ACP . Let CO produced meet AB at N . Since ∠AXP = ∠ACP =
∠BCQ = ∠BY Q, it follows that ∠AXB = ∠AY B so that BY XA is concyclic and so ∠Y XB = ∠Y AB.
Therefore

∠Y CN = ∠Y CO = ∠Y XB = ∠Y AB = ∠Y AN

and ANY C is concyclic/ Hence ∠CNA = ∠CY A = 90◦ and N must coincide with M .

On the other hand, let CM pass through O. Since ∠CY A = ∠CMA = 90◦, AMY C is concyclic so
that

∠Y AB = ∠Y AM = ∠Y CM = ∠Y CO = ∠Y XB .

Therefore BAXY is concyclic and ∠BXA = ∠BY A ⇒ ∠AXP = ∠BY Q. Since CAXP and CY BQ are
concyclic, ∠ACP = ∠AXP = ∠BY Q = ∠BCQ.

471. Let I and O denote the incentre and the circumcentre, respectively, of triangle ABC. Assume that
triangle ABC is not equilateral. Prove that ∠AIO ≤ 90◦ if and only if 2BC ≤ AB + CA, with equality
holding only simultaneously.

Solution 1. Wolog, let AB ≥ AC. Suppose that the circumcircle of triangle ABC intersects AI in D.
Construct the circle Γ with centre D that passes through B and C. By the symmetry of AB and AC in the
angle bisector AD, this circle intersects segment AB in a point F such that AF = AC. Let Γ intersect AD
at P . Then chords CP and FP have the same length. If AB > AC, this implies that P is on the angle
bisector of angle ABC. If AB = AC, then ∠ABC = ∠ADC = ∠PDC = 2∠PBC. In either case, P = I.

Let E be on the ray BA produced such that AE = AC. Since ∠DAC = 1
2∠BAC = ∠AEC and

∠ADC = ∠ABC = ∠EBC, triangles ADC and EBC are similar, and so

ID : AD = CD : AD = BC : BE = BC : (AB + AC) .
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But ∠AIO ≤ 90◦ if and only if ID/AD ≤ 1/2, and so is equivalent to 2BC ≤ AB + AC, with equality
holding only simultaneously. (Solution due to Wu Wei Chao in China.)

Solution 2. We have that ∠AIO ≤ 90◦ if and only if cos ∠AIO ≥ 0, if and only if |AO|2 ≤ |OI|2 + |IA|2.
Let a, b, c be the respective sidelengths of BC, CA, AB; let R be the circumradius and let r be the inradius of
triangle ABC. Since, by Euler’s formula, |OI|2 = R2 − 2Rr, and r = |IA| sin(A/2), the foregoing inequality
is equivalent to

2R ≤ r

sin2(A/2)
=

2r

1− cos A
.

Applying R = a/(2 sinA), r = bc sinA/(a + b + c) and 2bc cos A = b2 + c2 − a2, we find that

r −R(1− cos A) =
bc sinA

a + b + c
− a(1− cos A)

2 sinA

= sinA

[
bc

a + b + c
− a(1− cos A)

2 sin2 A

]
sinA

2(1 + cos A)(a + b + c)
[2bc + 2bc cos A− a(a + b + c)]

sinA

2(1 + cos A)(a + b + c)
[2bc + b2 + c2 − a2 − a(a + b + c)]

sinA

2(1 + cos A)(a + b + c)
[(b + c)2 − 2a2 − a(b + c)]

sinA

2(1 + cos A)(a + b + c)
[(b + c + a)(b + c− 2a)] .

Hence the inequality R(1− cos A) ≤ r is equivalent to 2a ≤ b + c. The desired result follows. (Solution due
to Can A. Minh, USA)

Solution 3. [Y. Wang] Let AI intersect the circumcircle of triangle ABC at D. Since AI bisects the
angle BAC and the arc BC, we have that BD = BC. Also,

∠DIC = ∠CAD + ∠ACI = ∠BCD + ∠BCI = ∠DCI ,

whence DC = DI = DB. Using Ptolemy’s Theorem, we have that

AB × CD + BD ×AC = AD ×BC ,

so that
AB ×DI + DI ×AC = (AI + ID)×BC .

Hence
k ≡ AB + AC

BC
= 1 +

AI

ID
.

If AB = AC, then A,O, I are collinear. Let k < 2; then AI < ID and I lies between A and O and
∠AIO = 180◦. Let k > 2; then AI > ID, O lies between A and I and ∠AIO = 0◦. [If k = 2, then AI = ID,
the incentre and circumcentre coincide and the triangle is equilateral – the excluded case.]

Wolog, suppose that AB > AC. Then the circumcentre O lies within the triangle ABD. Let P be the
foot of the perpendicular from O to AD. Then P is the midpoint of AD and the angle AIO is greater than,
equal to or less than 90◦ according as I is in the segment AP , coincides with P or is in the segment PD.
These correspond to k < 2, k = 2 and k > 2, and the result follows.

472. Find all integers x for which

(4− x)4−x + (5− x)5−x + 10 = 4x + 5x .
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Solution. If x < 0, then the left side is an integer, but the right side is positive and less than 1
4 + 1

5 < 1.
If x > 5, then the left side is less than 1

4 , while the right side is a positive integer. Therefore, the only
candidates for solution are the integers between 0 and 5 inclusive. Checking, we find that the only solution
is x = 2.

473. Let ABCD be a quadrilateral; let M and N be the respective midpoint of AB and BC; let P be the
point of interesection of AN and BD, and Q be the point of intersection of DM amd AC. Suppose the
3BP = BD and 3AQ = AC. Prove that ABCD is a parallelogram.

Solution. Let −−→AB = x, −−→BC = y and −−→CD = ax + by, where a and b are real numbers. Then

−−→
AD = (a + 1)x + (b + 1)y

and
−−→
AN = x +

1
2
y .

But −−→BD = 3−−→BP , so that
−→
AP =

2−−→AB +−−→
AD

3
=

a + 3
3

x +
b + 1

3
y .

Since the vectors −→AP and −−→AN are collinear, a + 3 : 1 = b + 1 : 1
2 , whence a− 2b + 1 = 0. Also

−−→
DM = −−→

AM −−−→
AD =

(
1
2
− a− 1

)
x− (b + 1)y = −

(
a +

1
2

)
x− (b + 1)y

and
−−→
DQ = −→

AQ−−−→
AD =

1
3
(x + y)− (a + 1)x− (b + 1)y = −1

3
[(3a + 2)x + (3b + 2)y] .

Since the vectors −−→DQ and −−→
DM are collinear, we must have (3a + 2) : (a + 1

2 ) = (3b + 2) : (b + 1), whence
2a + b + 2 = 0. Therefore (a, b) = (−1, 0), −−→CD = −x = −−→

BA and −−→
AD = y = −−→

BC. Hence ABCD is a
parallelogram.

474. Solve the equation for positive real x:

(2log5 x + 3)log5 2 = x− 3 .

Solution. Recall the identity ulogb v = vlogb u for positive u, v and positive base b 6= 1. (Take logarithms
to base b.) Then, for all real t, (2t + 3)log5 2 = 2log5(2

t+3). This is true in particular when t = log5 x.

Let f(x) = 2log5 x + 3 for x > 0. Then f(x) = xlog5 2 + 3 and the equation to be solved is f(f(x)) = x.
The function f(x) is an increasing function of the positive variable x. If f(x) < x, then f(f(x)) < f(x); if
f(x) > x, then f(f(x)) > f(x). Hence, for f(f(x)) = x to be true, we must have f(x) = x. With t = log5 x,
the equation becomes 2t + 3 = 5t, or equivalently, (2/5)t + 3(1/5)t = 1. The left side is a stricly decreasing
function of t, and so equals the right side only when t = 1. Hence the unique solution of the equation is
x = 5.

475. Let z1, z2, z3, z4 be distinct complex numbers for which |z1| = |z2| = |z3| = |z4|. Suppose that there is
a real number t 6= 1 for which

|tz1 + z2 + z3 + z4| = |z1 + tz2 + z3 + z4| = |z1 + z2 + tz3 + z4| .

Show that, in the complex plane, z1, z2, z3, z4 lie at the vertices of a rectangle.
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Solution. Let s = z1 + z2 + z3 + z4. Then

|s− (1− t)z1| = |s− (1− t)z2| = |s− (1− t)z3| .

Therefore, s is equidistant from the three distinct points (1 − t)z1, (1 − t)z2 and (1 − t)z3; but these three
points are on the circle with centre 0 and radius (1− t)z1. Therefore s = 0.

Since z1 − (−z2) = z1 + z2 = −z3 − z4 = (−z4)− z3 and z2 − (−z3) = z2 + z3 = −z4 − z1 = (−z4)− z1,
z1, −z2, z3 and −z4 are the vertices of a parallelogram inscribed in a circle centered at 0, and hence of a
rectangle whose diagonals intersect at 0. Therefore, −z2 is the opposite of one of z1, z3 and −z4. Since z2 is
unequal to z1 and z3, we must have that −z2 = z4. Also z1 = −z3. Hence z1, z2, z3 and z4 are the vertices
of a rectangle.

476. Let p be a positive real number and let |x0| ≤ 2p. For n ≥ 1, define

xn = 3xn−1 −
1
p2

x3
n−1 .

Determine xn as a function of n and x0.

Solution. Let xn = 2pyn for each nonnegative integer n. Then |y0| ≤ 1 and yn = 3yn−1 − 4y3
n−1. Recall

that

sin 3θ = sin 2θ cos θ + sin θ cos 2θ = 2 sin θ(1− sin2 θ) + sin θ(1− 2 sin2 θ) = 3 sin θ − 4 sin3 θ .

Select θ ∈ [−π/2, π/2]. Then, by induction, we determine that yn = sin 3nθ and xn = 2p sin 3nθ, for each
nonnegative integer n, where θ = arcsin(x0/2p).

477. Let S consist of all real numbers of the form a + b
√

2, where a and b are integers. Find all functions
that map S into the set R of reals such that (1) f is increasing, and (2) f(x + y) = f(x) + f(y) for all
x, y in S.

Solution. Since f(0) = f(0) + f(0), f(0) = 0 and f(x) ≥ 0 for x ≥ 0. Let f(1) = u and f(
√

2) = v; u
and v are both nonnegative. Since f(0) = f(x) + f(−x), f(−x) = −f(x) for all x. Since, by induction, it
can be shown that f(nx) = nf(x) for every positive integer n, it follows that

f(a + b
√

2) = au + bv ,

for every pair (a, b) of integers.

Since f is increasing, for every positive integer n, we have that

f(bn
√

2c) ≤ f(n
√

2) ≤ f(bn
√

2c+ 1) ,

so that
bn
√

2cu ≤ nv ≤ (bn
√

2c+ 1)u .

Therefore, (√
2− 1

n

)
u ≤

(
bn
√

2c
n

)
u ≤ v ≤ 1

n
(bn

√
2c+ 1)u ≤

(√
2 +

1
n

)
u ,

for every positive integer n. It follows that v = u
√

2, so that f(x) = ux for every x ∈ S. It is readily checked
that this equation satisfies the conditions for all nonegative u.

478. Solve the equation √
2 +

√
2 +

√
2 + x +

√
3

√
2−

√
2 +

√
2 + x = 2x
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for x ≥ 0

Solution. Since 2 −
√

2 +
√

2 + x ≥ 0, we must have 0 ≤ x ≤ 2. Therefore, there exists a number
t ∈ [0, 1

2π] for which cos t = 1
2x. Now we have that,√

2 +
√

2 +
√

2 + x =

√
2 +

√
2 +

√
2 + 2 cos t

=

√
2 +

√
2 +

√
4 cos2(t/2) =

√
2 +

√
2 + 2 cos(t/2)

=
√

2 + 2 cos(t/4) = 2 cos(t/8) .

Similarly,
√

2−
√

2 +
√

2 + x = 2 sin(t/8). Hence the equation becomes

2 cos
t

8
+ 2

√
3 sin

t

8
= 4 cos t

or
1
2

cos
t

8
+
√

3
2

sin
t

8
= cot t .

Thus,

cos
(

π

3
− t

8

)
= cos t .

Since the argument of the cosine on the left side lies between 0 and π/3, we must have that (π/3)−(t/8) = t,
or t = 8π/27.
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