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Notes. A function f : A → B is a bijection iff it is one-one and onto; this means that, if f(u) = f(v),
then u = v, and, if w is some element of B, then A contains an element t for which f(t) = w. Such a function
has an inverse f−1 which is determined by the condition

f−1(b) = a ⇔ b = f(a) .

The sides of a right-angled triangle that are adjacent to the right angle are called legs. The centre of
gravity or centroid of a collection of n mass particles is the point where the cumulative mass can be regarded
as concentrated so that the motion of this point, when exposed to outside forces such as gravity, is identical
to that of the whole collection. To illustrate this point, imagine that the mass particles are connected to a
point by rigid non-material sticks (with mass 0) to form a structure. The point where the tip of a needle
could be put so that this structure is in a state of balance is its centroid. In addition, there is an intuitive
definition of a centroid of a lamina, and of a solid: The centroid of a lamina is the point, which would cause
equilibrium (balance) when the tip of a needle is placed underneath to support it. Likewise, the centroid of
a solid is the point, at which the solid “balances”, i.e., it will not revolve if force is applied. The centroid,
G of a set of points is defined vectorially by

−−→
OG =

∑n
i=1 mi ·

−−→
OM i∑n

i=1 mi

where mi is the mass of the particle at a position Mi (the summation extending over the whole collection).
Problem 181 is related to the centroid of an assembly of three particles placed at the vertices of a given
triangle. The circumcentre of a triangle is the centre of its circumscribed circle. The orthocentre of a triangle
is the intersection point of its altitudes. An unbounded region in the plane is one not contained in the interior
of any circle.

An isosceles tetrahedron is one for which the three pairs of oppposite edges are equal. For integers a, b
and n, a ≡ b, modulo n, iff a− b is a multiple of n.

127. Let
A = 2n + 3n + 216(2n−6 + 3n−6)

and
B = 4n + 5n + 8000(4n−6 + 5n−6)

where n > 6 is a natural number. Prove that the fraction A/B is reducible.

128. Let n be a positive integer. On a circle, n points are marked. The number 1 is assigned to one of
them and 0 is assigned to the others. The following operation is allowed: Choose a point to which 1 is
assigned and then assign (1− a) and (1− b) to the two adjacent points, where a and b are, respectively,
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the numbers assigned to these points before. Is it possible to assign 1 to all points by applying this
operation several times if (a) n = 2001 and (b) n = 2002?

129. For every integer n, a nonnegative integer f(n) is assigned such that
(a) f(mn) = f(m) + f(n) for each pair m,n of natural numbers;
(b) f(n) = 0 when the rightmost digit in the decimal representation of the number n is 3; and
(c) f(10) = 0.

Prove that f(n) = 0 for any natural number n.

130. Let ABCD be a rectangle for which the respective lengths of AB and BC are a and b. Another rectangle
is circumscribed around ABCD so that each of its sides passes through one of the vertices of ABCD.
Consider all such rectangles and, among them, find the one with a maximum area. Express this area in
terms of a and b.

131. At a recent winter meeting of the Canadian Mathematical Society, some of the attending mathematicians
were friends. It appeared that every two mathematicians, that had the same number of friends among
the participants, did not have a common friend. Prove that there was a mathematician who had only
one friend.

132. Simplify the expression

5
√

3
√

2− 2
√

5 · 10

√
6
√

10 + 19
2

.

133. Prove that, if a, b, c, d are real numbers, b 6= c, both sides of the equation are defined, and

ac− b2

a− 2b + c
=

bd− c2

b− 2c + d
,

then each side of the equation is equal to

ad− bc

a− b− c + d
.

Give two essentially different examples of quadruples (a, b, c, d), not in geometric progression, for which
the conditions are satisfied. What happens when b = c?

134. Suppose that
a = zb + yc

b = xc + za

c = ya + xb .

Prove that
a2

1− x2
=

b2

1− y2
=

c2

1− z2
.

Of course, if any of x2, y2, z2 is equal to 1, then the conclusion involves undefined quantities. Give the
proper conclusion in this situation. Provide two essentially different numerical examples.

135. For the positive integer n, let p(n) = k if n is divisible by 2k but not by 2k+1. Let x0 = 0 and define xn

for n ≥ 1 recursively by
1
xn

= 1 + 2p(n)− xn−1 .

Prove that every nonnegative rational number occurs exactly once in the sequence {x0, x1, x2, · · · , xn, · · ·}.
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136. Prove that, if in a semicircle of radius 1, five points A, B, C, D, E are taken in consecutive order, then

|AB|2 + |BC|2 + |CD|2 + |DE|2 + |AB||BC||CD|+ |BC||CD||DE| < 4 .

137. Can an arbitrary convex quadrilateral be decomposed by a polygonal line into two parts, each of whose
diameters is less than the diameter of the given quadrilateral?

138. (a) A room contains ten people. Among any three. there are two (mutual) acquaintances. Prove that
there are four people, any two of whom are acquainted.

(b) Does the assertion hold if “ten” is replaced by “nine”?

139. Let A, B, C be three pairwise orthogonal faces of a tetrahedran meeting at one of its vertices and having
respective areas a, b, c. Let the face D opposite this vertex have area d. Prove that

d2 = a2 + b2 + c2 .

140. Angus likes to go to the movies. On Monday, standing in line, he noted that the fraction x of the line
was in front of him, while 1/n of the line was behind him. On Tuesday, the same fraction x of the line
was in front of him, while 1/(n + 1) of the line was behind him. On Wednesday, the same fraction x
of the line was in front of him, while 1/(n + 2) of the line was behind him. Determine a value of n for
which this is possible.

141. In how many ways can the rational 2002/2001 be written as the product of two rationals of the form
(n + 1)/n, where n is a positive integer?

142. Let x, y > 0 be such that x3 + y3 ≤ x− y. Prove that x2 + y2 ≤ 1.

143. A sequence whose entries are 0 and 1 has the property that, if each 0 is replaced by 01 and each 1 by
001, then the sequence remains unchanged. Thus, it starts out as 010010101001 · · ·. What is the 2002th
term of the sequence?

144. Let a, b, c, d be rational numbers for which bc 6= ad. Prove that there are infinitely many rational values
of x for which

√
(a + bx)(c + dx) is rational. Explain the situation when bc = ad.

145. Let ABC be a right triangle with ∠A = 90◦. Let P be a point on the hypotenuse BC, and let Q and
R be the respective feet of the perpendiculars from P to AC and AB. For what position of P is the
length of QR minimum?

146. Suppose that ABC is an equilateral triangle. Let P and Q be the respective midpoint of AB and AC,
and let U and V be points on the side BC with 4BU = 4V C = BC and 2UV = BC. Suppose that
PV are joined and that W is the foot of the perpendicular from U to PV and that Z is the foot of the
perpendicular from Q to PV .

Explain how that four polygons APZQ, BUWP , CQZV and UV W can be rearranged to form a
rectangle. Is this rectangle a square?

147. Let a > 0 and let n be a positive integer. Determine the maximum value of

x1x2 · · ·xn

(1 + x1)(x1 + x2) · · · (xn−1 + xn)(xn + an+1)

subject to the constraint that x1, x2, · · · , xn > 0.

148. For a given prime number p, find the number of distinct sequences of natural numbers (positive integers)
{a0, a1, · · · , an · · ·} satisfying, for each positive integer n, the equation

a0

a1
+

a0

a2
+ · · ·+ a0

an
+

p

an+1
= 1 .
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149. Consider a cube concentric with a parallelepiped (rectangular box) with sides a < b < c and faces
parallel to that of the cube. Find the side length of the cube for which the difference between the
volume of the union and the volume of the intersection of the cube and parallelepiped is minimum.

150. The area of the bases of a truncated pyramid are equal to S1 and S2 and the total area of the lateral
surface is S. Prove that, if there is a plane parallel to each of the bases that partitions the truncated
pyramid into two truncated pyramids within each of which a sphere can be inscribed, then

S = (
√

S1 +
√

S2)( 4
√

S1 + 4
√

S2)2 .

151. Prove that, for any natural number n, the equation

x(x + 1)(x + 2) · · · (x + 2n− 1) + (x + 2n + 1)(x + 2n + 2) · · · (x + 4n) = 0

does not have real solutions.

152. Andrew and Brenda are playing the following game. Taking turns, they write in a sequence, from left
to right, the numbers 0 or 1 until each of them has written 2002 numbers (to produce a 4004-digit
number). Brenda is the winner if the sequence of zeros and ones, considered as a binary number (i.e.,
written to base 2), can be written as the sum of two integer squares. Otherwise, the winner is Andrew.
Prove that the second player, Brenda, can always win the game, and explain her winning strategy (i.e.,
how she must play to ensure winning every game).

153. (a) Prove that, among any 39 consecutive natural numbers, there is one the sum of whose digits (in
base 10) is divisible by 11.

(b) Present some generalizations of this problem.

154. (a) Give as neat a proof as you can that, for any natural number n, the sum of the squares of the
numbers 1, 2, · · · , n is equal to n(n + 1)(2n + 1)/6.

(b) Find the least natural number n exceeding 1 for which (12 + 22 + · · · + n2)/n is the square of a
natural number.

155. Find all real numbers x that satisfy the equation

3[(1/2)+log3(cos x+sin x)] − 2log2(cos x−sin x) =
√

2 .

[The logarithms are taken to bases 3 and 2 respectively.]

156. In the triangle ABC, the point M is from the inside of the angle BAC such that ∠MAB = ∠MCA
and ∠MAC = ∠MBA. Similarly, the point N is from the inside of the angle ABC such that ∠NBA =
∠NCB and ∠NBC = ∠NAB. Also, the point P is from the inside of the angle ACB such that
∠PCA = ∠PBC and ∠PCB = ∠PAC. (The points M , N and P each could be inside or outside of
the triangle.) Prove that the lines AM , BN and CP are concurrent and that their intersection point
belongs to the circumcircle of the triangle MNP .

157. Prove that if the quadratic equation x2 + ax + b + 1 = 0 has nonzero integer solutions, then a2 + b2 is a
composite integer.

158. Let f(x) be a polynomial with real coefficients for which the equation f(x) = x has no real solution.
Prove that the equation f(f(x)) = x has no real solution either.

159. Let 0 ≤ a ≤ 4. Prove that the area of the bounded region enclosed by the curves with equations

y = 1− |x− 1|
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and
y = |2x− a|

cannot exceed 1
3 .

160. Let I be the incentre of the triangle ABC and D be the point of contact of the inscribed circle with
the side AB. Suppose that ID is produced outside of the triangle ABC to H so that the length DH is
equal to the semi-perimeter of ∆ABC. Prove that the quadrilateral AHBI is concyclic if and only if
angle C is equal to 90◦.

161. Let a, b, c be positive real numbers for which a + b + c = 1. Prove that

a3

a2 + b2
+

b3

b2 + c2
+

c3

c2 + a2
≥ 1

2
.

162. Let A and B be fixed points in the plane. Find all positive integers k for which the following assertion
holds:

among all triangles ABC with |AC| = k|BC|, the one with the largest area is isosceles.

163. Let Ri and ri re the respective circumradius and inradius of triangle AiBiCi (i = 1, 2). Prove that, if
∠C1 = ∠C2 and R1r2 = r1R2, then the two triangles are similar.

164. Let n be a positive integer and X a set with n distinct elements. Suppose that there are k distinct
subsets of X for which the union of any four contains no more that n−2 elements. Prove that k ≤ 2n−2.

165. Let n be a positive integer. Determine all n−tples {a1, a2, · · · , an} of positive integers for which a1 +
a2 + · · ·+ an = 2n and there is no subset of them whose sum is equal to n.

166. Suppose that f is a real-valued function defined on the reals for which

f(xy) + f(y − x) ≥ f(y + x)

for all real x and y. Prove that f(x) ≥ 0 for all real x.

167. Let u = (
√

5− 2)1/3− (
√

5 + 2)1/3 and v = (
√

189− 8)1/3− (
√

189 + 8)1/3. Prove that, for each positive
integer n, un + vn+1 = 0.

168. Determine the value of

cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦ .

169. Prove that, for each positive integer n exceeding 1,

1
2n

+
1

21/n
< 1 .

170. Solve, for real x,

x · 21/x +
1
x
· 2x = 4 .

171. Let n be a positive integer. In a round-robin match, n teams compete and each pair of teams plays
exactly one game. At the end of the match, the ith team has xi wins and yi losses. There are no ties.
Prove that

x2
1 + x2

2 + · · ·+ x2
n = y2

1 + y2
2 + · · ·+ y2

n .
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172. Let a, b, c, d. e, f be different integers. Prove that

(a− b)2 + (b− c)2 + (c− d)2 + (d− e)2 + (e− f)2 + (f − a)2 ≥ 18 .

173. Suppose that a and b are positive real numbers for which a + b = 1. Prove that(
a +

1
a

)2

+
(

b +
1
b

)2

≥ 25
2

.

Determine when equality holds.

174. For which real value of x is the function

(1− x)5(1 + x)(1 + 2x)2

maximum? Determine its maximum value.

175. ABC is a triangle such that AB < AC. The point D is the midpoint of the arc with endpoints B and
C of that arc of the circumcircle of ∆ABC that contains A. The foot of the perpendicular from D to
AC is E. Prove that AB + AE = EC.

176. Three noncollinear points A, M and N are given in the plane. Construct the square such that one of
its vertices is the point A, and the two sides which do not contain this vertex are on the lines through
M and N respectively. [Note: In such a problem, your solution should consist of a description of the
construction (with straightedge and compasses) and a proof in correct logical order proceeding from
what is given to what is desired that the construction is valid. You should deal with the feasibility of
the construction.]

177. Let a1, a2, · · ·, an be nonnegative integers such that, whenever 1 ≤ i, 1 ≤ j, i + j ≤ n, then

ai + aj ≤ ai+j ≤ ai + aj + 1 .

(a) Give an example of such a sequence which is not an arithmetic progression.

(b) Prove that there exists a real number x such that ak = bkxc for 1 ≤ k ≤ n.

178. Suppose that n is a positive integer and that x1, x2, · · · , xn are positive real numbers such that x1 +
x2 + · · ·+ xn = n. Prove that

n∑
i=1

n
√

axi + b ≤ a + b + n− 1

for every pair a, b of real numbers with each axi + b nonnegative. Describe the situation when equality
occurs.

179. Determine the units digit of the numbers a2, b2 and ab (in base 10 numeration), where

a = 22002 + 32002 + 42002 + 52002

and
b = 31 + 32 + 33 + · · ·+ 32002 .

180. Consider the function f that takes the set of complex numbers into itself defined by f(z) = 3z + |z|.
Prove that f is a bijection and find its inverse.
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181. Consider a regular polygon with n sides, each of length a, and an interior point located at distances a1,
a2, · · ·, an from the sides. Prove that

a

n∑
i=1

1
ai

> 2π .

182. Let M be an interior point of the equilateral triangle ABC with each side of unit length. Prove that

MA.MB + MB.MC + MC.MA ≥ 1 .

183. Simplify the expression √
1 +

√
1− x2((1 + x)

√
1 + x− (1− x)

√
1− x)

x(2 +
√

1− x2)
,

where 0 < |x| < 1.

184. Using complex numbers, or otherwise, evaluate

sin 10◦ sin 50◦ sin 70◦ .

185. Find all triples of natural numbers a, b, c, such that all of the following conditions hold: (1) a < 1974;
(2) b is less than c by 1575; (3) a2 + b2 = c2.

186. Find all natural numbers n such that there exists a convex n−sided polygon whose diagonals are all of
the same length.

187. Suppose that p is a real parameter and that

f(x) = x3 − (p + 5)x2 − 2(p− 3)(p− 1)x + 4p2 − 24p + 36 .

(a) Check that f(3− p) = 0.

(b) Find all values of p for which two of the roots of the equation f(x) = 0 (expressed in terms of p)
can be the lengths of the two legs in a right-angled triangle with a hypotenuse of 4

√
2.

188. (a) The measure of the angles of an acute triangle are α, β and γ degrees. Determine (as an expression
of α, β, γ) what masses must be placed at each of the triangle’s vertices for the centroid (centre of
gravity) to coincide with (i) the orthocentre of the triangle; (ii) the circumcentre of the triangle.

(b) The sides of an arbitrary triangle are a, b, c units in length. Determine (as an expression of a, b,
c) what masses must be placed at each of the triangle’s vertices for the centroid (centre of gravity) to
coincide with (i) the centre of the inscribed circle of the triangle; (ii) the intersection point of the three
segments joining the vertices of the triangle to the points on the opposite sides where the inscribed circle
is tangent (be sure to prove that, indeed, the three segments intersect in a common point).

189. There are n lines in the plane, where n is an integer exceeding 2. No three of them are concurrent
and no two of them are parallel. The lines divide the plane into regions; some of them are closed (they
have the form of a convex polygon); others are unbounded (their borders are broken lines consisting of
segments and rays).

(a) Determine as a function of n the number of unbounded regions.

(b) Suppose that some of the regions are coloured, so that no two coloured regions have a common side
(a segment or ray). Prove that the number of regions coloured in this way does not exceed 1

3 (n2 + n).
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190. Find all integer values of the parameter a for which the equation

|2x + 1|+ |x− 2| = a

has exactly one integer among its solutions.

191. In Olymonland the distances between every two cities is different. When the transportation program
of the country was being developed, for each city, the closest of the other cities was chosen and a highway
was built to connect them. All highways are line segments. Prove that

(a) no two highways intersect;

(b) every city is connected by a highway to no more than 5 other cities;

(c) there is no closed broken line composed of highways only.

192. Let ABC be a triangle, D be the midpoint of AB and E a point on the side AC for which AE = 2EC.
Prove that BE bisects the segment CD.

193. Determine the volume of an isosceles tetrahedron for which the pairs of opposite edges have lengths a,
b, c. Check your answer independently for a regular tetrahedron.

194. Let ABC be a triangle with incentre I. Let M be the midpoint of BC, U be the intersection of
AI produced with BC, D be the foot of the perpendicular from I to BC and P be the foot of the
perpendicular from A to BC. Prove that

|PD||DM | = |DU ||PM | .

195. Let ABCD be a convex quadrilateral and let the midpoints of AC and BD be P and Q respectively,
Prove that

|AB|2 + |BC|2 + |CD|2 + |DA|2 = |AC|2 + |BD|2 + 4|PQ|2 .

196. Determine five values of p for which the polynomial x2 + 2002x− 1002p has integer roots.

197. Determine all integers x and y that satisfy the equation x3 + 9xy + 127 = y3.

198. Let p be a prime number and let f(x) be a polynomial of degree d with integer coefficients such that
f(0) = 0 and f(1) = 1 and that, for every positive integer n, f(n) ≡ 0 or f(n) ≡ 1, modulo p. Prove
that d ≥ p− 1. Give an example of such a polynomial.

Solutions and Comments

127. Let
A = 2n + 3n + 216(2n−6 + 3n−6)

and
B = 4n + 5n + 8000(4n−6 + 5n−6)

where n > 6 is a natural number. Prove that the fraction A/B is reducible.

Solution 1. Observe that

xn + yn + x3y3(xn−6 + yn−6) = (xn−3 + yn−3)(x3 + y3) = (xn−3 + yn−3)(x + y)(x2 − xy + y2) .

When (x, y) = (2, 3), x2 − xy + y2 = 7, while, when (x, y) = (4, 5), x2 − xy + y2 = 21 = 7 × 3. It follows
that, for each n > 6, both A and B are divisible by 7 and the result follows.
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Solution 2. We consider the values of A and B modulo 7, and use the fact that a6 ≡ 1 (mod 7), whenever
a is not a multiple of 7. Observe that 216 ≡ 8000 ≡ −1 (mod 7). Then, modulo 7,

A ≡ 2n + 3n − 2n−6 − 3n−6 = 2n−6(26 − 1) + 3n−6(36 − 1) ≡ 0

and
A ≡ 4n + 5n − 4n−6 − 5n−6 = 4n−6(26 − 1) + 5n−6(36 − 1) ≡ 0 ,

so that both A and B are divisible by 7 and A/B is reducible.

Comment. The same conclusion holds when 216 is replaced by 6 and 8000 replaced by 20.

128. Let n be a positive integer. On a circle, n points are marked. The number 1 is assigned to one of
them and 0 is assigned to the others. The following operation is allowed: Choose a point to which 1 is
assigned and then assign (1− a) and (1− b) to the two adjacent points, where a and b are, respectively,
the numbers assigned to these points before. Is it possible to assign 1 to all points by applying this
operation several times if (a) n = 2001 and (b) n = 2002?

Solution. (a) It is clear that we can obtain a string of 3 ones, with all the other positions marked with
a zero. Suppose that we have a string of 2k − 1 ones with all the other postions marked with a zero. Note
that three consecutive entries 1, 1, 0 can be changed to 0, 1, 1 and that three consecutive entries 0, 1, 0 can
be changed to 1, 1, 1. By starting at one end of the string of ones and using the first operation to “shift” a
zero over two position until we come to the entries 0, 1, 0 at the other end of the string, we see that we can
obtain a string of 2k + 1 ones. We can repeat this for k = 1, · · · , 1000 until we achieve all ones.

(b) Observe that the parity the number of ones does not change. If we start with a single one, then
there must be an odd number of ones, so we cannot solve the problem when n = 2002.

129. For every integer n, a nonnegative integer f(n) is assigned such that
(a) f(mn) = f(m) + f(n) for each pair m,n of natural numbers;
(b) f(n) = 0 when the rightmost digit in the decimal representation of the number n is 3; and
(c) f(10) = 0.

Prove that f(n) = 0 for any natural number n.

Solution 1. Substituting m = 1, we find that f(1) = 0. Substituting m = n = −1, we find that
f(−1) = 0, and substituting m = −1 yields that f(n) = f(−n) for every integer n. So we suppose
henceforth that n > 0.

Let n = 10k + 1, then 0 = f(30k + 3) = f(3) + f(10k + 1) = 0 + f(n). Let n = 10k + 7. Then

f(n) = f(3) + f(10k + 7) = f((3k + 2)10 + 1) = 0.

Finally, let n = 10k + 9. Then

f(n) = f(3) + f(10k + 9) = f((3k + 2)10 + 7) = 0.

If follows that f(n) = 0, whenever n and 10 are coprime.

Since 0 = f(10) = f(2) + f(5), and f(2) ≥ 0, f(5) ≥ 0, if follows that f(2) = f(5) = 0. The result now
follows by applying (a) to the prime factorization of a given number n.

Solution 2. As in Solution 1, we can show that f(2) = f(5) = 0. Consider the prime factorization of n,
say, n = 2r5sb, where the greatest common divisor of b and 10 is equal to 1. Since b = 10a±1, or b = 10c±3,
we have that b4 = 10d + 1 for some c, so that its rightmost digit is 1 (b, c and d are some integers). Then

0 = f(3b4) = f(3) + f(b4) = 0 + f(b4) = 4f(b) ,
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whence f(n) = rf(2) + sf(5) + f(b) = 0.

130. Let ABCD be a rectangle for which the respective lengths of AB and BC are a and b. Another rectangle
is circumscribed around ABCD so that each of its sides passes through one of the vertices of ABCD.
Consider all such rectangles and, among them, find the one with a maximum area. Express this area in
terms of a and b.

Solution. The circumscribed rectangle is the union of the inner rectangle and four right triangles whose
hypotenuses are the four sides of the inner rectangle. The apexes of these four right triangles lie on semicircles
whose diameters are the four sides of the inner rectangle, so that the altitudes of the right triangles from
the hypotenuses cannot exceed the radii of the semi-circles, namely a/2 or b/2.

We can circumscribe a rectangle each of whose right triangles is isosceles, and whose heights are a/2 or
b/2 and areas are a2/4 or b2/4. Thus, the maximum area of the circumscribed rectangle is

2
(

a2

4
+

b2

4

)
+ ab =

1
2
(a + b)2 .

131. At a recent winter meeting of the Canadian Mathematical Society, some of the attending mathematicians
were friends. It appeared that every two mathematicians, that had the same number of friends among
the participants, did not have a common friend. Prove that there was a mathematician who had only
one friend.

Comment. Note that the result is false if there is no mathematician who has a friend. Thus, we need
to assume that there is at least one pair of friends.

Solution 1. Wolog, we may assume that each person present has at least one friend. We prove the result
by induction. It is clearly true when there are only two people. Let S be the set of people in the crowd,
each of whom has the minimum number of friends. Suppose if possible, that this minimum exceeds 1. The
set S is nonempty. Let T consist of all of the others. Then, looking at all the pairs of friends within T ,
by an induction hypothesis, there is a person p in T with only one friend in T . Since any two people in S
cannot have a friend in common, p can have at most have one friend in S. Since, by hypothesis, p cannot
have a single friend, p must have two friends. But then p should have been included in S, and we arrive at
a contradiction.

Solution 2. Let q be the person with the maximum number n of friends (or one of several, if there is
more than one having the same maximum number of friends). Each of the n friends of q has at least one
friend. If any of them has exactly one friend, the the result holds. Assume, if possible, that none of them
has exactly one friend. Since n is the maximum possible number of friends, there are n− 1 possibilities for
the number of friends that these n people have. By the Pigeonhole Principle, there must be two of them
with the same number of friends. But the given conditions require that two persons with the same number
of friends do not have a common friend. But this contradicts q being the common friend of them. Therefore,
there must be someone with one friend.

132. Simplify the expression

5
√

3
√

2− 2
√

5 · 10

√
6
√

10 + 19
2

.

Solution. Observe that (3
√

2− 2
√

5)2 = 2(19− 6
√

10), and that 3
√

2− 2
√

5 < 0. Hence 2
√

5− 3
√

2 =

10



√
2(19− 6

√
10, and so

5
√

3
√

2− 2
√

5 · 10

√
6
√

10 + 19
2

= − 5
√

2
√

5− 3
√

2 · 10

√
6
√

10 + 19
2

= − 10

√
(2(19− 6

√
10) · 1

2
(19 + 6

√
10)

= − 10
√

361− 360 = −1 .

133. Prove that, if a, b, c, d are real numbers, b 6= c, both sides of the equation are defined, and

ac− b2

a− 2b + c
=

bd− c2

b− 2c + d
,

then each side of the equation is equal to

ad− bc

a− b− c + d
.

Give two essentially different examples of quadruples (a, b, c, d), not in geometric progression, for which
the conditions are satisfied. What happens when b = c?

Solution 1. The given condition is equivalent to

0 = (ac− b2)(b− 2c + d)− (bd− c2)(a− 2b + c)

= (b− c)(ac− b2 + bd− c2)− [(ac− b2)(c− d) + (bd− c2)(a− b)]

Note that the quantity is square brackets vanishes when b = c, so that (b−c) should be a factor of it. Indeed,
we have

(ac− b2)(c− d) + (bd− c2)(a− b) = (b− c)(ad− bc) .

Since b 6= c, we find that the given condition is equivalent to

0 = (ac− b2) + (bd− c2)− (ad− bc)

or
(ac− b2) + (bd− c2) = ad− bc .

It follows that
ac− b2

a− 2b + c
=

bd− c2

b− 2c + d

=
(ac− b2) + (bd− c2)

(a− 2b + c) + (b− 2c + d)

=
ad− bc

a− b− c + d
,

as desired. Note that, in the event that a− b− c + d = 0, we must have ad− bc = 0, as well. (Explain!)

A generic example is (a, b, c, d) = (rk−1± 1, rk ± 1, rk+1± 1, rk+2± 1), where r 6= 0, 1 and k is arbitrary.

Suppose that b = c. If a 6= b and d 6= b, then both sides of the datum reduce to b, and the condition is a
tautology. However, the final fraction need not be equal to b in this case: an example is (a, b, c, d) = (2, 1, 1, 3).
On the other hand, suppose that a = b = c 6= d. The one side of the datum is undefined, while we find that

bd− c2

b− 2c + d
= b and

ad− bc

a− b− c + d
=

bd− b2

d− b
= b .

11



If a 6= b = c = d, then we have a similar result. Finally, if a = b = c = d, then all fractions are undefined.

Solution 2. [A. Mao] Let

k =
ac− b2

a− 2b + c
=

bd− c2

b− 2c + d
.

Then
(a− k)(c− k) = ac− ak − ck + k2 = b2 − 2bk + k2 = (b− k)2

and
(b− k)(d− k) = (c− k)2 .

Hence
(a− k)(d− k)[(b− k)(c− k)] = [(b− k)(c− k)]2 .

Note that b = k ⇔ c = k. Since b 6= c, then both b and c must differ from k. Hence

(a− k)(d− k) = (b− k)(c− k) =⇒ ad− bc = k(a− b− c + d) .

If a− b− c + d = 0, then ad− bc = 0 and the expression in the conclusion is undefined. Otherwise,

ad− bc

a− b− c + d
= k

and the result follows.

The given conditions imply that a− k, b− k, c− k, d− k are in geometric progresion. Conversely, pick
u arbitrary and r 6= 0, 1, and let (a, b, c, d) = (k + u, k + ur, k + ur2, k + ur3) to obtain a generic example.

Comments. Here are some numerical examples provided by various solvers for (a, b, c, d): (1, 2, 5, 14),
(1, 5, 3, 4), (2, 6, 12, 21), (5, 9, 1, 17), (8, 24, 12, 21). Note that, when (a, b, c, d) = (a, b, a, b), both sides of
the datum equal 1

2 (a + b), while the fraction in the conclusion is undefined.

The given condition is equivalent to

0 = (b− c)(ac + bd + bc− ad− b2 − c2) ,

from which (ac− b2) + (bd− c2) = ad− bc, and we can proceed as in Solution 1.

Very few full marks were given for this problem, as solvers were not careful about details. Whenever an
expression appears in a denominator or you cancel a factor out of a product, you must consider the possibility
that it might vanish. Most people ignored this possibility. In addition, the analysis of the situation when
b = c was not at all thorough.

134. Suppose that
a = zb + yc

b = xc + za

c = ya + xb .

Prove that
a2

1− x2
=

b2

1− y2
=

c2

1− z2
.

Of course, if any of x2, y2, z2 is equal to 1, then the conclusion involves undefined quantities. Give the
proper conclusion in this situation. Provide two essentially different numerical examples.

Solution. Suppose, say, that x2 = 1. Then x = ±1, whence za = b∓c and ya = c∓b. Thus a(y±z) = 0.
Suppose a = 0; then b2 = c2. If b = c = 0, then b2(1 − z2) = c2(1 − y2). If bc 6= 0, then |zb| = |yc| implies
that z2 = y2, in which case b2(1− z2) = c2(1− y2).

12



On the other hand, suppose that x2 = 1 and a 6= 0. Then y ± z = 0, so that

a = z(b± c) = az2

whence z2 = y2 = x2 = 1. Since a 6= 0, it is not possible for both b and c to vanish. Let b 6= 0. Then

c− xb = ya = yzb + y2c = yzb + c

so that x = −yz. In this case, all the expressions in the conclusion are undefined.

We now suppose that none of x2, y2, z2 is equal to 1. From b = xc + za and xc = xya + x2b, we deduce
that

(1− x2)b = (xy + z)a .

Since x2 6= 1, we have that xy + z 6= 0, and so

a2

1− x2
=

ab

xy + z
.

From c = ya + xb and xb = x2c + xza, we deduce that

(1− x2)c = (xz + y)a ,

whence
a2

1− x2
=

ac

xz + y
.

From a = zb + yc and zb = xzc + z2a, we deduce that

(1− z2)a = (xz + y)c ,

whence
c2

1− z2
=

ac

xz + y
=

a2

1− x2
.

From a = zb + yc and yc = y2a + xyb, we deduce that

(1− y2)a = (xy + z)b ,

whence
b2

1− y2
=

ab

xy + z
=

a2

1− x2
.

The result now follows.

Comments. Other interesting conclusions can be drawn. Adding and subtracting the first two equations,
we have that

(a− b)(1 + z) = (y − x)c

(a + b)(1− z) = (y + x)c

so that
(a2 − b2)(1− z2) = (y2 − x2)c2

=⇒ c2

1− z2
=

a2 − b2

y2 − x2
.

Similarly
b2

1− y2
=

c2 − a2

x2 − z2
and

a2

1− x2
=

b2 − c2

z2 − x2
.

13



Also, since (xy + z)a = (1− x2)b and (xz + y)a = (1− x2)c, we have that

(1− x2)a = (1− x2)(zb + yc) = (2xyz + z2 + y2)a =⇒ a(x2 + y2 + z2 + 2xyz) = a .

Similarly, b(x2 + y2 + z2 + 2xyz) = b and c(x2 + y2 + z2 + 2xyz) = c. For each solution of the given system
for which not all of a, b, c vanish, we must have x2 + y2 + z2 + 2xyz = 1.

Since xc = b− za and xb = c− ya, it follows that b2 − zab = c2 − yac, so that

bz − yc =
b2 − c2

a
and bz + yc = a .

Hence

z =
a2 + b2 − c2

2ab
and y =

a2 + c2 − b2

2ac
.

Also,

x =
b2 + c2 − a2

2bc
.

If a, b, c are the sides of a triangle ABC, then we have

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1 .

[Can you prove this directly?]

Here are some examples of sextuples (a, b, c;x, y, z): (a, b, c; cos A, cos B, cos C), (1, 3, 6; 11
9 , 7

3 ,− 13
3 ),

(2, 5, 9; 17
15 , 5

3 ,− 13
5 ), (−5, 5, 0; 4, 4,−1).

135. For the positive integer n, let p(n) = k if n is divisible by 2k but not by 2k+1. Let x0 = 0 and define xn

for n ≥ 1 recursively by
1
xn

= 1 + 2p(n)− xn−1 .

Prove that every nonnegative rational number occurs exactly once in the sequence {x0, x1, x2, · · · , xn, · · ·}.

Comment. This problem of Donald E. Knuth was posed in a recent issue of the American Mathematical
Monthly.

Solution. An examination of the table of values leads to the conjectured recursions:

x2k+1 = xk + 1 (for k ≥ 0) ,

1
x2k

=
1
xk

+ 1 (for k ≥ 1) .

Since (x0, x1, x2) = (0, 1, 1
2 ), this equation holds for the lowest value of k. We use an induction argument.

Suppose k ≥ 1 and that x2k−1 = xk−1 + 1. Then

1
x2k

= 1 + 2p(2k)− x2k−1

= 1 + 2[1 + p(k)]− (xk−1 + 1)

= 1 + (1 + 2p(k)− xk−1) = 1 +
1
xk

and
1

x2k+1
= 1− x2k = 1− xk

xk + 1
=

1
xk + 1

so that x2k+1 = xk + 1. The desired recursions follow.

14



From the two recursions, we see that xn > 1 when n is odd and exceeds 1 and xn < 1 when n is even
and exceeds 0. Thus, the values x0 = 0 and x1 = 1 are assumed only once. Suppose, if possible, that some
rational is assumed twice. Let r be the smallest index for which xr = xs for some s > r ≥ 2. Then r
and s must have the same parity and it follows from the recursions that xbr/2c = xbs/2c, contradicting the
minimality of r. Hence, no value of xn is assumed more than once.

It is straightforward to see that, for each non-negative integer m,

x2m−1 = m and x2m =
1

m + 1
.

Also, suppose that xuxv = 1. Then

1
x2v

=
1
xv

+ 1 = xu + 1 = x2u+1

so that x2u+1x2v = 1.

Let m be a positive integer. We show that, for 0 ≤ k ≤ 2m − 1, i = 2m + k and j = 2m+1 − (k + 1),
xixj = 1. This is clearly true for m = 1, since x2x3 = 1. Suppose that it has been established for some
particular value of m ≥ 1. We show that it holds for m replaced by m + 1.

Let 0 ≤ l ≤ 2m+1−1, i = 2m+1 + l = 2m+2− (2m+1− l) and j = 2m+2− (l+1) = 2m+1 +(2m+1− l−1).
Since i and j have opposite parity and can be put into either form, we may suppose wolog that l = 2r is
even, whereupon i = 2v is even and j = 2u + 1 is odd. Thus v = 2m + r and u = 2m − (r + 1), so that by
the induction hypothesis, xuxv = 1, whence it follows that xixj = x2vx2u+1 = 1. The desired result follows
by induction.

This shows that the set S of positive rationals of the form xn contains 0, 1 and is closed under each of
the operations x −→ x+1 and x −→ 1/x. Thus S contains all nonnegative integers. Suppose we have shown
that S contains all positive rationals with denominators not exceeding s. Consider a rational p/(s + 1) with
1 ≤ p ≤ s. By the induction hypothesis, (s + 1)/p ∈ S, so that p/(s + 1) ∈ S. Hence, for each nonnegative
integer t,

p

(s + 1)
+ t =

p + (s + 1)t
s + 1

∈ S ,

and so we can conclude that every positive rational with denominator s+1 belongs to S. Hence, by induction,
we see that S contains every rational.

136. Prove that, if in a semicircle of radius 1, five points A, B, C, D, E are taken in consecutive order, then

|AB|2 + |BC|2 + |CD|2 + |DE|2 + |AB||BC||CD|+ |BC||CD||DE| < 4 .

Comment. The inequality is strict except in certain degenerate cases in which the points are not all
distinct.

Solution 1. If A and E are shifted to the ends of the diameter, then the left side is at least as large.
Thus, it suffices to prove the result when AE is a diameter. Let |AB| = a, |BC| = b, |CD| = c, |DE| = d,
|AC| = u and |CE| = v. Observe that v > c and u > b [why?]. Suppose α = ∠CAE and β = ∠CEA. Then
∠ABC = 180◦ − β and ∠CDE = 180◦ − α. We have |AE| = 2, and

u2 = a2 + b2 + 2ab cos β = a2 + b2 + abv > a2 + b2 + abc

and
v2 = c2 + d2 + 2cd cos α = c2 + d2 + cdu > c2 + d2 + bcd .

Hence
a2 + b2 + c2 + d2 + abc + bcd < u2 + v2 = 4 .
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Solution 2. [A. Mao] As in Solution 1, we reduce to the case that AE is a diameter. Use the same
notation as in Solution 1, and let |AD| = p and |BE| = q. Note that ∠ABE = ∠ACE = ∠ADE = 90◦. By
Ptolemy’s Theorem, we have that

|BC||AE|+ |AB||CE| = |AC||BE|

=⇒ 2b + av = uq =
√

4− v2
√

4− a2

=⇒ 4b2 + 4bav = 16− 4a2 − 4v2

=⇒ a2 + b2 + v2 + abv = 4 .

Similarly, c2 + d2 + u2 + cdu = 4. Adding and using u2 + v2 = 4, we obtain that

a2 + b2 + c2 + d2 + abv + cdu = 4 .

Since triangles ABC and CDE are obtuse with the largest angles at B and D respectively, c = |CD| <
|CE| = v and a < u, so that

a2 + b2 + c2 + d2 + abc + bcd < 4 .

137. Can an arbitrary convex quadrilateral be decomposed by a polygonal line into two parts, each of whose
diameters is less than the diameter of the given quadrilateral?

Solution. No. Let ABC be an equilateral triangle, and let D be an exterior point in the region bounded
by AC and the circle with centre B and radius AB. Then the diameter of the quadrilateral ABCD is
|AB| = |BC| = |CA|. Any partition of the quadrilateral ABCD into two parts must have one of the parts
containing two of the three points A,B, C; the diameter of this part is equal to that of ABCD.

138. (a) A room contains ten people. Among any three. there are two (mutual) acquaintances. Prove that
there are four people, any two of whom are acquainted.

(b) Does the assertion hold if “ten” is replaced by “nine”?

Solution. Observe that the members of any pair each not acquainted with some third person must be
acquainted with each other. It follows that the pairs of any group of people, each not acquainted with a
particular outside person, must be mutual acquaintances.

We first show that, if any individual, say A, is acquainted with at least six people, B,C,D,E, F,G,
then the conclusion follows. Suppose, B, say, does not know C,D,E, then each pair of A,C, D, E must be
acquainted. On the other hand, if B knows each of C,D,E, then, as two of C,D,E know each other, say C
and D, then each pair of A,B, C, D must be acquainted. Since any person acquainted with A must either
be acquainted with or not be acquainted with three other people acquainted with A, the result follows.

(a) When there are ten people, each person either is not acquainted with four of the others (who then
make a set of four each pair of which are acquaintances) or must be acquainted with at least six of the others,
in which case we get the result by the previous paragraph.

(b) The assertion holds for nine people. In this case, each person either is not acquainted with four of
the others or must be acquainted with at least five of the others. Suppose that each person is acquainted
with at least five of the others. Then, adding together the number of acquaintances of each of the nine
people, we get a sum of at least 9 × 5 = 45. But, each pair of acquaintances is counted twice, so the sum
must be even and so be at least 46. But then there must be someone with at least six acquaintances, and
we can obtain the desired result.

139. Let A, B, C be three pairwise orthogonal faces of a tetrahedran meeting at one of its vertices and having
respective areas a, b, c. Let the face D opposite this vertex have area d. Prove that

d2 = a2 + b2 + c2 .

16



Solution 1. Let the tetrahedron be bounded by the three coordinate planes in R3 and the plane with
equation x

u + y
v + z

w = 1, where u, v, w are positive. The vertices of the tetrahedron are (0, 0, 0), (u, 0, 0),
(0, v, 0), (0, 0, w). Let d, a, b, c be the areas of the faces opposite these respective vertices. Then the volume
V of the tetrahedron is equal to

1
3
au =

1
3
bv =

1
3
cw =

1
3
dk ,

where k is the distance from the origin to its opposite face. The foot of the perpendicular from the origin
to this face is located at ((um)−1, (vm)−1.(wm)−1), where m = u−2 + v−2 + w−2, and its distance from the
origin is m−1/2. Since a = 3V u−1, b = 3V v−1, c = 3V w−1 and d = 3V m1/2, the result follows.

Solution 2. [J. Chui] Let edges of lengths x, y, z be common to the respective pairs of faces of areas
(b, c), (c, a), (a, b). Then 2a = yz, 2b = zx and 2c = xy. The fourth face is bounded by sides of length
u =

√
y2 + z2, v =

√
z2 + x2 and w =

√
x2 + y2. By Heron’s formula, its area d is given by the relation

16d2 = (u + v + w)(u + v − w)(u− v + w)(−u + v + w)

= [(u + v)2 − w2][(w2 − (u− v)2] = [2uv + (u2 + v2 − w2)][2uv − (u2 + v2 − w2)]

= 2u2v2 + 2v2w2 + 2w2u2 − u4 − v4 − w4

= 2(y2 + z2)(x2 + z2) + 2(x2 + z2)(x2 + y2) + 2(x2 + y2)(x2 + z2)

− (y2 + z2)2 − (x2 + z2)2 − (x2 + y2)2

= 4x2y2 + 4x2z2 + 4y2z2 = 16a2 + 16b2 + 16c2 ,

whence the result follows.

Solution 3. Use the notation of Solution 2. There is a plane through the edge bounding the faces of
areas a and b perpendicular to the edge bounding the faces of areas c and d. Suppose it cuts the latter faces
in altitudes of respective lengths u and v. Then 2c = u

√
x2 + y2, whence u2(x2 + y2) = x2y2. Hence

v2 = z2 + u2 =
x2y2 + x2z2 + y2z2

x2 + y2
=

4(a2 + b2 + c2)
x2 + y2

,

so that
2d = v

√
x2 + y2 =⇒ 4d2 = 4(a2 + b2 + c2) ,

as desired.

Solution 4. [R. Ziman] Let a, b, c, d be vectors orthogonal to the respective faces of areas a, b, c, d
that point inwards from these faces and have respective magnitudes a, b, c, d. If the vertices opposite the
respective faces are x, y, z, O, then the first three are pairwise orthogonal and 2c = x×y, 2b = z× x, 2c
= x×y, and 2d = (z - y)×(z - x) = − (z×x) − (y×z) − (x×y). Hence d = − (a + b + c), so that

d2 = d · d = (a + b + c) · (a + b + c) = a2 + b2 + c2 .

140. Angus likes to go to the movies. On Monday, standing in line, he noted that the fraction x of the line
was in front of him, while 1/n of the line was behind him. On Tuesday, the same fraction x of the line
was in front of him, while 1/(n + 1) of the line was behind him. On Wednesday, the same fraction x
of the line was in front of him, while 1/(n + 2) of the line was behind him. Determine a value of n for
which this is possible.

Answer. When x = 5/6, he could have 1/7 of a line of 42 behind him, 1/8 of a line of 24 behind him
and 1/9 of a line of 18 behind him. When x = 11/12, he could have 1/14 of a line of 84 behind him, 1/15 of
a line of 60 behind him and 1/16 of a line of 48 behind him. When x = 13/15, he could have 1/8 of a line
of 120 behind him, 1/9 of a line of 45 behind him and 1/10 of a line of 30 behind him.
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Solution 1. The strategy in this solution is to try to narrow down the search by considering a special
case. Suppose that x = (u− 1)/u for some positive integer exceeding 1. Let 1/(u + p) be the fraction of the
line behind Angus. Then Angus himself represents this fraction of the line:

1−
(

u− 1
u

+
1

u + p

)
=

p

u(u + p)
,

so that there would be u(u+p)/p people in line. To make this an integer, we can arrange that u is a multiple
of p. For n = u + 1, we want to get an integer for p = 1, 2, 3, and so we may take u to be any multiple of 6.
Thus, we can arrange that x is any of 5/6, 11/12, 17/18, 23/24, and so on.

More generally, for u(u+1), u(u+2)/2 and u(u+3)/3 to all be integers we require that u be a multiple
of 6, and so can take n = 6k +1. On Monday, there would be 36k2 +6k people in line with 36k2− 1 in front
and 6k behind; on Tuesday, 18k2 + 6k with 18k2 + 3k − 1 in front and 3k behind; on Wednesday, 12k2 + 6k
with 12k2 + 4k − 1 and 2k behind.

Solution 2. [O. Bormashenko] On the three successive days, the total numbers numbers of people in line
are un, v(n + 1) and w(n + 2) for some positive integers u, v and w. The fraction of the line constituted by
Angus and those behind him is

1
un

+
1
n

=
1

v(n + 1)
+

1
n + 1

=
1

w(n + 2)
+

1
n + 2

.

These yield the equations
(n− v)(n + 1 + u) = n(n + 1)

and
(n + 1− w)(n + 2 + v) = (n + 1)(n + 2) .

We need to find an integer v for which n− v divides n(n + 1) and n + 2 + v divides (n + 1)(n + 2). This is
equivalent to determining p, q for which p + q = 2(n + 1), p < n, p divides n(n + 1), q > n + 2 and q divides
(n + 1)(n + 2). The triple (n, p, q) = (7, 4, 12) works and yields (u, v, w) = (6, 3, 2). In this case, x = 5/6.

Comment 1. Solution 1 indicates how we can select x for which the amount of the line behind Angus
is represented by any number of consecutive integer reciprocals. For example, in the case of x = 11/12, he
could also have 1/13 of a line of 156 behind him. Another strategy might be to look at x = (u − 2)/u, i.e.
successively at x = 3/5, 5/7, 7/9, · · ·. In this case, we assume that 1/(u − p) is the line is behind him, and
need to ensure that u− 2p is a positive divisor of u(u− p) for three consecutive values of p. If u is odd, we
can achieve this with u any odd multiple of 15, starting with p = 1

2 (u− 1).

Comment 2. With the same fraction in front on two days, suppose that 1/n of a line of u people is
behind the man on the first day, and 1/(n + 1) of a line of v people is behind him on the second day. Then

1
u

+
1
n

=
1
v

+
1

n + 1

so that uv = n(n + 1)(u − v). This yields both (n2 + n − v)u = (n2 + n)v and (n2 + n + u)v = (n2 + n)u,
leading to

u− v =
u2

n2 + n + u
=

v2

n2 + n− v
.

Two immediate possibilities are (n, u, v) = (n, n + 1, n) and (n, u, v) = (n, n(n + 1), 1
2n(n + 1)). To get some

more, taking u− v = k, we get the quadratic equation

u2 − ku− k(n2 + n) = 0

with discriminant
∆ = k2 + 4(n2 + n)k = [k + 2(n2 + n)]2 − 4(n2 + n)2 ,
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a pythagorean relationship when ∆ is square and the equation has integer solutions. Select α, β, γ so that
γαβ = n2 + n and let k = γ(α2 + β2 − 2αβ) = γ(α − β)2; this will make the discriminant ∆ equal to a
square.

Taking n = 3, for example, yields the possibilities (u, v) = (132, 11), (60, 10), (36, 9), (24, 8), (12, 6),
(6, 4),(4, 3). In general, we find that (n, u, v) = (n, γα(α− β), γβ(α− β)) when n2 + n = γαβ with α > β.
It turns out that k = u− v = γ(α− β)2.

141. In how many ways can the rational 2002/2001 be written as the product of two rationals of the form
(n + 1)/n, where n is a positive integer?

Solution 1. We begin by proving a more general result. Let m be a positive integer, and denote by d(m)
and d(m + 1), the number of positive divisors of m and m + 1 respectively. Suppose that

m + 1
m

=
p + 1

p
· q + 1

q
,

where p and q are positive integers exceeding m. Then (m + 1)pq = m(p + 1)(q + 1), which reduces to
(p−m)(q −m) = m(m + 1). It follows that p = m + u and q = m + v, where uv = m(m + 1). Hence, every
representation of (m + 1)/m corresponds to a factorization of m(m + 1).

On the other hand, observe that, if uv = m(m + 1), then

m + u + 1
m + u

· m + v + 1
m + v

=
m2 + m(u + v + 2) + uv + (u + v) + 1

m2 + m(u + v) + uv

=
m2 + (m + 1)(u + v) + m(m + 1) + 2m + 1

m2 + m(u + v) + m(m + 1)

=
(m + 1)2 + (m + 1)(u + v) + m(m + 1)

m2 + m(u + v) + m(m + 1)

=
(m + 1)[(m + 1) + (u + v) + m]

m[m + (u + v) + m + 1]
=

m + 1
m

.

Hence, there is a one-one correspondence between representations and pairs (u, v) of complementary factors
of m(m + 1). Since m and m + 1 are coprime, the number of factors of m(m + 1) is equal to d(m)d(m + 1),
and so the number of representations is equal to 1

2d(m)d(m + 1).

Now consider the case that m = 2001. Since 2001 = 3×23×29, d(2001) = 8; since 2002 = 2×7×11×13,
d(2002) = 16. Hence, the desired number of representations is 64.

Solution 2. [R. Ziman] Let m be an arbitrary positive integer. Then, since (m+1)/m is in lowest terms,
pq must be a multiple of m. Let m+1 = uv for some positive integers u and v and m = rs for some positive
integers r and s, where r is the greatest common divisor of m and p; suppose that p = br and q = as, with
s being the greatest common divisor of m and q. Then, the representation must have the form

m + 1
m

=
au

br
· bv

as
,

where au = br + 1 and bv = as + 1. Hence

bv =
br + 1

u
s + 1 =

brs + s + u

u
,

so that b = b(uv − rs) = s + u and

a =
sr + ur + 1

u
=

m + 1− ur

u
= v + r .
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Thus, a and b are uniquely determined. Note that we can get a representation for any pair (u, v) of comple-
mentary factors or m + 1 and (r, s) of complementary factors of m, and there are d(m + 1)d(m) of selecting
these. However, the selections {(u, v), (r, s)} and {(v, u), (s, r)} yield the same representation, so that number
of representations is 1

2d(m + 1)d(m). The desired answer can now be found.

142. Let x, y > 0 be such that x3 + y3 ≤ x− y. Prove that x2 + y2 ≤ 1.

Solution 1. [R. Barrington Leigh] We have that

x− y ≥ x3 + y3 > x3 − y3 .

Since x− y ≥ x3 + y3 > 0, we can divide this inequality by x− y to obtain

1 > x2 + xy + y2 > x2 + y2 .

Solution 2. [S.E. Lu]

x− y ≥ x3 + y3 > x3 > x3 − [y3 + xy(x− y)]

= x3 − x2y + xy2 − y3 = (x2 + y2)(x− y) ,

whereupon a division by the positive quantity x− y yields that 1 > x2 + y2.

Solution 3. [O. Bormashenko] Observe that y < x and that x3 < x3 + y3 ≤ x − y < x, so that
0 < y < x < 1. It follows that

x(x + y) < 2 =⇒ xy(x + y) < 2xy . (1)

The given condition can be rewritten

(x + y)(x2 + y2)− xy(x + y) ≤ x− y . (2)

Adding inequalities (1) and (2) yields

(x + y)(x2 + y2) < x + y ,

whence x2 + y2 < 1.

Solution 4. [R. Furmaniak] We have that

(x− y)(1− x2 − y2) = (x− y)− (x3 − x2y + xy2 − y3)

≥ (x3 + y3)− (x3 − x2y + xy2 − y3) = 2y3 + x2y − xy2 = y(x2 − xy + 2y2)

= y[(x−
√

2y)2 + (2
√

2− 1)xy] ≥ 0 ,

from which the result follows upon division by x− y.

Solution 5. Let y = tx. Since x > y > 0, we have that 0 < t < 1. Then x3(1 + t3) ≤ x(1 − t) ⇒
x2(1 + t3) ≤ (1− t). Therefore,

x2 + y2 = x2(1 + t2) ≤
(

1− t

1 + t3

)
(1 + t2)

=
1− t + t2 − t3

1 + t3
= 1− t(1− t + 2t2)

1 + t3
.

Since 1− t + 2t2, having negative discriminant, is always positive, the desired result follows.
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Solution 6. [J. Chui] Suppose, if possible, that x2 +y2 = r2 > 1. We can write x = r sin θ and y = r cos θ
for 0 ≤ θ ≤ π/2. Then

x3 + y3 − (x− y) = r3 sin3 θ + r3 cos3 θ − r sin θ + r cos θ

> r sin θ(sin2 θ − 1) + r cos3 θ + r cos θ

= −r sin θ cos2 θ + r cos3 θ + r cos θ

= r cos2 θ

(
cos θ +

1
cos θ

− sin θ

)
> r cos2 θ(2− sin θ) > 0 ,

contrary to hypothesis. The result follows by contradiction.

Solution 7. Let r > 0 and r2 = x2 + y2. Since x > y > 0, we can write x = r cos θ and y = r sin θ, where
0 < θ < π/4. The given equality is equivalent to

r2 ≤ cos θ − sin θ

cos3 θ + sin3 θ
,

so it suffices to show that the right side does not exceed 1 to obtain the desired r2 ≤ 1.

Observe that

1− cos θ − sin θ

cos3 θ + sin3 θ
=

(cos θ + sin θ)(1− cos θ sin θ)− (cos θ − sin θ)
cos3 θ + sin3 θ

=
sin θ(2− cos θ sin θ − cos2 θ)

cos3 θ + sin3 θ
> 0 ,

from which the desired result follows.

Solution 8. Begin as in Solution 7. Then

cos θ − sin θ

cos3 θ + sin3 θ
=

cos2 θ − sin2 θ

(cos θ + sin θ)2(1− cos θ sin θ)

=
cos 2θ

(1 + sin 2θ)(1− 1
2 sin θ

) =
cos 2θ

1 + 1
2 sin 2θ(1− sin 2θ)

< 1 ,

from which the result follows.

143. A sequence whose entries are 0 and 1 has the property that, if each 0 is replaced by 01 and each 1 by
001, then the sequence remains unchanged. Thus, it starts out as 010010101001 · · ·. What is the 2002th
term of the sequence?

Solution. Let us define finite sequences as follows. Suppose that S1 = 0. Then, for each k ≥ 2, Sk is
obtained by replacing each 0 in Sk−1 by 01 and each 1 in Sk−1 by 001. Thus,

S1 = 0; S2 = 01; S3 = 01001; S4 = 010010101001; S5 = 01001010100101001010010101001; · · ·

Each Sk−1 is a prefix of Sk; in fact, it can be shown that, for each k ≥ 3,

Sk = Sk−1 ∗ Sk−2 ∗ Sk−1 ,

where ∗ indicates juxtaposition. The respective number of symbols in Sk for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
is equal to 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378.
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The 2002th entry in the given infinite sequence is equal to the 2002th entry in S10, which is equal to
the (2002 − 985 − 408)th = (609)th entry in S9. This in turn is equal to the (609 − 408 − 169)th = (32)th
entry in S8, which is equal to the (32)th entry of S6, or the third entry of S3. Hence, the desired entry is 0.

Comment. Suppose that f(n) is the position of the nth one, so that f(1) = 2 and f(2) = 5. Let g(n)
be the number of zeros up to and including the nth position, and so n − g(n) is the number of ones up to
and including the nth position. Then we get the two equations

f(n) = 2g(n) + 3(n− g(n)) = 3n− g(n) (1)

g(f(n)) = f(n)− n . (2)

These two can be used to determine the positions of the ones by stepping up; for example, we have f(2) = 5,
g(5) = 3, f(5) = 15 − 3 = 12, g(12) = f(5) − 5 = 7, and so on. By messing around, one can arrive at the
result, but it would be nice to formulate this approach in a nice clean efficient zeroing in on the answer.

144. Let a, b, c, d be rational numbers for which bc 6= ad. Prove that there are infinitely many rational values
of x for which

√
(a + bx)(c + dx) is rational. Explain the situation when bc = ad.

Solution 1. We study the possibility of making c + dx = (a + bx)t2 for some rational numbers t. This
would require that

x =
c− at2

bt2 − d
.

Since the condition bc 6= ad prohibits b = d = 0, at least one of b and d must fail to vanish. Let us now
construct our solution.

Let t be an arbitrary positive rational number for which bt2 6= d. Then a + bx = (bc − ad)(bt2 − d)−1

and c + dx = (bc− ad)t2(bt2 − d)−1, whence√
(a + bx)(c + dx) = |(bc− ad)t(bt2 − d)−1|

is rational.

We need to show that distinct values of t deliver distinct values of x. Let u and v be two values of t for
which

c− au2

bu2 − d
=

c− av2

bv2 − d
.

Then
0 = (c− au2)(bv2 − d)− (c− av2)(bu2 − d)

= bc(v2 − u2) + ad(u2 − v2) = (bc− ad)(u2 − v2) ,

so that u = v, and the result follows.

Consider the case that bc = ad. if both sides equal zero, then one of the possibilities (a, b, c, d) =
(0, 0, c, d), (a, b, 0, 0), (a, 0, c, 0), (0, b, 0, d) must hold. In the first two cases, any x will serve. In the third,
any value of x will serve provided that ac is a rational square, and in the fourth, provided bd is a rational
square; otherwise, no x can be found. Otherwise, let c/a = d/b = s, for some nonzero rational s, so that
(a + bx)(c + dx) = s(a + bx)2. If s is a rational square, any value of x will do; if s is irrational, then only
x = −a/b = −c/d will work.

Solution 2. (a + bx)(c + dx) = r2 for rational r is equivalent to

bdx2 + (ad + bc)x + (ac− r2) = 0 .

If b = d = 0, this is satisfiable by all rational x provided ac is a rational square and r2 = ac, and by no
rational x otherwise. If exactly one of b and d is zero and ad + bc 6= 0, then each positive rational value is
assumed by

√
(a + bx)(c + dx) for a suitable value of x.
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Otherwise, let bd 6= 0. Then, given r, we have the corresponding

x =
−(ad + bc)±

√
(ad− bc)2 + 4bdr2

2bd
.

If ad = bc, then this yields a rational x if and only if bd is a rational square. Let ad 6= bc. We wish to make
(ad− bc)2 + 4bdr2 = s2 for some rational s. This is equivalent to

4bdr2 = (ad− bc)2 − s2 = (ad− bc + s)(ad− bc− s) .

Pick a pair u, v of rationals for which u + v 6= 0 and uv = bd. We want to make

2ur = ad− bc + s and 2vr = ad− bc− s

so that (u + v)r = ad− bc and s = (u− v)r. Thus, let

r =
ad− bc

u + v
.

Then
(ad− bc)2 + 4bdr2 = (ad− bc)2 + 4uvr2

=
(

ad− bc

u + v

)2

[(u + v)2 − 4uv]

=
(ad− bc)2(u− v)2

(u + v)2

is a rational square, and so x is rational. There are infinitely many possible ways of choosing u, v and each
gives a different sum u + v and so a different value of r and x. The desired result follows.

145. Let ABC be a right triangle with ∠A = 90◦. Let P be a point on the hypotenuse BC, and let Q and
R be the respective feet of the perpendiculars from P to AC and AB. For what position of P is the
length of QR minimum?

Solution. PQAR, being a quadrilateral with right angles at A, Q and R, is a rectangle. Therefore, its
diagonals QR and AP are equal. The length of QR is minimized when the length of AP is minimized, and
this occurs when P is the foot of the perpendicular from A to BC.

Comment. P must be chosen so that PB : PC = AB2 : AC2.

146. Suppose that ABC is an equilateral triangle. Let P and Q be the respective midpoint of AB and AC,
and let U and V be points on the side BC with 4BU = 4V C = BC and 2UV = BC. Suppose that
PV is joined and that W is the foot of the perpendicular from U to PV and that Z is the foot of the
perpendicular from Q to PV .

Explain how that four polygons APZQ, BUWP , CQZV and UV W can be rearranged to form a
rectangle. Is this rectangle a square?

Solution. Consider a 180◦ rotation about Q so that C falls on A, Z falls on Z1 and V falls on V1. The
quadrilateral QZV C goes to QZ1V1A, ZQZ1 is a line and ∠QAV1 = 60◦. Similarly, a 180◦ rotation about P
takes quadrilateral PBUW to PAU1W1 with WPW1 a line and ∠U1AP = 60◦. Since ∠U1AP = ∠PAQ =
∠QAV1 = 60◦, U1AV1 is a line and

U1V1 = U1A + AV1 = UB + CV =
1
2
BC = UV .

Translate U and V to fall on U1 and V1 respectively; let W fall on W2. Since

∠W1U1W2 = ∠W1U1A + ∠W2U1A = ∠WUB + ∠WUV = 180◦ ,
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∠W2V1Z1 = ∠W2V1A + ∠AV1Z1 = ∠WV U + ∠CV Z = 180◦ ,

and
∠W2 = ∠W1 = ∠Z1 = ∠WZQ = 90◦ ,

it follows that Z1W2W1Z is a rectangle composed of isometric images of APZQ, BUWP , CQZV and UV W .

Since PU and QV are both parallel to the median from A to BC, we have that PQV U is a rectangle
for which PU < PB = PQ. Thus, PQV U is not a square and so its diagonals PV and QU do not intersect
at right angles. It follows that W and Z do not lie on QU and so must be distinct.

Since PZQ and V WU are right triangles with ∠QPZ = ∠UV W and PQ = V U , they must be congru-
ent, so that PZ = V W , PW = ZV and UW = QZ. Since

W1W2 = W1U1 + U1W2 = WU + UW = WU + QZ

< UQ = PV = PZ + ZV = PZ + PW = PZ + PW1 = W1Z ,

the adjacent sides of Z1W2W1Z are unequal, and so the rectangle is not square.

Comment. The inequality of the adjacent sides of the rectangle can be obtained also by making mea-
surements. Take 4 as the length of a side of triangle ABC. Then

|PU | =
√

3 , |PQ| = 2 , |QU | = |PV | =
√

7 .

Since the triangles PUW and PV U are similar, UW : PU = V U : PV , whence |UW | = 2
√

21/7. Thus,
|W1W2| = 4

√
21/7 6=

√
7 = |W1Z|.

One can also use the fact that the areas of the triangle and rectangle are equal. The area of the triangle
is 4

√
3. It just needs to be verified that one of the sides of the rectangle is not equal to the square root of

this.

147. Let a > 0 and let n be a positive integer. Determine the maximum value of

x1x2 · · ·xn

(1 + x1)(x1 + x2) · · · (xn−1 + xn)(xn + an+1)

subject to the constraint that x1, x2, · · · , xn > 0.

Solution. Let u0 = x1, ui = xi+1/xi for 1 ≤ i ≤ n − 1 and un = an+1/xn. Observe that u0u1 · · ·un =
an+1. The quantity in the problem is the reciprocal of

(1 + u0)(1 + u1)(1 + u2) · · · (1 + un)

= 1 +
∑

ui +
∑

uiuj + · · ·+
∑

ui1ui2 · · ·uik
+ · · ·+ u0u1 · · ·un .

For k = 1, 2, · · · , n, the sum
∑

ui1ui2 · · ·uik
adds together all the

(
n+1

k

)
k−fold products of the ui; the

product of all the terms in this sum is equal to an+1 raised to the power
(

n
k−1

)
, namely, to a raised to the

power k
(
n+1

k

)
. By the arithmetic-geometric means inequality

∑
ui1ui2 · · ·uik

≥
(

n + 1
k

)
ak .

Hence

(1 + u0)(1 + u1) · · · (1 + un) ≥ 1 + (n + 1)a + · · ·+
(

n + 1
k

)
ak + · · · an+1 = (1 + a)n+1 ,
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with equality if and only if u0 = u1 = · · · = un = a. If follows from this that the quantity in the problem
has maximum value of (1 + a)−(n+1), with equality if and only if xi = ai for 1 ≤ i ≤ n.

Comment. Some of you tried the following strategy. If any two of the ui were unequal, they showed
that a larger value could be obtained for the given expression by replacing each of these by another value.
They then deduced that the maximum occurred when all the ui were equal. There is a subtle difficulty
here. What has really been proved is that, if there is a maximum, it can occur only when the ui are equal.
However, it begs the question of the existence of a maximum. To appreciate the point, consider the following
argument that 1 is the largest postive integer. We note that, given any integer n exceeding 1, we can find
another integer that exceeds n, namely n2. Thus, no integer exceeding 1 can be the largest positive integer.
Therefore, 1 itself must be the largest.

Some of you tried a similar approach with the xi, and showed that for a maximum, one must have all
the xi equal to 1. However, they neglected to build in the relationship between xn and an+1, which of course
cannot be equal if all the xi are 1 and a 6= 1. This leaves open the possibility of making the given expression
larger by bettering the relationship between the xi and a and possibly allowing inequalities of the variables.

148. For a given prime number p, find the number of distinct sequences of natural numbers (positive integers)
{a0, a1, · · · , an · · ·} satisfying, for each positive integer n, the equation

a0

a1
+

a0

a2
+ · · ·+ a0

an
+

p

an+1
= 1 .

Solution. For n ≥ 3 we have that

1 =
a0

a1
+ · · ·+ a0

a2
+ · · ·+ a0

an−2
+

p

an−1

=
a0

a1
+

a0

a2
+ · · ·+ a0

an−1
+

p

an

whence
p

an−1
=

a0

an−1
+

p

an
,

so that
an =

pan−1

p− a0
.

Thus, for n ≥ 2, we have that

an =
pn−2a2

(p− a0)n−2
.

Since 1 ≤ p − a0 ≤ p − 1, p − a0 and p are coprime. It follows that, either p − a0 must divide a2 to an
arbitrarily high power (impossible!) or p− a0 = 1.

Therefore, a0 = p − 1 and an = pn−2a2 for n ≥ 2. Thus, once a1 and a2 are selected, then the rest of
the sequence {an} is determined. The remaining condition that has to be satisfied is

1 =
a0

a1
+

p

a2
=

p− 1
a1

+
p

a2
.

This is equivalent to
(p− 1)a2 + pa1 = a1a2 ,

or
[a1 − (p− 1)][a2 − p] = p(p− 1) .

The factors a1 − (p− 1) and a2 − p must be both negative or both positive. The former case is excluded by
the fact that (p − 1) − a1 and p − a2 are respectively less than p − 1 and p. Hence, each choice of the pair
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(a1, a2) corresponds to a choice of a pair of positive divisors of p(p− 1). There are d(p(p− 1)) = 2d(p− 1)
such choices, where d(n) is the number of positive divisors of the positive integer n.

Comment. When p = 5, for example, the possibilities for (a1, a2) are (5, 25), (6, 15), (8, 10), (9, 9),
(14, 7), (24, 6). In general, particular choices of sequences that work are

{p− 1, p, p2, p3, · · ·}

{p− 1, 2p− 1, 2p− 1, p(2p− 1), · · ·}

{p− 1, p2 − 1, p + 1, p(p + 1), · · ·} .

A variant on the argument showing that the an from some point on constituted a geometric progression
started with the relation p(an − an−1) = a0an for n ≥ 3, whence

an−1

an
= 1− a0

p
.

Thus, for n ≥ 3, an+1an−1 = a2
n, which forces {a2, a3, · · · , } to be a geometric progession. The common ratio

must be a positive integer r for which r = p/(p− a0). This forces p− a0 to be equal to 1.

Quite a few solvers lost points because of poor book-keeping; they did not identify the correct place
at which the geometric progression began. It is often a good idea to write out the first few equations of a
general relation explicitly in order to avoid this type of confusion. You must learn to pay attention to details
and check work carefully; otherwise, you may find yourself settling for a score on a competition less than
you really deserve on the basis of ability.

149. Consider a cube concentric with a parallelepiped (rectangular box) with sides a < b < c and faces
parallel to that of the cube. Find the side length of the cube for which the difference between the
volume of the union and the volume of the intersection of the cube and parallelepiped is minimum.

Solution. Let x be the length of the side of the cube and let f(x) be the difference between the value of
the union and the volume of the intersection of the two solids. Then

f(x) =


abc− x3 (0 ≤ x < a)
abc + (x− a)x2 − ax2 = abc + x3 − 2ax2 (a ≤ x < b)
x3 + ab(c− x)− abx = abc + x3 − 2abx (b ≤ x < c)
x3 − abc (c ≤ x)

The function decreases for 0 ≤ x ≤ a and increases for x ≥ c. For b ≤ x ≤ c,

f(x)− f(b) = x3 − 2abx− b3 + 2ab2

= (x− b)[x2 + bx + b2 − 2ab]

= (x− b)[(x2 − ab) + b(x− a) + b2] ≥ 0 ,

so that f(x) ≥ f(b). Hence, the minimum value of f(x) must be assumed when a ≤ x ≤ b.

For a ≤ x ≤ b, f ′(x) = 3x2 − 4ax = x[3x − 4a], so that f(x) increases for x ≥ 4a/3 and decreases for
x ≤ 4a/3. When b ≤ 4a/3, then f(x) is decreasing on the closed interval [a, b] and assumes its minimum for
x = b. If b > 4a/3 > a, then f(x) increases on [4a/3, b] and so achieves its minimum when x = 4a/3. Hence,
the function f(x) is minimized when x = min(b, 4a/3).

150. The area of the bases of a truncated pyramid are equal to S1 and S2 and the total area of the lateral
surface is S. Prove that, if there is a plane parallel to each of the bases that partitions the truncated
pyramid into two truncated pyramids within each of which a sphere can be inscribed, then

S = (
√

S1 +
√

S2)( 4
√

S1 + 4
√

S2)2 .
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Solution 1. Let M1 be the larger base of the truncated pyramid with area S1, and M2 the smaller base
with area S2. Let P1 be the entire pyramid with base M1 of which the truncated pyramid is a part. Let M0

be the base parallel to M1 and M2 described in the problem, and let its area be S0. Let P0 be the pyramid
with base M0 and P2 the pyramid with base M2.

The inscribed sphere bounded by M0 and M1 is determined by the condition that it touches M1 and the
lateral faces of the pyramid; thus, it is the inscribed sphere of the pyramid P1 with base M1; let its radius
be R1. The inscribed sphere bounded by M2 and M0 is the inscribed sphere of the pyramid P0 with base
M0; let its radius be R0. Finally, let the inscribed sphere of the pyramid P2 with base M2 have radius R2.

Suppose Q2 is the lateral area of pyramid P2 and Q1 the lateral area of pyramid P1. Thus, S = Q1−Q2.

There is a dilation with factor R0/R1 that takes pyramid P1 to P0; since it takes the inscribed sphere
of P1 to that of P0, it takes the base M1 to M0 and the base M0 to M2. Hence, this dilation takes P0 to P2.
The dilation composed with itself takes P1 to P2. Therefore

R0

R1
=

R2

R0
and

Q2

Q1
=

S2

S1
=

R2
2

R2
1

.

Consider the volume of P2. Since P2 is the union of pyramids of height R2 and with bases the lateral
faces of P2 and M2, its volume is (1/3)R2(Q2 +S2). However, we can find the volume of P2 another way. P2

can be realized as the union of pyramids whose bases are its lateral faces and whose apexes are the centre
of the inscribed sphere with radius R0 with the removal of the pyramid of base M2 and apex at the centre
of the same sphere. Thus, the volume is also equal to (1/3)R0(Q2 − S2).

Hence
Q2 − S2

Q2 + S2
=

R2

R0
=

R2√
R1R2

=
√

R2√
R1

=
4
√

S2
4
√

S1

=⇒ Q2( 4
√

S1 − 4
√

S2) = S2( 4
√

S1 + 4
√

S2) ,

so that
S = Q1 −Q2 =

Q2

S2
(S1 − S2)

=
[

4
√

S1 + 4
√

S2
4
√

S1 − 4
√

S2

]
[
√

S1 −
√

S2][
√

S1 +
√

S2]

= ( 4
√

S1 + 4
√

S2)2(
√

S1 +
√

S2) .

Solution 2. [S. En Lu] Consider an arbitrary truncated pyramid with bases A1 and A2 of respective
areas σ1 and σ2, in which a sphere Γ of centre O is inscribed. Let the lateral area be σ. Suppose that C is
a lateral face and that Γ touches A1, A2 and C in the respective points P1, P2 and Q.

C is a trapezoid with sides of lengths a1 and a2 incident with the respective bases A1 and A2; let h1

and h2 be the respective lengths of the altitudes of triangles with apexes P1 and P2 and bases bordering on
C. By similarity (of A1 and A2),

h1

h2
=

a1

a2
=

√
σ1

σ2
.

The plane that contains these altitudes passes through P1P2 (a diameter of Γ) as well as Q, the point on C
nearest to the centre of Γ. Since the height of C is a1 + a2 [why?], its area is

1
2
(a1 + a2)(h1 + h2) =

1
2
[a1h1 + a2h2 + a1h2 + a2h1]

=
1
2
[a1h1 + a2h2 + 2

√
a1a2h1h2]

=
1
2
[a1h1 + a2h2 + 2a2h2

√
σ1/σ2] .
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Adding the corresponding equations over all the lateral faces C yields

σ = σ1 + σ2 +
√

σ1σ2 = (
√

σ1 +
√

σ2)2 .

With S0 defined as in Solution 1, we have that S1/S0 = S0/S2, so that S0 =
√

S1S2. Using the results
of the first paragraph applied to the truncated pyramids of bases (S2, S0) and (S0, S1), we obtain that

S = (
√

S1 +
√

S0)2 + (
√

S0 +
√

S1)2

= (
√

S1 + 4
√

S1S2)2 + ( 4
√

S1S2 +
√

S2)2

= (
√

S1 +
√

S2)( 4
√

S1 + 4
√

S2)2 .

151. Prove that, for any natural number n, the equation

x(x + 1)(x + 2) · · · (x + 2n− 1) + (x + 2n + 1)(x + 2n + 2) · · · (x + 4n) = 0

does not have real solutions.

Solution 1. With y = x + 2n, the given equation can be rewritten as

(y − 1)(y − 2) · · · (y − 2n) + (y + 1)(y + 2) · · · (y + 2n) = 0 .

When the left side is expanded, the coefficients of the odd powers of y cancel out, and we get a sum involving
only even powers of y with positive coefficients. Hence the left side must be positive for all real values of y,
and so there is not real solution for the equation (and for the given equation in x).

Solution 2. [Y. Yang] Let A = x(x + 1) · · · (x + 2n− 1) and B = (x + 2n + 1)(x + 2n + 2) · · · (x + 4n).
It is clear that none of the numbers 0, 1, · · · , 2n − 1, 2n + 1, · · · , 4n is a solution. Since A and B cannot
simultaneously vanish for any value of x, A + B = 0 can occur only if one is positive and the other negative.

Suppose that A < 0. Then there must be an odd number of negative factors in A, so that −2k − 1 <
x < −2k for some integer k ∈ [0, n− 1]. In this situation, the factors x, x + 1, · · ·, x + 2k are negative and
all the other factors involved in A and those in B are positive, so that B > 0. We show that the absolute
value of A must be less than the absolute value of B by comparing pairs of factors.

For the positive factors of A, we have x + 2k + 1 < x + 2n + 1, x + 2k + 2 < x + 2n + 2, · · ·,
x + 2n− 1 = x + 2k + (2n− 2k− 1) < x + 4n− 2k− 1 = x + 2n + (2n− 2k− 1). For the negative factors A,
we have that

|x| < 2k + 1 = 4k − 2k + 1 ≤ 4n− 4− 2k + 1 < 4n− (2k + 1) < 4n + x = x + 4n

|x + 1| < 2k < 4n− 1 + x = x + 4n− 1

· · · |x + 2k − 1| < x + 4n− 2k .

(Draw a diagram of the real line.) Multiplying all the inequalities yields that |A| < |B| = B, so that A + B
cannot vanish.

Suppose that B < 0. Then there are an odd number of negative factors in B, so that, for some positive
k not exceeding n, −2n− 2k < x < −2n− 2k + 1. Since A has all negative factors, we have that A > 0. As
in the earlier case, it can be proved that |A| > |B|, so that A + B cannot vanish. The desired result follows.

152. Andrew and Brenda are playing the following game. Taking turns, they write in a sequence, from left to
right, the numbers 0 or 1 until each of them has written 2002 numbers (to produce a 4004-digit number).
Brenda is the winner if the sequence of zeros and ones, considered as a binary number (i.e., written to
base 2), cannot be written as the sum of two integer squares. Otherwise, the winner is Andrew. Prove
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that the second player, Brenda, can always win the game, and explain her winning strategy (i.e., how
she must play to ensure winning every game).

Solution. First it will be established that if the binary representation of a number n has two consecutive
ones and an even number of zeros in its rightmost positions, the number cannot be written as the sum of
two perfect squares. For, all such numbers n must have the form 4k(4s + 3). Suppose, if possible, that such
a number can be written as the sum of two squares: n = x2 + y2. Using the fact that squares, modulo 4,
are congruent to 0 or 1, we see that when n is odd the representation is impossible, while if n is even, both
x and y must be even as well and (n/4) = (x/2)2 + (y/2)2. We can apply the same argument to (n/4) and
continue dividing by 4 until we get a representation of 4s + 3. But this yields a contradiction.

We show that the second player, Brenda, has a winning strategy: she should always play so that the
resulting 4004 digit number has the form described in the foregoing paragraph.

Case 1: Suppose the first player, Andrew, writes only 0. Then Brenda writes 1 on the first three turns
and then keeps writing 0. This will result in the base 2 number 010101000 · · · 000 = 21 · 41999, which by the
argument above cannot be written as the sum of two squares.

Case 2: Suppose on the other hand, at some point, Andrew inserts a 1. Brenda then writes 1 on her
next term, and copies what Andrew writes thereafter. The result number will have the form of n in the first
paragraph and so cannot be written as the sum of two squares. Brenda triumphs again.

Comment. As you will have noticed, the problem solved here differs from the one originally posed which
said that Brenda was the winner if the final number could be written as the sum of two integer squares.
This was our mistake, and, when discovered, was too late to correct. This changed the original problem to
a much more difficult one. Nevertheless, some comments on the new problem will be provided as a good
example of how advantage can be taken even from mistakes.

There is a simple and clear condition that some numbers cannot be written as a sum of two squares:
it is enough to show that they are congruent to 3, modulo 4. The difficulty of the problem arises from the
fact that if the number is not congruent to 3, it does not necessarily mean that it can be written as the sum
of two squares. A theorem in number theory states that a positive integer can be written as the sum of two
squares if and only if no prime congruent to 3, modulo 4, divides the number to an odd exponent.

For the problem solved above, it is enough to use the weaker condition and have Brenda ignore all
numbers other than those congruent to 3 modulo 4 that are winning numbers for her. To solve the problem
actually posed, it is not enough to consider only such numbers. It becomes a problem to connect the binary
representation of a number to the number of its prime factors congruent to 3, modulo 4.

Two students, who sent their work on the problem posed, deserve recognition for their excellent ideas and
results. Andrew Critch tried to come up with a strategy that eliminates the losing situations for Brenda.
He succeeds in eliminating 24003 such situations, out of all the 24004 possible endgame scenarios. Leonid
Chindelevitch goes further in exploring the problem, using a different approach. He realizes that the number
2002 in the problem is not sufficient for the algorithm of the game. By experimentation, he concludes that
there is a winning strategy for Brenda in the case that every player writes 1, 2 or 4 numbers. (The first
two cases simply require Brenda to write a zero every time, while the third one is a bit more complicated.)
However, there is no such strategy for Brenda when each player writes three numbers. On the contrary, in
this case, there is a winning strategy for Andrew. He starts with 1, and follows with 1 on each of his other
two turns if Brenda write 0 on her first move. Otherwise, he follows with 1 on his second move if Brenda’s
first move is 1, and then imitates Brenda’s second move on his third move. This yields one of the results:
101010, 101011, 101110, 101111, 111000, 111110, 111111 (in decimal: 42, 43, 46, 47, 56, 57, 62, 63), none of
which is the sum of two integer squares.

In order to investigate the problem further, Leonid has designed an algorithm to verify the existence
of a winning strategy with respect to the number n of moves for each player. Computer simulations reveal
that, for the 1 ≤ n ≤ 15, Brenda has a winning strategy only for n = 1, 2, 4. Since the algorithm used is
exponential, the time becomes quite large under increase of n; for n = 15, more than six hours are required.
Leonid also tries to determine the probability for Brenda to lead the game for ending at a winning number,
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and comes up with the conclusion that the probability is less than 0.31 for large numbers such as 2002.
Accordingly, he concludes that it is not likely that there is a winning strategy for such a game with a large
number of moves. Isn’t it great!

Bonus points will be given to students with reasonable ideas on this problem. For the others, the
problem will not be taken into account in compiling their scores.

153. (a) Prove that, among any 39 consecutive natural numbers, there is one the sum of whose digits (in
base 10) is divisible by 11.

(b) Present some generalizations of this problem.

Solution. (a) Consider 20 consecutive numbers such that the smallest of them has units digit 0, and
tens digit other than 9. Then, if S equals the sum of the digits of the smallest number, then the sums of the
digitis of the 20 numbers are, in turn, S, S + 1, · · ·, S + 9, S + 1, · · ·, S + 10. These include 11 consecutive
numbers, one of which must be divisible by 11.

Among any 39 consecutive integers, we can always find 20 such numbers. All that is required is that at
least 20 of the 39 numbers must have the same hundreds digit. If all 39 have the same hundreds digit, then
this is so. Otherwise, there are two hundred digits involved, and, by the pigeonhole principle, there must be
twenty with the same hundreds digit.

Comment. It is not easy to formulate new problems. This is why those solving part (a) were given a
full score, and bonus points assigned to anyone providing a reasonable suggestion for (b). Here are some
generalizations:

(1) Prove that, among any 20n + 39 consecutive natural numbers, there is one, the sum of whose digits
is divisible by 11 + n. [H. Li]

(2) Prove that, among any 20k − 1 consecutive natural numbers, there is one, the sum of whose digits
is divisible by k + 9 for 1 ≤ k ≤ 10. (This is the same as (1) for n = 2, 3, 4, 5.)

(3) Prove that, among any 200k − 1 consecutive natural numbers, there is one the sum of whose digits
is divisible by k + 18 (1 ≤ k ≤ 5).

154. (a) Give as neat a proof as you can that, for any natural number n, the sum of the squares of the
numbers 1, 2, · · · , n is equal to n(n + 1)(2n + 1)/6.

(b) Find the least natural number n exceeding 1 for which (12 + 22 + · · · + n2)/n is the square of a
natural number.

(a) Solution. There are many ways of proving the formula. Two standard ways are to use induction and
to make use of the identity (j + 1)3 = j3 + 3j2 + 3j + 1 summed for 1 ≤ j ≤ n. Y.Yang gives a geometric
argument. Place unit cubical blocks in a pyramidic array with n2 blocks at the bottom level, (n− 1)2 blocks
at the next level, and so on, until there is a single block at the top. Inscribe this in a square-based right
pyramid, whose slant edges pass through the upper outer corner of each level of cubes. This pyramid has
a base with side length n + 1 and a height n + 1. The sum of the first n squares is equal to the volume of
the cubes, which in turn is equal to the volume of the circumscribed pyramid less the volume of the space
within the pyramid not occupied by the cubes.

The volume of the circumscribing pyramid is 1
3 (n + 1)2(n + 1) = 1

3 (n + 1)3. Now look at the left-over
part. It consists of a small pyramid at the top, and at each level, 4 square corner pyramids and 4 triangular
prisms. Calling the top level the zeroth, we find that at the kth level down, the volume of the left-over part is
equal to 4 · 13 ·(1/2)2+4 · 12 (1/2)k = (1/3)+k. Summing this for 0 ≤ k ≤ n yields (1/3)(n+1)+(1/2)n(n+1),
so that the total volume of all the cubes is

1
3
(n + 1)3− 1

3
(n + 1)− 1

2
n(n + 1) =

1
6
(n + 1)[2(n + 1)2− 2− 3n] =

1
6
(n + 1)(2n2 + n) =

1
6
n(n + 1)(2n + 1) .
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(b) Solution 1. The condition to be satisfied is (n + 1)(2n + 1) = 6m2 for some integer m. Since the
right side is even, n be an odd number, say, 2k − 1. The equation reduces to k(4k − 1) = 3m2. Suppose, to
begin with, k is a multiple of 3: k = 3s. Then s(12s− 1) = m2. Since s and 12s− 1 are coprime, both must
be squares, i.e., s = p2 and 12s− 1 = q2 for some natural numbers p and q. But 12s− 1 ≡ 3 (mod 4) cannot
be the square of a natural number. Thus, there is no solution in this case.

The other possibility is that 4k − 1 is a multiple of 3; equivalently, k − 1 is a multiple of 3 (why?), so
that k = 3s + 1. Thus, (3s + 1)(4s + 1) = m2. Since 3s + 1 and 4s + 1 are coprime (why?), 3s + 1 = p2 and
4s + 1 = q2 for some natural numbers p and q. We now check in turn all the odd squares of the form 4s + 1
until we come to one for which 3s + 1 is square. This leads us to 4s + 1 = 152 and 3s + 1 = 132, so that
s = 56, k = 169, n = 337.

Solution 2. It is required to find the smallest natural number n for which (n + 1)(2n + 1) = 6m2, for
some positive integer m. We manipulate the equation to make use of the technique of completion of the
square. The equation is equivalent to 16n2 + 24n + 8 = 48m2 or (4n + 3)2− 1 = 3(4m)2. Setting x = 4n + 3
and y = 4m, we see that we need to find solutions of the equation x2 − 3y2 = 1 where x ≡ 3 and y ≡ 0
(modulo 4).

Noting that x2 − 3y2 = (x +
√

3)(x −
√

3), and that 22 − 3 · 12 = 1, we can deduce that the equation
x2 − 3y2 = 1 is satisfied by (x, y) = (xn, yn) where xn +

√
3yn = (2 +

√
3)n for each nonnegative integer n.

These solutions can be given through the recursion

x1 = 2 , y1 = 1

xn+1 = 2xn + 3yn , yn+1 = xn + 2yn .

The smallest solutions of this equation are (x, y) = (1, 0), (2, 1), (7, 4), (26, 15), (97, 56), (362, 209), (1351, 780).
Of these, only (7, 4) and (1351, 780) have the desired properties, and these correspond to (n, m) = (1, 1) and
(337, 195). The first gives the trivial case, and the second gives the minimum value 337 of n.

155. Find all real numbers x that satisfy the equation

3[(1/2)+log3(cos x+sin x)] − 2log2(cos x−sin x) =
√

2 .

[The logarithms are taken to bases 3 and 2 respectively.]

Solution. By the definition and properties of the logarithmic function, it follows that (1) the domain of
the equation is the set of all x for which cos x + sinx > 0 and cos x − sinx > 0, and that (2) 3log3 M = M
when M > 0.

The given equation is equivalent to

√
3(cos x + sinx)− (cos x− sinx) =

√
2

⇐⇒ (
√

3− 1) cos x + (
√

3 + 1) sinx =
√

2

⇐⇒
√

6−
√

2
4

cos x +
√

6 +
√

2
4

sinx =
1
2

.

Noting that (
√

6 −
√

2)/4 = sin 15◦ and (
√

6 +
√

2)/4 = cos 15◦, we see that the equation is equivalent to
sin(x+15◦) = 1

2 , whose solutions are x = 15◦ +k360◦ and x = 165◦ +k360◦ for integers k, The latter family
are extraneous, so only the former family constitute the solutions to the given problem.

Comment. Most participants attempted this problem and dealt well with the trigonometric transfor-
mations. However, it is important to check all purported solutions against the given equation, because
the derived equation becomes equivalent to the equation solved in the solution only in the presence of the
restrictions on the domain. Many students neglected this.

31



156. In the triangle ABC, the point M is from the inside of the angle BAC such that ∠MAB = ∠MCA
and ∠MAC = ∠MBA. Similarly, the point N is from the inside of the angle ABC such that ∠NBA =
∠NCB and ∠NBC = ∠NAB. Also, the point P is from the inside of the angle ACB such that
∠PCA = ∠PBC and ∠PCB = ∠PAC. (The points M , N and P each could be inside or outside of
the triangle.) Prove that the lines AM , BN and CP are concurrent and that their intersection point
belongs to the circumcircle of the triangle MNP .

Solution. First, note that the point M is inside the triangle ABC when ∠A is acute and outside the
triangle when ∠A is obtuse. Indeed, ∠A = ∠MAB + ∠MAC = ∠MCA + ∠MBA < 90◦ implies that in
the quadrilateral AMBC, ∠BMC > 180◦, which means that the point M is inside the triangle. Similarly,
∠A > 90◦ implies that, in the quadrilateral ABMC, ∠BMC < 180◦; thus, the point M is outside the
triangle. The same reasoning can be applied to determine whether the points N and P are inside or outside
of the triangle ABC. It is straightforward to verify that when one of the angles is right, the respective point
is on the side of the triangle opposite to the right angle.

Wolog, consider ∠C. Case 1: ∠C < 90◦. Let CP instersect the segment AB at C ′. Since PC ′ is the
angle bisector of ∠APB (∠APC ′ = ∠BPC ′ = ∠ACB), it follows that AC ′ : C ′B = AP : BP . The triangles
APC and BPC are similar, so that AP : CP = AC : BC and BP : CP = BC : AC =⇒ AP : BP = AC2 :
CB2 =⇒ AC ′ : C ′B = AC2 : CB2. Similarly, if AM intersects BC at M ′ and BN instersects AC at N”,
then

BA′ : A′C = BA2 : AC2

and CB′ : B′A = CB2 : BA2. Apply Ceva’s Theorem to the lines AM , BN , CP to deduce from
AC ′

C ′B
· BA′

A′C
· CB′

B′A
=

AC2

CB2
· BA2

AC2
· CB2

BA2
= 1

that the lines AM , BN and CP are concurrent. Denote by K the intersection point of these lines and by O
the circumcentre of the triangle ABC.

Since ∠APB = 2∠C = ∠AOB, the quadrilateral APOB is concyclic. Also, if the line PC ′ intersects
the circumcircle of APOB at the point C”, then this point C” is the midpoint of that arc AB not containing
O (as PC ′ is the angle bisector of ∠APB), and O is the midpoint of the other arc AB. Thus, OC” is the
diameter of this circle and ∠OPC” = ∠OPC = 90◦. Since the point K is on the line PC, ∠OPK = 90◦,
too; thus P is a point on the circle whose diamter is OK. Similarly, the points M and N are on the same
circle. This circle contains all the points M , N , P , K, O, so that the intersection point of AM , BN and
CP is on the circumcircle of MNP .

Case 2: ∠C = 90◦. In this case, the point P is on the hypotenuse AB (thus, it coincides with the point
C ′ of Case 1), and is also the point where the altitude from C toAB intersects AB. By the similarity of
the triangles ABC and APC, AP : AC = AC : AB, while, by the similarity of the triangles, BPC and
ABC, it follows that PC : BC = BC : AB. Then AP : PC = AC2 : BC2, which replaces the equation
AC ′ : C ′B = AC2 : BA2 of Case 1.The other two angles are acute, so that the remaining parts of the
solution can be pursued as in Case 1.

Case 3: ∠C > 90◦ Now the point C is outside of the triangle ABC, as well as the circumcentre O. The
proof is similar to that of Case 1, and follows the same steps.

Sources: Problem 151 is from the Bulgarian magazine Matematika Plus, 2001. Problems 152, 154, 155,
156 are from the contest papers of the 2001 Winter and Spring National Mathematics Contests for High
School students in Bulgaria.

157. Prove that if the quadratic equation x2 + ax + b + 1 = 0 has nonzero integer solutions, then a2 + b2 is a
composite integer.

Solution. Suppose that the integer roots are u and v. Then u + v = −a and uv = b + 1, whence
a2 + b2 = (u + v)2 + (uv − 1)2 = u2 + v2 + u2v2 + 1

= (u2 + 1)(v2 + 1) .
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Since each factor exceeds 1, a2 + b2 is composite.

Comment. You should make sure that you are familiar with the relationship between the coeffients and
roots of polynomials; a poor way to solve this problem is to use the quadratic formula. Note that, if, say,
u = 0, then a2 + b2 can be prime; for example, you get the value 5 when (u, v) = (0, 2).

158. Let f(x) be a polynomial with real coefficients for which the equation f(x) = x has no real solution.
Prove that the equation f(f(x)) = x has no real solution either.

Solution 1. Let g(x) = f(x)−x. Then, g(x) is a polynomial that never vanishes. We argue that it must
always have the same sign. Suppose if possible that g(a) < 0 < g(b) for some reals a and b. Since g(x),
being a polynomial, is continuous, the Intermediate Value Theorem applies and there must be a number c
between a and b for which g(c) = 0, yielding a contradition.

Thus, either g(x) > 0 for all x or else g(x) < 0 for all x. Then

f(f(x))− x = f(f(x))− f(x) + f(x)− x

= g(f(x)) + g(x)

for all real x. Since g never changes sign, both g(x) and g(f(x)) have the same sign (either positive or
negative) and so their sum cannot vanish. Hence f(f(x)) 6= x for any real x.

Solution 2. Suppose, if possible, that f(f(a)) = a. Let b = f(a). Then f(b) = a. By hypothesis, b 6= a.
Wolog, suppose that a < b. Then f(a) − a > 0 and f(b) − b < 0. Since f(x) − x is a polynomial, it is
continuous and so the Intermediate Value Theorem applies on the closed interval [a, b]. As it has opposite
signs at the endpoints of [a, b], it must vanish somewhere in the interior of the interval. But then this
contradicts the hypothesis. Hence f(f(x)) = x can have no real solutions.

Comment. It is important to highlight that f(x) is a continuous function, as this is key to the result.
(Can you construct a counterexample where it is not assumed that f is a polynomial or continuous?)
Several of you tried to give a geometric argument for this, and apart from mangling the terminology (e.g.,
not distinguishing between a function and its graph, points and values), operated at too intuitive a level.
Notice that the statement “f(x) > 0 or f(x) < 0 for all x” lacks a certain precision, as it could be interpreted
to mean that at any individual point x, one of the two alternatives occurs (the function does not vanish),
but that different alternative might occur at different points.

159. Let 0 ≤ a ≤ 4. Prove that the area of the bounded region enclosed by the curves with equations

y = 1− |x− 1|

and

y = |2x− a|

cannot exceed 1
3 .

Solution. In the situation that 0 ≤ a ≤ 1, the two curves intersect in the points (a/3, a/3) and (a, a), and
the bounded region is the triangle with these two vertices and the vertex (a/2, 0). This triangle is contained
in the triangle with vertices (0, 0), (1/2, 0) and (1, 1) with area 1/4. Hence, when 0 ≤ a ≤ 1, the area of the
bounded region cannot exceed 1/4.

Let 1 ≤ a ≤ 3. In this case, the bounded region is a quadrilateral with the four vertices (a/3, a/3),
(a/2, 0), ((a+2)/3, (4−a)/3) and (1, 1). Noting that this quadrilateral is the result of removing two smaller
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triangles from a larger one (draw a diagram!), we find that its area is

1− 1
2
· a

3
· a

2
− 1

2
· (4− a)

3
·
(

2− a

2

)
= 1− a2

12
− 1

12
(4− a)2

= −a2 − 4a + 2
6

=
1
3
− (a− 2)2

6
,

whence we find that the area does not exceed 1/3 and is equal to 1/3 exactly when a = 2.

The case 3 ≤ a ≤ 4 is the symmetric image of the case 0 ≤ a ≤ 1 and we find that the area of the
bounded region cannot exceed 1/4.

Comment. This is not a difficult problem, but it does require a lot of care in keeping the situation straight
and the computations sound. Always keep in mind completion of the square when it is a matter of optimizing
a quadratic. Use of calculus is more cumbersome in such situations, and begs the question as to whether
the optimum is a maximum or a minimum. (You can lose points for not explicitly resolving this issue.) R.
Barrington Leigh solved the problem by looking at the area between the graph of y = 1− |x− 1| − |2x− a|
and the x−axis. The equation of this curve with the absolute value signs is equal to y = 3x− a for x ≤ a/2,
to y = a− x when a/2 ≤ x ≤ 1 and a + 2− 3x when x ≤ 1, with suitable modification when a ≥ 2. Because
at each value of x, the difference in the ordinates remains the same as in the original problem, the area here
is the same as the area between the two graphs of the problem. You might want to try the problem in this
way.

160. Let I be the incentre of the triangle ABC and D be the point of contact of the inscribed circle with
the side AB. Suppose that ID is produced outside of the triangle ABC to H so that the length DH is
equal to the semi-perimeter of ∆ABC. Prove that the quadrilateral AHBI is concyclic if and only if
angle C is equal to 90◦.

Note. In the solutions that follow, we use the standard notation that a, b, c are the respective lengths of
the sides BC, CA, AB, r is the inradius of the triangle and s is its semi-perimeter (so that 2s = a + b + c).
We note that the area of the triangle is rs, that the distances from the vertices A, B, C to the tangent points
of the incircle are respectively s− a, s− b, s− c, and that r = (s− c) tan(C/2). If you are not familiar with
these relationships, then regard them as exercises.

Solution 1. The quadrilateral AHBI is concyclic if and only if DI : DH = DB : DA, or equivalently,

rs = (s− a)(s− b) = s2 − s(a + b) + ab = s2 − s(2s− c) + ab = s(c− s) + ab .

The area of the triangle is rs = 1
2ab sinC = abt(1 + t2)−1 and r = (s − c)t, where t = tanC/2. Then the

concylic condition is equivalent to

rs = −rs

t
+

rs(1 + t2)
t

= rst ,

or t = 1. This is equivalent to C/2 = 45◦, and the result follows.

Solution 2. The concyclic condition is equivalent to

rs = (s− a)(s− b) ⇐⇒ 4rs = (c + b− a)(c + a− b) = c2 − b2 − a2 + 2ab .

We have, for any triangle, that 2ab sinC = 4rs (four times the area) and c2 = a2 + b2− 2ab cos C. Hence the
concyclic condition is equivalent to

2ab sinC = 2ab(1− cos C) ⇐⇒ sinC + cos C = 1 .
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If sin C + cos C = 1, then, by squaring, 1 + 2 sinC cos C = 1 =⇒ sin 2C = 0 so that C = 90◦. On the other
hand, if C = 90◦, then sinC + cos C = 1. The result follows.

Comment. We can end the solution, keeping the equivalences to the end, by noting that

sinC + cos C = 1 ⇔ sin(C + 45◦) =
√

2 ⇔ C = 90◦ .

Solution 3. [A. Feizmohammadi]

∠AIB = 180◦ − (∠BAI + ∠ABI) = 180◦ − ∠A + ∠B

2
= 90◦ +

∠C

2
.

Also,

tan∠AHB =
(s− a)/s + (s− b)/s

1− (s− a)(s− b)/s2
=

(2s− a− b)s
(a + b)s− ab

=
cs

(2s− c)s− ab
=

cs

2s2 − cs− ab
.

Suppose that ∠C is right. Then ∠AIB = 135◦ and

c2 = a2 + b2 =⇒ (a + b)2 − c2 = 2ab =⇒ (a + b− c)(a + b + c) = 2ab =⇒ ab = 2s(s− c) ,

so that
tan∠AHB =

cs

2s2 − cs− 2s2 + 2cs
= 1 =⇒ ∠AHB = 45◦ .

Since angles AHB and AIB are supplementary, AHBI is concyclic.

On the other hand, suppose that AHBI is concyclic. Then√
s(s− a)(s− b)(s− c) = (s− a)(s− b) = rs =⇒ (s− a)(s− b) = s(s− c)

=⇒ ab = (a + b− c)s =⇒ 2ab = (a + b)2 − c2

=⇒ a2 + b2 = c2 ,

so that ∠ACB is right.

161. Let a, b, c be positive real numbers for which a + b + c = 1. Prove that

a3

a2 + b2
+

b3

b2 + c2
+

c3

c2 + a2
≥ 1

2
.

Solution. Observe that, by the arithmetic-geometric means inequality ab ≤ 1
2 (a2 + b2), so that

a3

a2 + b2
= a− b

ab

a2 + b2
≥ a− b

2

with a similar inequality for the other two terms on the left side. Adding these inequalities and using
a + b + c = 1 yields the desired result.

Comment. R. Furmaniak noted that

2a3

a2 + b2
− 2a + b =

b(b− a)2

a2 + b2
≥ 0 ,

which again yields the result by concluding as in the solution.

162. Let A and B be fixed points in the plane. Find all positive integers k for which the following assertion
holds:
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among all triangles ABC with |AC| = k|BC|, the one with the largest area is isosceles.

Solution 1. In the case that k = 1, all triangles satisfying the condition are isosceles with AC = BC, the
locus of C is the right bisector of AB and there is no triangle with largest area (the area can be arbitrarily
large). Hence k ≥ 2. Since, by the triangle inequality,

|AB|+ |BC| > |AC| = k|BC| ≥ 2|BC| ,

we must have that |AB| > |BC|. Therefore, the only way a triangle satisfying the condition can be isosceles
is for |AB| = |AC| = k|BC|. Since |BC| < |AC|, ∠CAB cannot exceed 60◦, so that when k ≥ 2, there is no
isosceles triangle in the set.

Solution 2. As in Solution 1, we need consider only the case that k ≥ 1, and we can dispose of the case
k = 1. Let D be the foot of the perpendicular from C to AB (possibly produced; note that D and B lie on
the same side of A) and let the respective lengths of AB, AD and CD be c, x and v. We wish to maximize
v. The given condition implies that

x2 + v2 = k((x− c)2 + v2)

so that

v2 = −x2 +
2k2c

k2 − 1
x− k2c2

k2 − 1
.

The maximum value of v is equal to
kc

k2 − 1

assumed when x = k2c
k2−1 > c . If this maximum value of v is assumed when |AC| = |AB|, then we have

x2+v2 = c2 which leads to k = 1/
√

3. If the maximum is assumed when |BC| = |AB|, then (x−c)2+v2 = c2,
which leads to k =

√
3. As both solutions are extraneous, there is no positive integer value of k for which

the area is maximized when the triangle is isosceles.

Solution 3. As before, we can deal with the k = 1 case. Let k 6= 1. Let the sides of the triangle be
(a, ka, c) where c is the length of AB; let C be the angle opposite c. Then

c2 = (k2 + 1)a2 − 2ka2 cos C

whence a2 = c2(k2 + 1− 2k cos C)−1. The area of the triangle is equal to

1
2
ka2 sinC =

1
2
kc2(k2 + 1− 2k cos C)−1 sinC .

The derivative of sinC(k2 + 1 − 2k cos C)−1 with respect to C is equal to [(cos C)(k2 + 1) − 2k][k2 + 1 −
2k cos C]−2, from which we can read off that area is maximized when cos C = 2k(k2+1)−1. At this maximum
value, (k2 + 1)c2 = (k2 − 1)2a2. The triangle maximizing the area can be isosceles in two ways. The case
c = a occurs when k =

√
3, and the case c = ka occurs when k = 1/

√
3. Neither of these is an integer.

Alternatively, the case c = a corresponds to cos C = k/2, and equating k/2 and 2k/(k2 + 1) leads to
k2 = 3. The case c = ka corresponds to cos C = 1/2k, and this leads to k2 = 1/3. We conclude as before.

Solution 4. Dispose of the k = 1 case as before. Let k 6= 1. Let c = |AB| be fixed, and let the other two
sides have length a and la. Sixteen times the square of the area of the triangle is, by Heron’s rule,

[(1 + k)a + c][(1 + k)a− c][c + (1− k)a][c− (1− k)a]

= [(1 + k)2a2 − c2][c2 − (1− k)2a2] = 2a2c2(1 + k2)− (k2 − 1)2a4 − c4

=
[
(k2 + 1)2

(k2 − 1)2
c4 − c4

]
−

[
(k2 − 1)a2 − (k2 + 1)

(k2 − 1)
c2

]2

=
4k2c4

(k2 − 1)2
− (k2 − 1)

[
a2 − k2 + 1

(k2 − 1)2
c2

]
.
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The maximum area occurs when (k2− 1)2a2 = (k2 +1)c2. This occurs when a = c exactly when (k2− 1)2 =
k2 + 1, so k2 = 3, and occurs when ka = c exactly when (k2 − 1)2 = k4 + k2, so 3k2 = 1. We conclude as
before.

Comments. Several students committed the fallacy of setting, for example, AC = AB, noting that the
locus of C in this case was a circle with diameter containing AB, claiming that the area was maximized when
∠C = 90◦ and so BC was equal to

√
2AC. They deduced that

√
2 and 1/

√
2 were the only values of k that

allowed the area to be maximized by an isosceles triangle. However, this puts things the wrong way around.
The value k is fixed, and then we look at all appropriate triangles. All the solvers did was to maximize
the area over all isosceles triangles for which AC = AB; as C traces out the set of points satisfying these
conditions, of course, the ratio of the lengths of AC and BC vary. Those solvers who made this mistake are
invited to investigate the case k =

√
2 in more detail, and this will help them understand where they went

wrong.

If we coordinatize the situation with A ∼ (0, 0) and B ∼ (1, 0), we see that the locus of C is given by

(k2 − 1)(x2 + y2)− 2k2x + k2 = 0 .

This is the equation of a circle (of Apollonius) with centre at (k2/(k2 − 1), 0) and with radius k(k2 − 1)2.
Thus, the area is maximized when C is located at the point (k2(k2− 1)−1, k(k2− 1)−1). Checking when this
yields an isosceles triangle leads to the two values of k that we have already seen:

√
3 and 1/

√
3

163. Let Ri and ri re the respective circumradius and inradius of triangle AiBiCi (i = 1, 2). Prove that, if
∠C1 = ∠C2 and R1r2 = r1R2, then the two triangles are similar.

Solution. Let Γ be the circumcircle of ∆A1B1C1. Scale ∆A2B2C2 so that A2 = A1 = A, B2 = B1 = A
and C2 and C1 lie on the same side of AB. Then Γ is the circumcircle of ABC2, so that R1 = R2 and
r1 = r2. Using the conventional notation, we have that

(s1 − c1) cot(C1/2) = r1 = r2 = (s2 − c2) cot(C2/2)

whence, as c1 = c2 and C1 = C2, s1 = s2. Therefore a1 + b1 = a2 + b2. Since r1s1 = r2s2, the two triangles
have the same area, so that a1b1 sinC1 = a2b2 sinC2 and thus a1b1 = a2b2. Since the pairs (a1, b1) and
(a2, b2) have the same sum and product, they are roots of the same quadratic equation, and so we must
have that (a1, b1) = (a2, b2) or (a1, b1) = (b2, a2). In either case, the triangles are congruent, so that triangle
A1B1C1 is a scaled version of the original triangle A2B2C2. The result follows.

Comment. There were many variations using various trigonometric identities.

164. Let n be a positive integer and X a set with n distinct elements. Suppose that there are k distinct
subsets of X for which the union of any four contains no more that n−2 elements. Prove that k ≤ 2n−2.

Solution 1. [R. Furmaniak] We may assume that n ≥ 2. We give a proof by contradiction. Suppose the
S is a family of k subsets of X, where k > 2n−2. Let X = {x1, x2, · · · , xn} where the first element is selected
so that x1 belongs to some member of S but not to all. (Why can you do this?) For each i, 1 ≤ i ≤ n− 1,
let Ai be the class of all subsets of {x1, x2, · · · , xi} which are contained in some subset of S, and Bi be the
class of all subsets of {xi+1, · · · , xn} which are contained in some subset of S.

Note that 2n−2 < k ≤ |Ai||Bi|, since each set of S is the union of a set in Ai and a set in Bi. (| · | refers
to the number of elements.) Therefore, either |Ai| > 2i−1 or |Bi| > 2n−i−1. In the former case, Ai must
contain a complementary pair of subsets (use the pigeonhole principle on complementary pairs of sets) of
{x1, · · · , xi}; the the latter, Bi must contain a complementary pair of sets of {xi+1, · · · , xn}.

By our choice of x1, we see that A1 = {∅, x1}, so that |A1| = 2. Therefore there are values of the index
i for which |Ai| > 2i−1. If it turns out that |An−1| > 2n−2, then An−1 contains two sets whose union is
{x1, · · · , xn−1} and so S contains two sets whose union has at least n − 1 elements. In this case, S fails to
satisfy the hypotheses of the problem.
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Suppose that |An−1| ≤ 2n−2. Then select the smallest index k for which |Ak| ≤ 2k−1. Then k ≥ 2 and
|Ak−1| > 2k−2 while |Bk| > 2n−k−1. Therefore, Ak−1 contains two sets whose union is {x1, x2, · · · , xk−1}
and Bk contains two sets whose union is {xk+1, · · · , xn}. We conclude that S must contain four sets whose
union contains the n− 1 elements of X apart from xk, and so S again fails to satisfy the hypothesis of the
problem.

We conclude that any family of more than 2n−2 sets fails so satisfy the hypothesis of the problem, and
so that every family that does satisfy the hypothesis must have at more 2n−2 elements.

Solution 2. Let P be a class of k subsets for which the union of no four contains more than n − 2
elements. Suppose that A1 and A2 are two members for which the cardinality m = |A1 ∪ A2| of the union
of a pair is maximum. Since m < n, we can construct a set Y = A1 ∪ A2 ∪ {y}, where y 6∈ A1 ∪ A2; thus
|Y | = m + 1.

Let Q = {Y ∩ A : A ∈ P}. No two subsets in Q are complementary (i.e. have union equal to Y ), so
that |Q| ≤ 2m. Let Z = X \ Y and R = {Z ∩ A : A ∈ P}. Then |Z| = n − (m + 1) = n − m − 1. We
prove that R has no two sets that are complementary, i.e., whose union is Z. For, otherwise, suppose that
(A3 ∩ Z) ∪ (A4 ∩ Z) = Z, for two sets A3 and A4 in P . Then Z = (A3 ∪A4) ∩ Z, so that

Z ⊆ A3 ∪A4 =⇒ A1 ∪A2 ∪A3 ∪A4 ⊇ (Y ∪ Z) \ {y}

, whence we see that |A1 ∪A2 ∪A3 ∪A4| = n− 1, contrary to hypothesis. Hence |R| ≤ 2n−m−2.

Since each set in P is uniquely determined by its intersections with Y and Z, we have that

k = |P | ≤ |Q||R| ≤ 2m2n−m−2 = 2n − 2 ,

as desired.

Comment. Several solvers pointed out that if you took all the subsets of n−2 of the elements of X, then
we got an “extreme” case of a family of sets that satisfied the hypothesis and the conclusion, and essentially
said that if we tried to stuff in any more sets, we would contradict the hypothesis. However, this begs the
question as to whether you could drop some of these sets and replace than by a larger number of sets while
still keeping the hypothesis.

165. Let n be a positive integer. Determine all n−tples {a1, a2, · · · , an} of positive integers for which a1 +
a2 + · · ·+ an = 2n and there is no subset of them whose sum is equal to n.

Solution 1. Let sk = a1 + a2 + · · · + ak for 1 ≤ k ≤ n, By hypothesis, all of these are incongruent
modulo n. Now let t1 = a2, tk = sk for 2 ≤ k ≤ n. Again, the hypothesis forces all to be incongruent.
Hence the sets {sk} and {tk} both consitute a complete set of residues, modulo n, so it must happen that
s1 ≡ t1 ≡ a1 (mod n). A similar argument can be marshalled when the pair (a1, a2) is replaced by any other
pair of elements. Hence, each of the terms in the set {ai} is congruent to some number m (mod n), where
0 ≤ m ≤ n− 1. Now

mn ≤ a1 + a2 + · · ·+ an = 2n

from which either m = 2, n is odd, and the n-tple is {2, 2, 2, · · · , 2} or else m = 1 and the n-tple is
{1, 1, 1, · · · , 1, n + 1}.

Solution 2. [J.Y. Jin] Wolog, suppose that a1 ≤ a2 ≤ · · · ≤ an. Note that a1 cannot exceed 2. If
a1 = 2, then each ai is equal to 2 and n is odd. Suppose that a1 = 1. Then an ≥ 3. Let sk = a1 + · · ·+ ak

for 1 ≤ k ≤ n. Then sn−1 = 2n − an ≤ 2n − 3. By the hypothesis, we see that the set of the sk with
1 ≤ k ≤ n− 1 contains at most one member from each of the n− 1 sets:

{1, n + 1}, {2, n + 2}, {3, n + 3}, · · · , {n− 3, 2n− 3}, {n− 2}, {n− 1}

so it must contain exactly one from each set. In particular, the values n− 2 and n− 1 are assumed, so that
for some i, si = n− 2 and si+1 = n− 1. Thus ai+1 = 1, and a1 = a2 = · · · = ai+1 = 1. But this means that
i = n− 2, so that an−1 = 1 and an = n + 1.
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Comment. Some of the solvers tried an induction argument. However, the process was faulty, since
they generally started with an n-tple and then tried to build from that an (n + 1)-tple. However, for an
induction argument to work, you need to start with a general (n + 1)-tple that satisfies the condition, and
then indicate how to reduce it to the result for a smaller set.

166. Suppose that f is a real-valued function defined on the reals for which

f(xy) + f(y − x) ≥ f(y + x)

for all real x and y. Prove that f(x) ≥ 0 for all real x.

Solution. Suppose x 6= 1; let y = x(x− 1)−1. Then xy = y + x, so that

f

(
x2 − 2x

1− x

)
= f(y − x) ≥ f(x + y)− f(xy) = 0 .

For each real z, the equation z = (x2 − 2x)(1− x)−1 is equivalent to x2 + (z − 2)x− z = 0. This quadratic
equation (in x) has a discriminant z2 + 4 which is positive and therefore it is solvable for all real z. (Note
that in no case is x = 1 a solution.) Hence f(z) ≥ 0 for all real z.

Comment. O. Bormashenko noted that when 2x =
√

z2 + 4 + 2 − z and 2y =
√

z2 + 4 + 2 + z, then
xy = x + y and y − x = z.

167. Let u = (
√

5− 2)1/3− (
√

5 + 2)1/3 and v = (
√

189− 8)1/3− (
√

189 + 8)1/3. Prove that, for each positive
integer n, un + vn+1 = 0.

Solution. Observe that, if c = a− b, then c3 = a3− b3−3abc, so that c3 +3abc− (a3− b3) = 0. Applying
this to u and v in place of c, we obtain that

0 = u3 + 3u + 4 = (u− 1)(u2 − u + 4) = (u + 1)
[(

u− 1
2

)2

− 15
4

]
and

0 = v3 + 15v + 16 = (v + 1)(v2 − v + 16) = (v + 1)
[(

v − 1
2

)2

− 63
4

]
.

Since the expresseions in square brackets are negative, we must have that u = v = −1, from which the result
follows.

Comment. Some students observed that(√
5± 1
2

)3

=
√

5± 2

and (√
21± 1

2

)3

=
√

189± 8 ,

and this immediately leads to the result.

168. Determine the value of

cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦ .

Preliminary work. Before getting into the solution, we will discuss how to obtain the trigonometric
ratios of certain angles related to 36◦. It is useful for you to know some of these techniques, as these angles
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tend to come up in problems, and to be on the safe side in a contest, you should try to include a justification
for assertions that you make about these angles. Here is one way to evaluate t = cos 36◦. Observe that

t = − cos 144◦ = 1− 2 cos2 72◦

= 1− 2(2t2 − 1)2 = −8t4 + 8t2 − 1

from which we see that

0 = 8t4 − 8t2 + t + 1 = (2t− 1)(t + 1)(4t2 − 2t− 1) .

Since t is equal to neither 1 nor 1
2 , we must have that 4t2 = 2t + 1. Solving this equation will give you an

actual numerical value (can you justify your choice of root?).

A very useful relation is 4 cos 36◦ cos 72◦ = 1. This can be checked geometrically. Let PQS be a triangle
for which ∠P = ∠S = 36◦ and ∠PQS = 108◦. Let R be a point on the side PS for which ∠PQR = 72◦ and
∠SQR = 36◦. Then PQ = PR, PQ = QS and QR = RS; let r be the common length of PQ, PR, QS and
let s be the common length of QR and RS. Then cos 72◦ = s/2r and cos 36◦ = r/2s and the desired result
follows. An algebraic derivation of this result can also be given.

4 cos 36◦ cos 72◦ =
4 sin 36◦ cos 36◦ cos 72◦

sin 36◦

=
2 sin 72◦ cos 72◦

sin 36◦

=
sin 144◦

sin 36◦
= 1 .

We can make use of complex numbers. Let ζ = cos 72◦ + i sin 72◦ so that ζ is a nonreal root of

0 = x5 − 1 = (x− 1)(x4 + x3 + x2 + x + 1) .

Hence 1+ ζ + ζ2 + ζ3 + ζ4 = 0; using de Moivre’s theorem, and taking the real part of this equation, we find
that

1 + cos 72◦ + cos 144◦ + cos 216◦ + cos 288◦ = 1 + 2 cos 72◦ − 2 cos 36◦ = 0 .

(Note that taking the imaginary part yields a triviality.) Another way to look at this result is to note that
the vectors represented by the five roots of unity sum bound a closed regular pentagon and so sum to zero.

Solution 1. Let cos 36◦ = t. Then

cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦

= [cos 5◦ + cos 293◦] + [cos 77◦ + cos 221◦] + cos 149◦

= cos 149◦[2 cos 144◦ + 2 cos 72◦ + 1]
= cos 149◦[−2 cos 36◦ + 2 cos 72◦ + 1] = 0 .

Alternatively, this is seen to be equal to

cos 149◦[−2t + 2(2t2 − 1) + 1] = cos 149◦[−2t + 4t2 − 1] = 0 .

Solution 2. [C. Huang]

cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦

= cos 5◦ + 2 cos 185◦ cos 108◦ + 2 cos 185◦ cos 36◦

= cos 5◦[1 + 2(cos 72◦ − cos 36◦)] = cos 5◦[1− 4 sin 18◦ sin 54◦]
= cos 5◦[1− 4 cos 72◦ cos 36◦] = 0 .
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Comment. There were other solutions with similar manipulations. A quick solution can also be realized
using complex numbers. The given expression is equal to the real part of

(cos θ + i sin θ)(1 + ζ + ζ2 + ζ3 + ζ4) = 0 ,

where ζ is an imaginary fifth root of unity and θ is the angle whose degree measure is 5◦.

169. Prove that, for each positive integer n exceeding 1,

1
2n

+
1

21/n
< 1 .

Solution 1. For positive integer n > 1 and −1 < x, x 6= 0, we have that (1+x)n > 1+nx (use induction).
Hence, for n ≥ 2, (

1− 1
2n

)n

> 1− n

2n
≥ 1

2
.

(The latter inequality is left as an an easy induction exercise.) Hence

1− 1
2n

>
1

21/n

and the result follows.

Solution 2. [R. Furmaniak] By the arithmetic-geometric means inequality, we have that

1− 1
2n

=
1
2
· 1 +

1
4
· 1 + · · ·+ 1

2n−1
· 1 +

1
2n−1

· 1
2

>

(
1
2

)1/(2n−1)

.

Now, 2n−1 = 1 + 1 + 2 + · · ·+ 2n−2 ≤ 1 + 1 + 1 + · · ·+ 1 = n, so that 1/(2n−1) < 1/n and (1/2)1/(2n−1) >
(1/2)1/n = 1/(21/n). The result follows.

Solution 3. [S. Wong] By the arithmetic-geometric means inequality

1
21/n

=
(

1
2
· 1 · 1 · · · 1

)1/n

<
n− 1 + 1

2

n
= 1− 1

2n

=⇒ 1
2n

+
1

21/n
< 1 +

1
2n

− 1
2n

.

When n = 2, 2n = 2n, while if n ≥ 3,

2n = (1 + 1)n = 1 + n + · · ·+
(

n

n− 1

)
+ 1 > 2n

The desired inequality follows.

170. Solve, for real x,

x · 21/x +
1
x
· 2x = 4 .

Solution 1. If x < 0, the left side is negative and so there is no negative value of x which satisfies the
equation. If x = 0, then the left side is undefined. Suppose that x > 0. Then by the arithmetic-geometric
means inequality, we have that

4 = x · 21/x +
1
x
· 2x ≥ 2

√
2(1/x)+x ≥ 2

√
22 = 4 ,
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since (1/x)+x ≥ 2. Since the outside members of this inequality are equal, we must have equality everywhere,
and this occurs if and only if x = 1. Hence, x = 1 is the sole solution of the equation.

Solution 2. As before, we see that x must be positive. The equation is equivalent to

0 = x221/x − 4x + 2x

= (x · 21/(2x) − 2 · 2−1/(2x))2 − (4 · 2−(1/x) − 2x) .

Since the first member of the right side is nonnegative, we must have that 4 · 2−1/x ≥ 2x, which is equivalent
to 4 ≥ 2x+(1/x) or x + (1/x) ≤ 2. But the last can occur if and only if x = 1. Indeed, x = 1 satisfies the
equation.

171. Let n be a positive integer. In a round-robin match, n teams compete and each pair of teams plays
exactly one game. At the end of the match, the ith team has xi wins and yi losses. There are no ties.
Prove that

x2
1 + x2

2 + · · ·+ x2
n = y2

1 + y2
2 + · · ·+ y2

n .

Solution 1. Each game results in both a win and a loss, so the total number of wins is equal to the total
number of losses. Thus

∑
xi =

∑
yi. For each team, the total number of its wins and losses is equal to the

number of games it plays. Thus xi + yi = n− 1 for each i. Accordingly,

0 = (n− 1)
n∑

i=1

(xi − yi) =
n∑

i=1

(xi + yi)(xi − yi) =
n∑

i=1

(x2
i − y2

i )

from which the desired result follows.

Solution 2. Since xi +yi = n−1 for each i and x1 +x2 + · · ·+xn = y1 +y2 + · · ·+yn =
(
n
2

)
(the number

of games played), we find that

n∑
i=1

x2
i =

n∑
i=1

[(n− 1)− yi]2

=
n∑

i=1

y2
i − 2(n− 1)

n∑
i=1

yi +
n∑

i=1

(n− 1)2

=
n∑

i=1

y2
i − n(n− 1)2 − n(n− 1)2 =

n∑
i=1

y2
i .

Solution 3. [J. Zhao] Consider the special case where team i vanquishes team j if and only if i < j. The
the sum of the squares of the xi and the sum of the squares of the yi are both equal to 12 +22 + · · ·+(n−1)2.
The general situation can be obtained from this special case by a finite sequence of switches of outcomes of
single games. Suppose that we know for some configuration of results that x2

1 + · · · + x2
n = y2

1 + · · · + y2
n.

Then if the results of the (i, j)th game are swtiched, so that, say, team i wins xi + 1 and loses yi − 1 games
and team j wins xj − 1 and loses yj + 1 games, then, since xi − xj = (n− 1− yi)− (n− 1− yj) = yj − yi,

x2
1 + · · ·+ (xi + 1)2 + · · ·+ (xj − 1)2 + · · ·+ x2

n

= (x2
1 + · · ·+ x2

n) + 2(xi − xj) + 2

= (y2
1 + · · ·+ y2

n) + 2(yj − yi) + 2

= y2
1 + · · ·+ (yi − 1)2 + · · ·+ (yj + 1)2 + · · ·+ y2

n .

The result now follows by induction on the number of switches required to obtain the general case from the
special case.
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172. Let a, b, c, d. e, f be different integers. Prove that

(a− b)2 + (b− c)2 + (c− d)2 + (d− e)2 + (e− f)2 + (f − a)2 ≥ 18 .

Solution 1. Since the sum of the differences is 0, an even number, there must be an even number of odd
differences, and therefore an even number of odd squares. If the sum of the squares is less than 18, then
this sum must be one of the numbers 6, 8, 10, 12, 14, 16. The only possibilities for expressing any of these
numbers as the sum of six nonzero squares is

6 = 12 + 12 + 12 + 12 + 12 + 12

12 = 22 + 22 + 12 + 12 + 12 + 12

14 = 33 + 12 + 12 + 12 + 12 + 12 .

Taking note that the sum of the differences is zero, the possible sets of differences (up to order and sign)
are {1, 1, 1,−1,−1,−1}, {3, 1,−1,−1,−1,−1}, {2, 2,−1,−1,−1,−1}. Since the numbers are distinct, the
difference between the largest and smallest is at least 5. This difference must be the sum of differences
between adjacent numbers; but checking proves that in each case, an addition of adjacent differences must
be less than 5. Hence, it is not possible to achieve a sum of squares less than 18. The sum 18 can be found
with the set {0, 1, 3, 5, 4, 2}.

Solution 2. [A. Critch] We prove a more general result. Let n be a positive integer exceeding 1. Let
(t1, t2, · · · , tn−1, tn) be an n−tple of distinct integers, and suppose that the smallest of these is tn. Define
t0 = tn, and wolog suppose that t0 = tn = 0. Suppose that, for 1 ≤ i ≤ n, si = |ti − ti−1|. Let the largest
integer be tr; since the integers are distinct, we must have

n− 1 ≤ tr = tr − t0 = |tr − t0|
≤ |t1 − t0|+ · · ·+ |tr − tr−1|
= s1 + s2 + · · ·+ sr

and
n− 1 ≤ tr − t0 = |tn − tr|

≤ |tr+1 − tr|+ · · ·+ |tn − tn−1| = sr+1 + · · ·+ sn .

Hence.
s1 + s2 + · · ·+ sn ≥ 2n− 2 .

By the root-mean-square, arithmetic mean (RMS-AM) inequality, we have that(
s2
1 + s2

2 + · · ·+ s2
n

n

)1/2

≥ s1 + s2 + · · ·+ sn

n
≥ 2n− 2

n
,

so that

s2
1 + s2

2 + · · ·+ s2
n ≥

4n2 − 8n + 4
n

= 4n− 8 +
4
n

.

Thus,
n∑

i=1

s2
i ≥ 4n− 8 + d4/ne .

Since the sum of the differences of consecutive ti is zero, and so even, the sum of the squares is even. Since
4n− 8 is even and n ≥ 2, and since the sum exceeds 4n− 8, we see that

n∑
i=1

s2
i ≥ 4n− 8 + 2 = 4n− 6 .
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How can this lower bound be achieved? Since it is equal to 22(n − 1) + 12 + 12, we can have n − 2
differences equal to 2 and 2 differences equal to 1. Thus, we can start by going up the odd integers, and
then come down via the even integers to 0. In the case of n = 6, this yields the 6−tple (1, 3, 5, 4, 2, 0).

Solution 3. [R. Barrington Leigh] Let a and m be the minimum and the maximum of the numbers
a, b, c, d, e, f . Since the six numbers are distinct, m− a ≥ 5. Thus,

10 ≤ 2(m− a) = |a−m|+ |m− a| ≤ |a− b|+ |b− c|+ · · ·+ |f − a| .

Observe that, for every integer t, we have that t2 − 3t + 2 = (t− 2)(t− 1) ≥ 0, with equality if and only if
t = 1 or t = 2. It follows that

(a− b)2 + (b− c)2 + (c− d)2 + (d− e)2 + (e− f)2 + (f − a)2

≥ (3|a− b| − 2) + (3|b− c| − 2) + (3|c− d| − 2) + (3|d− e| − 2)+
(3|e− f | − 2) + (3|f − a| − 2)

= 3(|a− b|+ |b− c|+ · · ·+ |f − a|)− 12 ≥ 30− 12 = 18 ,

with equality if and only if all consecutive pairs differ by 1 or 2. This can actually occur, with (a, b, c, d, e, f) =
(0, 1, 3, 5, 4, 2).

Solution 4. [M. Guay-Paquet] Since we want the sum to be as small as possible, we can assume that the
integers are consecutive and that the smallest one is 0. For each positive integer n, let f(n) be the smallest
sum

∑n−1
i=0 (ai+1−ai)2 (with an = a0), where the (a0, · · · , an−1) is a permutation of (0, 1, · · · , n−1). Suppose

that (a0, a1, · · · , am) is a finite sequence that realizes the sum f(m + 1) and that aj = m. Then

f(m) ≤ (a1 − a0)2 + · · ·+ (aj−1 − aj−2)2 + (aj+1 − aj−1)2 + · · ·+ (a0 − am)2

=
m∑

i=0

(ai+1 − ai)2 + [(aj+1 − aj−1)2 − (n− aj−1)2 − (aj+1 − n)2]

= f(m + 1)− 2[(n− aj−1)(n− aj+1)] ≤ f(m + 1)− 4 ,

since one of n−aj−1 and n−aj+1 is at least 1 and the other at least 2. Hence f(m+1) ≥ f(m)+4 for every
postive integer n ≥ 2. In particular, f(6) ≥ f(5) + 4 ≥ f(4) + 8 ≥ f(3) + 12 ≥ f(2) + 16. Since, f(2) = 2,
the result follows. Note that equality can occur as in the previous solutions.

Solution 5. Suppose that we have selected six distinct integers for which the sum of the squares is
minimum. Wolog, we may assume that the consecutive integers 0, 1, 2, 3, 4, 5 are involved, that a = 0 and
b < f . [If the integers are not consecutive, we can subtract from the larger integers to fill in the gaps and
decrease the differences. Since only differences are involved, we may assume that the smallest number is
0. If b > f , we can reverse the order of the numbers to get the same sum of squares.] Since the case
(a, b, c, d, e, f) = (0, 1, 3, 5, 4, 2) yields a square sum of 18, we need only consider choices that yield sums at
most equal to 18. Thus, we can exclude cases where any consecutive pair differ by at least 4, or at least two
consecutive pairs differ by at least 3. Thus, both b and f cannot exceed 3. Now we examine cases:

Suppose that f = 3. If b = 2, then one of c, d, e is equal to 1 and the other two equal to 4 and
5; all possibilities yield, along with (f, a) a second pair of consecutive numbers with difference at least 3.
Thus, we must have b = 1. Since f − a = 3, we must have c − b ≤ 2, so that c = 2 and d = 4. Thus,
(a, b, c, d, e, f) = (0, 1, 2, 4, 5, 3), which yields a square sum of 20.

The only remaining possibility is that b = 1 and f = 2. Then c is equal to either 3 or 4, and we have
the possibilities (a, b, c, d, e, f) = (0, 1, 3, 4, 5, 2), (0, 1, 3, 5, 4, 2), (0, 1, 4, 3, 5, 2), (0, 1, 4, 5, 3, 2), yielding the
respective square sums 20, 18, 28, 20. Hence the minimum possible square sum is 18.

173. Suppose that a and b are positive real numbers for which a + b = 1. Prove that(
a +

1
a

)2

+
(

b +
1
b

)2

≥ 25
2

.
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Determine when equality holds.

Remark. Before starting, we note that when a + b = 1, a, b > 0, then ab ≤ 1
4 . This is an immediate

consequence of the arithmetic-geometric means inequality.

Solution 1. By the root-mean-square, arithmetic mean inequality, we have that

1
2

[(
a +

1
a

)2

+
(

b +
1
b

)2]
≥ 1

4

[(
a +

1
a

)
+

(
b +

1
b

)]2

=
1
4

(
1 +

1
a

+
1
b

)2

=
1
4

(
1 +

1
ab

)2

≥ 1
4
· 52

as desired.

Solution 2. By the RMS-AM inequality and the harmonic-arithmetic means inequality, we have that

a2 + b2 + (1/a)2 + (1/b)2 ≥ 1
2
(a + b)2 +

1
2

(
1
a

+
1
b

)2

=
1
2

+ 2
[
(1/a) + (1/b)

2

]2

≥ 1
2

+ 2 · 4
(a + b)2

=
17
2

,

from which the result follows.

Solution 3. (
a +

1
a

)2

+
(

b +
1
b

)2

= a2 + b2 +
a2 + b2

a2b2
+ 4

= (a + b)2 − 2ab +
(a + b)2 − 2ab

a2b2
+ 4

= 5− 2ab +
1

(ab)2
− 2

ab

= 4− 2ab +
(

1
ab
− 1

)2

≥ 4− 2
(

1
4

)
+ (4− 1)3 =

25
2

.

Comment. The left side can also be manipulated to (1−2ab)(1+(ab)−2)+4 ≥ (1− 1
2 )(1+42)+4 = 25/2.

Solution 4. [F. Feng] From the Cauchy-Schwarz and arithmetic-geometric means inequalities, we find
that [(

a +
1
a

)2

+
(

b +
1
b

)2]
[12 + 12]

=
[(

a +
1
a

)2

+
(

b +
1
b

)2]
[(a + b)2 + (a + b)2]

≥
[(

a +
1
a

)
(a + b) +

(
b +

1
b

)
(a + b)

]2

=
[
(a + b)2 + 2 +

(
a

b
+

b

a

)]2

≥ [1 + 2 + 2]2 = 25 .

The desired result follows.
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Solution 5. [K. Kawaji] First, we note that the Cauchy-Schwarz Inequality applied to the vectors
(ui/

√
vi) and (

√
vi) yields the result

m∑
i=1

u2
i

vi
≥

(
∑m

i=1 ui)2∑m
i=1 vi

.

This will be employed several times in the following.

(
a +

1
a

)2

+
(

b +
1
b

)2

≥ (a + (1/a) + b + (1/b))2

1 + 1
=

1
2

(
1 +

1
a

+
1
b

)2

=
1
2

[
1 + 2

(
1
a

+
1
b

)
+

(
1
a2

+
1
ab

+
1
ab

+
1
b2

)]
≥ 1

2

[
1 + 2

(
4

a + b

)
+

(
42

(a + b)2

)]
=

1
2
[1 + 8 + 16] =

25
2

,

with equality if and only if a = b = 2.

174. For which real value of x is the function

(1− x)5(1 + x)(1 + 2x)2

maximum? Determine its maximum value.

Solution 1. The function assumes negative values when x < −1 and x > 1. Accordingly, we need only
consider its values on the interval [−1, 1]. Suppose, first, that −1/2 ≤ x ≤ 1, in which case all factors of the
function are nonnegative. Then we can note, by the arithmetic-geometric means inequality, that

(1− x)5(1 + x)(1 + 2x) ≤ [(5/8)(1− x) + (1/8)(1 + x) + (2/8)(1 + 2x)]8 = 1

with equality if and only if x = 0. Thus, on the interval [−1/2, 1], the function takes its maximum value of
1 when x = 0.

We adopt the same strategy to consider the situation when −1 ≤ x ≤ −1/2. For convenience, let
u = −x, so that the want to maximize

(1 + u)5(1− u)(2u− 1)2

for 1/2 ≤ u ≤ 1. In fact, we are going to maximize

[α(1 + u)]5[β(1− u)][γ(2u− 1)]2

where α, β and γ are positive integers to be chosen to make 5α− β + 4γ = 0 (so that when we calculate the
airthmetic mean of the eight factors, the coefficient of u will vanish), and α(1 + u) = β(1− u) = γ(2u− 1)
(so that we can actually find a case where equality will occur). The latter conditions forces

β − α

β + α
=

β + γ

2γ + β

or βγ = 3αγ + 2αβ. Plugging β = 5α + 4γ into this yields that

0 = 2(3αγ + 5α2 − 2γ2) = 2(5α− 2γ)(α + γ) .

Thus, let us take (α, β, γ) = (2, 30, 5). Then, by the arithmetic-geometric means inequality, we obtain that

[2(1 + u)]5/8[30(1− u)]1/8[5(2u− 1)]1/4

≤ 5
4
(1 + u) +

15
4

(1− u) +
5
4
(2u− 1) =

15
4

,
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with equality if and only if 2(1 + u) = 30(1− u) = 5(2u− 1), i.e., u = 7/8. Hence,

(1− x)5(1 + x)(1 + 2x)5 = (1 + u)5(1− u)(1− 2u)2

≤
(

15
8

)8

2−5/830−15−2

=
37 × 55

222
=

(
15
16

)5(9
4

)
,

with equality if and only if x = −7/8.

It remains to show whether the value of the function when x = −7/8 exceeds its value when x = 0.
Recall the Bernoulli inequality: (1 + x)n > 1 + nx for −1 < x, x 6= 0 and positive integer n. This can be
established by induction (do it!). Using this, we find that(

15
16

)5(9
4

)
>

(
1− 5

16

)
× 2 =

22
16

> 1 .

Thus, the function assumes its maximum value of 37 × 55 × 2−22 when x = −7/8.

Solution 2. Let f(x) = (1−x)5(1+x)(1+2x)2. Then f ′(x) = −2(1−x)4(1+2x)x(7+8x). We see that
f ′(x) > 0 if and only if x < −7/8 or −1/2 < x < 0. Hence f(x) has relative maxima only when x = −7/8
and x = 0. Checking these two candidates tells us that the absolute maximum of 37×55×2−22 occurs when
x = −7/8.

Comments.In checking for the maximum, one must be careful to exclude the possibility that the function
might become positively unbounded at x → ±∞. This can be done either by noting that the leading
coefficients is negative while the degree is positive, or by analyzing the sign of the first derivative. O.
Bormashenko made the interesting observation that, for −1/2 ≤ x < 1 and x 6= 0,

f(x2) = (1− x2)5(1 + x2)(1 + 2x2)2

= (1 + x)5(1− x)5(1 + x2)(1 + 2x2)2

> (1 + 2x + x2)2(1 + x)(1− x)5 · 1 · 1
> (1 + 2x)2(1− x)5(1 + x) = f(x) ,

from which we see that the maximum on [−1/2, 1] can occur only at x = 0.

175. ABC is a triangle such that AB < AC. The point D is the midpoint of the arc with endpoints B and
C of that arc of the circumcircle of ∆ABC that contains A. The foot of the perpendicular from D to
AC is E. Prove that AB + AE = EC.

Solution 1. Draw a line through D parallel to AC that intersects the circumcircle again at F . Let G be
the foot of the perpendicular from F to AC. Then DEGF is a rectangle. Since arc BD is equal to arc DC,
and since arc AD is equal to arc FC (why?), arc BA is equal to arc DF . Therefore the chords of these arcs
are equal, so that AB = DF = EG. Hence AB + AE = EG + GC = EC.

Solution 2. Note that the length of the shorter arc AD is less than the length of the shorter arc DC.
Locate a point H on the chord AC so that AD = HD. Consider triangles ABD and HCD. We have
that AD = DH, BD = CD and ∠ABD = ∠HCD. This is a case of SSA congruence, the ambiguous
case. Since angles BAD and DHC are both obtuse (why?), they must be equal rather the supplementary,
and the triangles ABD and HCD are congruent. (Congruence can also be established using the Law of
Sines.) In particular, AB = HC. Since triangle ADH is isosceles, E is the midpoint of AH, so that
AB + AE = HC + EH = EC.

Solution 3. Let DM be a diameter of the circumcircle, so that M is the midpoint of one of the arcs
BC. Let H be that point on the chord AC for which DA = DH and let DH be produced to meet the circle
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again in K. Since ∠MAD = ∠DEA = 90◦, it follows that ∠MAC = 90◦ − ∠EAD = ∠ADE. Since AM
and DE are both angle bisectors, ∠BAC = ∠ADH.

Because ADCK is concyclic, triangles ADH and KCH are similar, so that HC = CK. From the
equality of angles BAC and ACK, we deduce the equality of the arcs BAC and ACK, and so the equality
of the arcs BA and CK. Hence AB = CK = HC. Therefore AB + AE = HC + EH = EC.

Solution 4. [R. Shapiro] Since A lies on the short arc BD, ∠BAD is obtuse. Hence the foot of the
perpendicular from D to BA produced is outside of the circumcircle of triangle ABC. In triangles KBD
and ECD, ∠BKD = ∠DEC = 90◦, ∠KBD = ∠ABD = ∠ACD and BD = CD. Hence the triangles KBD
and ECD are congruent, so that DK = DE and BK = EC. Since the triangle ADK and ADE are right
with a common hypotenuse AD and equal legs DK and DE, they are congruent and AK = AE. Hence
EC = BK = BA + AK = BA + AE, as desired.

Solution 5. [F. Wang] Produce BA to P so that AP = AB. Since BADC is concyclic, ∠BDC =
∠BAC = ∠BPA + ∠BAP = 2∠BPC. In the circumcircle of ∆BPC, D is a point on the right bisector of
BC at which BC subtends an angle double that at the circumference (at P ). Hence D is the centre of the
circumcircle of BPC. Therefore, the perpendicular DE to AC must bisect the chord PC, and we find that
EC = EP = AE + AP = AE + AB, as desired.

176. Three noncollinear points A, M and N are given in the plane. Construct the square such that one of
its vertices is the point A, and the two sides which do not contain this vertex are on the lines through
M and N respectively. [Note: In such a problem, your solution should consist of a description of the
construction (with straightedge and compasses) and a proof in correct logical order proceeding from
what is given to what is desired that the construction is valid. You should deal with the feasibility of
the construction.]

Solution 1. Construction. Draw the circle with diameter MN and centre O. This circle must contain
the point C, as MC and NC are to be perpendicular. Let the right bisector of MN meet the circle in K
and L. Join AK and, if necessary, produce it to meet the circle at C. Now draw the circle with diameter
AC and let it meet the right bisector of AC at B and D. Then ABCD is the required rectangle. There are
two options, depending how we label the right bisector KL.

However, the construction does not work if A actually lies on the circle with diameter MN . In this case,
A and C would coincide and the situation degenerates. If A lies on the right bisector of MN , then C can
be the other point where the right bisector intersects the circle, and M and N can be the other two vertices
of the square. If A is not on the right bisector, then there is no square; all of the points A, M , C, N would
have to be on the circle, and AM and AN would have to subtend angles of 45◦ at C, which is not possible.

Proof. If C and O are on the same side of KN , then ∠KCN = 1
2∠KON = 45◦, so that CN makes an

angle of 45◦ with AC produced, and so CN produced contains a side of the square. Similarly, CM produced
contains a side of the square. If C and O are on opposite sides of KN , then ∠KCN = 135◦, and CN still
makes an angle of 45◦ with AC produced; the argument can be completed as before.

Solution 2. Construction. Construct circle of diameter MN . Draw AM = MR (with the segment
MR intersecting the interior of the circle) and AM ⊥ MR. Construct the circle AMR. Let this circle
intersect the given circle at C. Then construct the square with diagonal AC. If A lies on the circle, then
the candidates for C are A and M . We cannot take C = A, as the situation degererates; if we take C = M ,
then the angle ACM and segment CM degenerate. We can complete the analysis as in the first solution.

Proof. Since ∆ARM is right isosceles, ∠ARM = 45◦. Hence the circle is the locus of points at which
AM subtends an angle equal to 45◦ or 135◦. Hence the lines AC and CM intersect at an angle of 45◦.
Since ∠MCN = 90◦, the lines AC and CN also intersect at 45◦. It follows that the remaining points on the
square with diagonal AC must lie on the lines CM and CN .
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177. Let a1, a2, · · ·, an be nonnegative integers such that, whenever 1 ≤ i, 1 ≤ j, i + j ≤ n, then

ai + aj ≤ ai+j ≤ ai + aj + 1 .

(a) Give an example of such a sequence which is not an arithmetic progression.

(b) Prove that there exists a real number x such that ak = bkxc for 1 ≤ k ≤ n.

(a) Solution. [R. Marinov] For positive integers n, let an = k − 1 when n = 2k and an = k when
n = 2k + 1, so that the sequence is {0, 1, 1, 2, 2, 3, 3, · · ·}. Observe that

a(2p+1)+(2q+1) = a2(p+q+1) = p + q = a2p+1 + a2q+1

a2p+2q = a2(p+q) = p + q − 1 = (p− 1) + (q − 1) + 1 = a2p + a2q + 1

and
a2p+(2q+1) = a2(p+q)+1 = p + q = (p− 1) + q + 1 = a2p + a2q+1

for positive integers p and q, whence we see that this sequence satisfies the condition. The corresponding
value of x is 1/2.

Solution 1. [A. Critch] The assertion to be proved is that all the semi-closed intervals [ak/k, ak+1/k)
have a point in common. Suppose, if possible, that this fails. Then there must be a pair (p, q) of necessarily
distinct integers for which aq/q ≥ (ap + 1)/p. This is equivalent to paq ≥ qap + q. Suppose that the sum of
these two indices is as small as possible.

Suppose that p > q, so that p = q + r for some positive r. Then

(q + r)aq ≥ qap + q = qaq+r + q ≥ qaq + qar + q

whence raq ≥ qar + q and aq/q ≥ (ar + 1)/r. Thus p and r have the property of p and q and we get a
contradiction of the minimality condition.

Suppose that p < q, so that q = p + s for some positive s. Then

p + pap + pas ≥ pap+s ≥ (p + s)ap + q = pap + sap + q

so that p + pas ≥ sap + q > sap + p + s, pas ≥ sap + s and as/s ≥ (ap + 1)/p, once again contradicting the
minimality condition.

Solution 2. [O. Bormashenko] Define a0 = 0. Let k be selected so that ai/i ≤ ak/k for 1 ≤ i ≤ n, with
strict inequality for i < k. This is equaivalent to kai ≤ iak. We wish to prove that

ai ≤
iak

k
< ai + 1 ,

from which we see that a = ak/k will satisfy the requirement.

Suppose that i < k, so that k = ir + s for 0 ≤ s < i. Repeated application of the given condition yields
that

ak ≤ air + as + 1 ≤ ai + ai(r−1) + as + 2 ≤ · · · ≤ rai + as + r

< rai + (s/k)ak + r = rai + (1− (ir/k))ak + r ,

whence (ir/k)ak < rai + r, so that iak/k < ai + 1.

Suppose that k < i, so that i = ku + v for 0 ≤ v < k. Then

ai ≥ ak + ai−k ≥ ak + ak + ai−2k ≥ · · · ≥ uak + av

> uak + (v/k)ak − 1 = (i/k)ak − 1 ,
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so that ai + 1 > (i/k)ak, as desired. The result follows.

178. Suppose that n is a positive integer and that x1, x2, · · · , xn are positive real numbers such that x1 +
x2 + · · ·+ xn = n. Prove that

n∑
i=1

n
√

axi + b ≤ a + b + n− 1

for every pair a, b of real numbers with each axi + b nonnegative. Describe the situation when equality
occurs.

Solution. Regarding axi + b as a product with n − 1 ones, we use the arithmetic-geometric means
inequality to obtain that

n
√

axi + b ≤ (axi + b) + 1 + · · ·+ 1
n

for 1 ≤ i ≤ n, with equality if and only if xi = (1−b)/a. Adding these n inequalities yields the desired result.
Since the sum of the xi is equal to n, the condition for equality is that xi = 1 (1 ≤ i ≤ n) and a + b = 1.

179. Determine the units digit of the numbers a2, b2 and ab (in base 10 numeration), where

a = 22002 + 32002 + 42002 + 52002

and
b = 31 + 32 + 33 + · · ·+ 32002 .

Solution. Observe that, for positive integer k, 24k ≡ 6 and 34k ≡ 1, modulo 10, so that 22002 ≡ 6 · 4 ≡ 4,
32002 ≡ 9 and 42002 ≡ 6, modulo 10. Hence a ≡ 4 + 9 + 6 + 5 ≡ 4 and a2 ≡ 6, modulo 10. Note that
b = (1/2)(32003 − 3), and that 32003 − 3 ≡ 7− 3 = 4, modulo 10. Since b is the sum of evenly many factors,
it is even, and so b ≡ 2 and b2 ≡ 4, modulo 10. Finally, ab ≡ 4 · 2 = 8, modulo 10. Hence the units digits of
a2, b2 and ab are respectively 6, 4 and 8.

180. Consider the function f that takes the set of complex numbers into itself defined by f(z) = 3z + |z|.
Prove that f is a bijection and find its inverse.

Solution 1. Injection (one-one). Suppose that z = x + yi and w = u + vi, and that f(z) = f(w). Then

3x + 3yi +
√

x2 + y2 = 3u + 3vi +
√

u2 + v2 .

Equating imaginary parts yields that y = v, so that

3(x− u) =
√

u2 + y2 −
√

x2 + y2 = (u2 − x2)/(
√

u2 + y2 +
√

x2 + y2) .

Suppose, if possible, that u 6= x. Then

3(
√

x2 + y2 + x) = −[3(
√

u2 + y2 + u] .

Since
√

x2 + y2 ≥ |x|, and
√

u2 + y2 ≥ |u|, we see that, unless x = y = u = v = 0, this equation is impossible
as the left side is positive and the right is negative Thus, x = u.

Surjection (onto). Let a + bi be an arbitrary complex number, and suppose that f(x + yi) = a + bi. It
is straightforward to see that f(z) = 0 implies that z = 0, so we may assume that a2 + b2 > 0. We must
have that

3x +
√

x2 + y2 = a

and
3y = b .
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Substituting y = b/3 into the first equation yields√
9x2 + b2 = 3a− 9x .

For this equation to be solvable, it is necessary that 3x ≤ a. Squaring both sides of the equation leads to

72x2 − 54ax + 9a2 − b2 = 0 .

When x = a/3 is substituted into the left side of the equation, we obtain 8a2−18a2+9a2−b2 = −(a2+b2) < 0.
This means that the two roots of the equation straddle a/3, so that exactly one of the roots satisfies the
necessary condition 3x ≤ a. Hence, we must have

(x, y) =
(

9a−
√

9a2 + 8b2

24
,
b

3

)
.

Thus, the function is injective and surjective, and so it is a bijection.

Solution 2. [R. Barrington Leigh] We have that

f(x + yi) = (3x +
√

x2 + y2) + 3yi

for all real pairs (x, y). For each real pair (x, y), let

g(x, y) =
3x−

√
x2 + (8y2/9)

8
+

1
3
yi .

Then

f(g(x + yi)) =
1
8

(
9x−

√
9x2 + 8y2 +

√
9x2 + 8y2 − 2x

√
9x2 + 8y2 + x2

)
+ yi

=
1
8
[(9x−

√
9x2 + 8y2) + (

√
9x2 + 8y2 − x)] + yi = x + yi ,

and

g(f(x, y)) =
1
8

(
9x + 3

√
x2 + y2 −

√
9x2 + 9y2 + 6x

√
x2 + y2 + x2

)
+ yi

=
1
8
[(9x + 3

√
x2 + y2)− (3

√
x2 + y2 + x)] + yi = x + yi .

Hence, g is the inverse of f , so that f(u) = f(v) ⇔ u = g(f(u)) = g(f(v)) = v and f(z) = w is satisfied by
z = g(w). The result follows.

181. Consider a regular polygon with n sides, each of length a, and an interior point located at distances a1,
a2, · · ·, an from the sides. Prove that

a

n∑
i=1

1
ai

> 2π .

Solution 1. By constructing triangles from bases along the sides of the polygons to the point A, we see
that the area of the polygon is equal to

aa1

2
+

aa2

2
+ · · ·+ aan

2
=

a

2

n∑
i=1

ai .

However, by constructing triangles whose bases are the sides of the polygons and whose apexes are at the
centre of the polygon, we see that the area of the polygon is equal to 1

4na2 cot(π/n). Making use of the
arithmetic-harmonic means inequality, we find that

a

2
cot

π

n
=

1
n

n∑
i=1

ai ≥
n∑n

i=1 1/ai
,
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from which
n∑

i=1

1
ai
≥ 2n · tan(π/n)

a
.

Since tanx > x for 0 < x < π/2, we have that tan(π/n) > (π/n), we obtain that

n∑
i=1

1
ai

>
2π

a
.

Solution 2. Let r be the radius of the inscribed circle of the polygon. Then the area of the polygon is
equal to both (a/2)

∑n
i=1 ai and na/2. Hence

1
n

n∑
i=1

ai = r .

By the harmonic-arithmetic means inequality

n

( n∑
i=1

a−1
i

)−1

≤ 1
n

n∑
i=1

ai .

Since the perimeter of the polygon exceeds that of its inscribed circle, 2πr < na. Putting these three facts
together yields the result.

Solution 3. [O. Ivrii] Let S be the area and P the perimeter of the polygon; observe that 2S = Pr,
where r is the inradius of the polygon. Then a

∑n
i=1 ai = 2S, so that, by the Cauchy-Schwarz Inequality,

2S

a

n∑
i=1

1
ai

=
n∑

i=1

ai

n∑
i=1

1
ai
≥ n2

and so

a

n∑
i=1

1
ai
≥ a2n2

2S
=

P 2

2S
=

P

r
> 2π ,

from which the result follows.

182. Let M be an interior point of the equilateral triangle ABC with each side of unit length. Prove that

MA.MB + MB.MC + MC.MA ≥ 1 .

Solution. Let the respective lengths of MA, MB and MC be x, y and z, and let the respective angles
BMC, CMA and AMB be α, β and γ. Then α + β + γ = 2π. Now

cos α + cos β + cos γ = 2 cos
α + β

2
cos

α− β

2
+ 2 cos2

γ

2
− 1

= −2 cos
γ

2
cos

α− β

2
+ 2 cos2

γ

2
− 1

=
1
2

[
2 cos

γ

2
− cos

α− β

2

]2

+
1
2

sin2 α− β

2
− 3

2
≥ −3

2
.

From the Law of Cosines applied to the triangles MBC, MCA and MAB, we convert this equation to

y2 + z2 − 1
2yz

+
x2 + z2 − 1

2xz
+

y2 + x2 − 1
2xy

≥ −3
2

.
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This simplifies to (x + y + z)(xy + xz + yz)− (x + y + z) ≥ 0. Since x + y + z 6= 0, the result follows.

Comment. Ali Feiz Mohammadi noted that the more general result

PA · PB

CA · CB
+

PA · PC

BA ·BC
+

PB · PC

AB ·AC
≥ 1

holds for any triangle ABC and any interior point P . This can be obtained by using vectors with the origin
at the point P , the Cauchy Inequality and the identity

ab

(c− a)(c− b)
+

ac

(b− a)(c− a)
+

bc

(b− a)(a− c)
= 1 .

To obtain this identity, note that the polynomial

(x− a)(x− b)
(c− a)(c− b)

+
(x− a)(x− c)
(b− a)(b− c)

+
(x− b)(x− c)
(a− b)(a− c)

is a polynomial of degree not exceeding 2 that takes the value 1 at x = a, b, c. But this makes is identically
equal to the constant polynomial 1. Equating constant coefficients gives the desired result.

183. Simplify the expression √
1 +

√
1− x2((1 + x)

√
1 + x− (1− x)

√
1− x)

x(2 +
√

1− x2)
,

where 0 < |x| < 1.

Solution. Observe that

√
1 +

√
1− x2 =

√
1 + x + 2

√
1− x2 + 1− x

2

=

√
(
√

1 + x +
√

1− x)2

2

=
√

1 + x +
√

1− x√
2

.

Then, using the formula a3 − b3 = (a− b)(a2 + ab + b2), we find that the expression given in the problem is
equal to

(
√

1 + x +
√

1− x)(
√

1 + x
3 −

√
1− x

3
)

x
√

2(2 +
√

1− x2)

=
(
√

1 + x +
√

1− x)(
√

1 + x−
√

1− x)(1 + x +
√

1− x2 + 1− x)
x
√

2(2 +
√

1− x2)

=
(1 + x− 1 + x)(2 +

√
1− x2)

x
√

2(2 +
√

1− x2)

=
2x

x
√

2
=
√

2 .

184. Using complex numbers, or otherwise, evaluate

sin 10◦ sin 50◦ sin 70◦ .
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Solution 1. Let z = cos 20◦ + i sin 20◦, so that 1/z = cos 20◦− i sin 20◦. Then, by De Moivre’s Theorem,
z9 = −1. Now,

sin 70◦ = cos 20◦ =
1
2
(z +

1
z
) =

z2 + 1
2z

,

sin 50◦ = cos 40◦ =
1
2
(z2 +

1
z2

) =
z4 + 1
2z2

,

and

sin 10◦ = cos 80◦ =
1
2
(z4 +

1
z4

) =
z8 + 1
2z4

.

Hence

sin 10◦ sin 50◦ sin 70◦ =
z2 + 1

2z
· z4 + 1

2z2
· z8 + 1

2z4

=
1 + z2 + z4 + z6 + z8 + z10 + z12 + z14

8z7

=
1− z16

8z7(1− z2)

=
1− z7z9

8(z7 − z9)

=
1 + z7

8(z7 + 1)
=

1
8

.

Solution 2. We have that

sin 10◦ sin 50◦ sin 70◦ =
1
2
[cos 40◦ − cos 60◦] sin 70◦

=
1
2
[cos 40◦ sin 70◦ − 1

4
sin 70◦

=
1
4
[sin 110◦ + sin 30◦]− 1

4
sin 70◦

=
1
4
[sin 110◦ − sin 70◦] +

1
8

=
1
8

.

Solution 3. Observe that

sin 20◦ sin 70◦ sin 50◦ sin 10◦ = sin 20◦ cos 20◦ cos 40◦ cos 80◦

=
1
2

sin 40◦ cos 40◦ cos 80◦ =
1
4

sin 80◦ cos 80◦

=
1
8

sin 160◦ =
1
8

sin 20◦ .

Since sin 20◦ 6= 0, we can cancel this factor from both sides to obtain that sin 10◦ sin 50◦ sin 70◦ = 1/8.

Solution 4. [O. Ivrii]

sin 10◦ sin 50◦ sin 70◦ =
1
2

sin 10◦[cos 20◦ − cos 120◦]

=
1
2

sin 10◦ cos 20◦ +
1
4

sin 10◦

=
1
4
[sin 30◦ − sin 10◦] +

1
4

sin 10◦ =
1
4

sin 30◦ =
1
8

.

Solution 5. [L. Chindelevitch] Observe that sin 10◦ sin 50◦ sin 70◦ = cos 20◦ cos 40◦ cos 80◦ and that
cos 6θ = −1/2 is satisfied by θ = ±20◦, ±40◦, ±80◦, ±100◦, ±140◦ and ±160◦. Now, cos 6θ is equal to the
real part of (cos θ + i sin θ)6, namely 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.
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Thus, the sextic equation 32x6 − 48x4 + 18x2 − 1 = −1/2 is satisfied by x = ± cos 20◦, ± cos 40◦.
± cos 60◦. As the equation can be rewritten

x6 − 3
2
x4 +

9
16

x2 − 1
64

= 0 ,

the product of its six roots is −1/64. Thus

−(cos 20◦ cos 40◦ cos 80◦)2 = −1/64

and the result follows.

Solution 6. [A. Critch] Observe that sin 10◦ sin 50◦ sin 70◦ = − cos 40◦ cos 80◦ cos 160◦, and that θ =
40◦, 80◦, 160◦ satisfy cos 3θ = −1/2. Thus the cosines of 40◦, 80◦ and 160◦ are the roots of the cubic
equation 4x3 − 3x + 1

2 = 0. The result follows, since the product of the roots of this equation is −1/8.

185. Find all triples of natural numbers a, b, c, such that all of the following conditions hold: (1) a < 1974;
(2) b is less than c by 1575; (3) a2 + b2 = c2.

Solution. Conditions (2) and (3) can be written as c − b = 1575 and a2 = c2 − b2. Hence a2 =
1575(c + b) = 32 · 52 · 7 · (b + c), so that a = 3 · 5 · 7 · k = 105k. By (1), k ≤ 18.

From 1052k2 = 1575(c + b), it follows that 7k2 = c + b. Putting this with 1575 = c − b yields that
2c = 7k2 + 1575 and 2b = 7k2 − 1575. Since b is a natural number, 7k2 > 1575, whence k > 15. Since
k is also odd (why?), the only possibility is for k to be equal to 17. This works and we obtain the triple
(a, b, c) = (1785, 224, 1799).

Comment. This was solved by most participants. Some solutions used the fact that all primitive
pythagorean triples can be parametrized by (a, b, c) = (m2 − n2, 2mn, m2 + n2), where m and n are natural
numbers, m > n and the greatest common divisor of m and n is 1. Note that this representation is not
adequate to get all non-primitive triples, such as (15, 36, 39) and the triple of this problem. The general form
is given by (a, b, c) = (k(m2 − n2), 2kmn, k(m2 + n2)), where k is a positive constant. When you build your
solution on such a “well-known” fact, make sure that you recall it correctly and respect all restrictions and
specifics. Otherwise, you risk applying it in a situation that does not satisfy all the requirements or you find
only a subset of the possible solutions.

186. Find all natural numbers n such that there exists a convex n−sided polygon whose diagonals are all of
the same length.

Solution 1. [T. Yue] First, we prove that n < 6. Suppose that n ≥ 6 and that there exists a convex
n−sided polygon with vertices A1, A2, · · ·, An whose diagonals are all of the same length. Since the diagonals
are all of the same length, we have that A1A5 = A2A5 = A1A4 = A2A4, so that A1A2A5 and A1A2A4 are
isosceles triangles and A4 and A5 both lie on the right bisector of A1A2. Since the polynomial is convex, both
A4 and A5 must lie on the same side of A1A2. But then they could not be distinct, yielding a contradiction.

In the case n = 3, there are no diagonals, so the result is vacuously true. For n = 4, all squares,
rectangles and isosceles trapezoids satisfy the condition. When n = 5, the regular pentagon is an example.
(Is it the only example?)

Solution 2. Suppose that n ≥ 6, and the vertices of the polygon be A1, A2, · · ·, An. Suppose that
A1An−2 and A2An−1 intersect at O. Then, by the triangle inequality, A1O + OAn−1 > A1An−1 and
A2O + OAn−2 > A2An−2, so that

A1An−2 + A2An−1 = A1O + OAn−2 + A2O + OAn−1 > A1An−1 + A2An−2

and so the diagonals AiAj are not all of the same length. Hence, n ≤ 5 and we can conclude as before.
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187. Suppose that p is a real parameter and that

f(x) = x3 − (p + 5)x2 − 2(p− 3)(p− 1)x + 4p2 − 24p + 36 .

(a) Check that f(3− p) = 0.

(b) Find all values of p for which two of the roots of the equation f(x) = 0 (expressed in terms of p)
can be the lengths of the two legs in a right-angled triangle with a hypotenuse of 4

√
2.

Solution. (a) Observe that

f(x) = [(x− (3− p)][x2 − 2(p + 1)x + 4(p− 3)] .

(b) [Y. Sun] From the factorization in (a), we can identify the three roots: x1 = 3− p,

x2 = (p + 1) +
√

(p− 1)2 + 12 ,

x3 = (p + 1)−
√

(p− 1)2 + 12 .

Note that x2 − x3 = 2
√

(p− 1)2 + 12 ≥ 2
√

12 = 4
√

3 > 4
√

2, so that, by the triangle inequality, x2 and x3

cannot be the legs of a right triangle with hypotenuse 4
√

2. On the other hand,

x1 + x3 = 4−
√

(p− 1)2 + 12 ≤ 4−
√

12 = 2(2−
√

3) < 4
√

2 ,

so that, by the triangle inequality, x1, x3 and 4
√

2 cannot be the sides of a triangle. Thus, the only possibility
is that x2

1 + x2
2 = 32.

Thus, we must have
(3− p)2 + [(p + 1) +

√
p2 − 2p + 13]2 = 32

=⇒ 2(p + 1)
√

p2 − 2p + 13 = −3p2 + 6p + 9 = 3(p + 1)(3− p) .

Therefore, either p = −1 or 2
√

p2 − 2p + 13 = 3(3− p). The latter possibility leads to

4(p2 − 2p + 13) = 9(p− 3)2 ⇒ 5p2 − 46p + 29 = 0 .

Since 3(3 − p) must be positive, we reject one root of this quadratic for p, and so have only the additional
possibility (23− 8

√
6)/5.

188. (a) The measure of the angles of an acute triangle are α, β and γ degrees. Determine (as an expression
of α, β, γ) what masses must be placed at each of the triangle’s vertices for the centroid (centre of
gravity) to coincide with (i) the orthocentre of the triangle; (ii) the circumcentre of the triangle.

(b) The sides of an arbitrary triangle are a, b, c units in length. Determine (as an expression of a, b,
c) what masses must be placed at each of the triangle’s vertices for the centroid (centre of gravity) to
coincide with (i) the centre of the inscribed circle of the triangle; (ii) the intersection point of the three
segments joining the vertices of the triangle to the points on the opposite sides where the inscribed circle
is tangent (be sure to prove that, indeed, the three segments intersect in a common point).

Solution. [R. Barrington Leigh] Suppose that a, b, c are the respective lengths of BC, CA and AB of
triangle ABC and that α = ∠CAB, β = ∠ABC and γ = ∠BCA. Let masses ma, mb, mc be masses placed
at the respective vertices A, B, C. We use the following lemma, which will be established in the Comments:

Lemma 1. The centroid G of two combined collections of mass particles is on the line joining the
centroids P and Q of the two collections, and the following ratio holds: PG : GQ = mQ : mP , where
mQ and mP are the totals of the masses in the two mass collections at Q and P respectively.
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It follows that, if X is the centroid of the masses at the vertices of ∆ABC and Y is the intersection
point of AX and BC, then Y is the centroid of the masses at the vertices B and C. Furthermore, let hb and
hc be the perpendicular distances from B and C respectively to the line AY . By the lemma and the similar
right triangles formed by the drawn perpendiculars,

mb

mc
=

Y C

Y B
=

hc

hb
(∗)

(a) (i) Let Y be the foot of the altitude from A to BC, so that the orthocentre of the triangle is on AY .
By (∗),

mb

mc
=

AY/ tan γ

AY/ tanβ
=

tanβ

tan γ
.

By symmetry, we see that
ma : mb : mc = tan α : tan β : tan γ .

Since the triangle is acute, the elements of the ratio are positive and it is well-defined.

(a) (ii) Let X = O be the circumcentre of ∆ABC. From (∗),

mb

mc
=

hc

hb
=

OC · sin∠COA

OB · sin∠BOA
=

sin 2β

sin 2γ
.

By symmetry, we have that
ma : mb : mc = sin 2α : sin 2β : sin 2γ .

(b) (i) Let X = I, the incentre of the triangle ABC; this is the intersection of the angle bisectors. Then
∠BAI = ∠CAI, and, by (∗),

mb

mc
=

hc

hb
=

b · sin∠CAI

c · sin∠BAI
=

b

c
.

By symmetry, we find that ma : mb : mc = a : b : c.

(b) (ii) Let the incircle of ABC meet BC at D, CA at E and AB at F . Let x, y, z be the respective
lengths of AE = AF , BD = BF , CD = CE, so that y + z = a, z + x = b, x + y = c. Then 2x = b + c− a,
2y = c + a − b and 2z = a + b − c. The semi-perimeter s of the triangle is equal to (a + b + c)/2, so that
x = s− a, y = s− b and z = s− c. Using Ceva’s Theorem, we see from

AF

FB
· BD

DC
· CE

EA
=

x

y
· y

z
· z

x
= 1

that AD, BE and CF concur at a point X. From (∗), we have that

mb

mc
=

CD

BD
=

z

y
=

1/(s− b)
1/(s− c)

so that, from symmetry,

ma : mb : mc =
1

s− a
:

1
s− b

:
1

s− c
.

Comment. A couple of correct solutions were received, most based on the lemma and the derived state-
ment (∗). This solution was chosen because of its excellently organized and clear presentation. Some students
came up with other expressions in the ratios, equivalent after some simple trigonometric transformations to
the expressions here. Two of the students, A. Feiz Mohammadi and J.Y. Zhoa used an interesting an helpful
fact:

Lemma 2. Let X be the centroid of triangle ABC and denote by Sa, Sb and Sc the respective areas
of the triangles XBC, XCA and XAB. Then ma : mb : mc = Sa : Sb : Sc.
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Lemma 2 can be used to obtain a beautiful and elegant solution to each of the four parts of the problem.
Let us turn to the proofs of these lemmata.

Proof of Lemma 1. We statement can be replaced by the equivalent form: given two point masses mP

and mQ at the respective points P and Q, their centroid is on the line segment PQ at the point G for which
PG : GQ = mQ : mP . From the definition of a centroid, if O is any point selected as the origin of vectors,

−−→
OG =

mP
−−→
OP + mQ

−−→
OQ

mP + mQ
=

mP

mP + mQ

−−→
OP +

mQ

mP + mQ

−−→
OQ . (1)

In general, consider a point K on the segment PQ for which PK : KQ = k : (1− k), for 0 < k < 1. Then

−−→
OK = −−→

OP +−−→
PK = −−→

OP + k
−−→
PQ = −−→

OP + k(−−→OQ−−−→OP ) = (1− k)−−→OP + k
−−→
OQ . (2)

Now choose k = mQ/(mP + mQ), so that 1− k = mP /(mP + mQ). From (1) and (2), we have that G = K
and we can complete the proof of the lemma.

Proof of Lemma 2. We prove that ma : mb = Sa : Sb, whence the rest follows from symmetry. Let
K be the intersection of CX and AB. Then ma : mb = BK : AK. Since triangles AKC and BKC have
the same altitudes from C, [AKC] : [BKC] = AK : BK. Similarly, [AXK] : [BXK] = AK : BK. Now
Sa = [BKC]− [BXK] and Sb = [AKC]− [AXK], so that Sa : Sb = BK : AK and the result is proven.

189. There are n lines in the plane, where n is an integer exceeding 2. No three of them are concurrent
and no two of them are parallel. The lines divide the plane into regions; some of them are closed (they
have the form of a convex polygon); others are unbounded (their borders are broken lines consisting of
segments and rays).

(a) Determine as a function of n the number of unbounded regions.

(b) Suppose that some of the regions are coloured, so that no two coloured regions have a common side
(a segment or ray). Prove that the number of regions coloured in this way does not exceed 1

3 (n2 + n).

Solution 1. (a) Draw a circle big enough to contain in its interior all the intersection points of the n
lines. Since there are n lines and each of them intersects the circle in two points, they divide the circle into
2n arcs. Each of the arcs corresponds to one unbounded region, so that there are 2n unbounded regions.

(b) [M. Butler] Let k regions be coloured. Construct a circle around all the bounded regions, big enough
to contain part of each of the unbounded regions as well as the intersection points of the lines. Regions that
were unbounded before are now bounded (in part by an arc of the circle). Denote the k coloured regions by
R1, R2, · · ·, Rk, and let Ri have vi vertices (including the intersections of the lines and the circles). Every
region has at least three vertices, so that vi ≥ 3, and v1 + v2 + · · ·+ vk ≥ 3k (1).

On the other hand, we can tabulate v1 + v2 + · · · + vk by adding up the numer of coloured regions
meeting at an intersection, for all intersection points. Since no three lines have a common point, there are(
n
2

)
intersection points among the lines and each of them is a vertex of at most two coloured regions. So

there are at most 2
(
n
2

)
coloured regions counted so far. In addition, there are 2n intersections between the

circles and the lines with at most one coloured region at each of them. Taking (1) into consideration, we
deduce that

2
(

n

2

)
+ 2n ≥ v1 + v2 + · · ·+ vk ≥ 3k

so that n2 + n ≥ 3k and the result follows.

Solution 2. (b) Let m2, m3, · · · mk denote the number of coloured regions with respectively 2, 3, · · · , k
sides (rays or segments). Regions with two sides are angles, and hence unbounded. Since no two adjecent
regions are coloured, m2 ≤ (1/2)2n = n. On the other hand, each line is divided by the other n − 1 lines
into n parts, so that the number of parts of all the lines is n2. Therefore

2m2 + 3m3 + 4m4 + · · ·+ kmk ≤ n2 .
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The total number k of all the coloured regions satisfies

k = m1 + m2 + · · ·+ mk = (1/3)m2 + (2/3)m2 + m3 + · · ·+ mk

≤ (1/3)m2 + (1/3)(2m2 + 3m3 + 4m4 + · · ·+ kmk

≤ (1/3)(n + n2) ,

as desired.

190. Find all integer values of the parameter a for which the equation

|2x + 1|+ |x− 2| = a

has exactly one integer among its solutions.

Solution 1. [H. Li] To deal with the absolute values, we consider the equation for different ranges of x.
If x < −1/2, the equation becomes −3x + 1 = a (E1). If −1/2 ≤ x < 2, the equation is x + 3 = a (E2). If
x ≥ 2, the equation is 3x− 1 = a (E3). Thus, the given equation is the union of three linear equations. The
graph of a as a function of x is a broken line consisting of two rays u1 and u3 (corresponding to E1 and E3)
and a segment u2 (corresponding to E2); please graph it before continuing to read. The minimum possible
value of a is 2.5. For an integer a to admit more than one integer solution to the equation, the horizontal
line y = a must intersect the graph in at least two lattice points.

When x < −1/2, a > 2.5 and when −1/2 ≤ x < 2, then 2.5 ≤ a < 5. The only lattice points on segment
u2 are (0, 3) and (1, 4) and the second one has a corresponding lattice point on u1. So, for a = 4, there are
two integer solutions, −1 and 1, to the equation. Let x be an integer. When x ≥ 2, a ≥ 5 and we want to
consider lines y = a intersecting rays u1 and u3. When x < −1/2, then −3x+1 ≡ 1 (mod 3), while if x ≥ 2,
3x− 1 ≡ 2 (mod 3), so that none of the horizontal lines can intersect both of them at a lattice point.

Hence, in conclusion, the given equation has exactly one integer solution x for the following values of a:
a = 3, a ≥ 5 and a ≡ 1 (mod 3) and a ≥ 5 and a ≡ 2 (mod 3).

Solution 2. First, solve the equation by considering the three cases:
• x ≥ 2: Then x = a+1

3 and the equation is solvable in this range ⇔ a ≥ 5;
• −1/2 < x < 2: Then x = a− 3 and the equation is solvable in this range ⇔ 5/2 < a < 5;
• x ≤ 1/2: Then x = (1− a)/3 and the equation is solvable in this range ⇔ a ≥ 5/2.

Thus, summing up, we see that the equation has
• no solution when a < 5/2,
• the unique solution x = −1/2 when a = 5/2,
• two solutions x = a− 3 and x = (1− a)/3 when 5/2 < a < 5, of which both are integers when a = 4

and one is an integer when a = 3,
• two solutions x = 2 and x = −4/3 when a = 5, and
• two solutions x = (1± a)/3 when a > 5.

When a > 5 we can check that there is no solution when a ≡ 0, and exactly one solution when a 6≡ 0
(mod 3), and we obtain the set in the first solution.

191. In Olymonland the distances between every two cities is different. When the transportation program
of the country was being developed, for each city, the closest of the other cities was chosen and a highway
was built to connect them. All highways are line segments. Prove that

(a) no two highways intersect;

(b) every city is connected by a highway to no more than 5 other cities;

(c) there is no closed broken line composed of highways only.
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Solution. (a) Assume that the highways AC and BD intersect at a point O. From the existence of AC,
either C is the closest city to A or A is the closest city to C. A similar statement holds for BD. Wolog,
suppose that C is the closest city to A and D the closest city to B. Hence, AD > AC, BC > BD so that
AD + BC > AC + BD. On the other hand, from the triangle inequality,

AO + OD > AD & BO + OC > BC ⇒ AC + BD = (AO + OC) + (BO + OD) > AD + BC ,

which contradicts the earlier inequality. Thus, no two highways intersect.

(b) Consider any three cities A,B, X. If X is connected by a highway to both A and B, then AB must
be the longest side in triangle ABX. To prove it, let us suppose, if possible, that one of the other sides, say
AX, is longest. Then AX > AB and AX > XB, so that AX would not exist as B is closer to A than X is,
and B is closer to X than A is.

So AB is the longest side, which implies that ∠AXB is the greatest angle in the triangle. Thus,
∠AXB > 60◦. Assume that a city X is connect to six other cities A,B, C, D, E, F by highways. Then each
of the angles with vertices at X with these cities must exceed 60◦, so the sum of the angles going round
X from one highway back to it must exceed 360◦, which yields a contradiction. Therefore, every city is
connected by a highway to no more than five other cities.

(c) Suppose that there are n cities A1, A2, · · · , An that are connected in this order by a closed broken
line of highways. Since all distances between pairs of cities are distinct, there must be a longest distance
between a pair of adjacent cities, say A1 and An. Then A1An > A1A2, so An is not the closest city to A1.
Also A1An > An−1An, so A1 is not the closest city to An. Therefore, the highway A1An must not exist and
we get a contradiction. So there is no broken line composed only of highways.

192. Let ABC be a triangle, D be the midpoint of AB and E a point on the side AC for which AE = 2EC.
Prove that BE bisects the segment CD.

In the following solutions, F is the intersection point of BE and CD.

Solution 1. Let G be the midpoint of AE. Then AG = GE = EC and DG‖BE. In triangle ADC,
DG‖FE and GE = EC, from which it follows that DF = FC, as required.

Solution 2. Let u = [ADF ] = [BDF ] (where [· · ·] denotes area), v = [AFE], w = [CFE] and z = [BFC].
Then 2u + v = 2(w + z) and v = 2w, whence 2u = 2z and u = z. It follows from this (two triangles with the
same height and equal collinear bases) that F is the midpoint of CD.

Solution 3. [S. Seraj] Let J be the midpoint of BE. Then DJ = 1
2AE = EC and DJ‖AC. Since

∠CEF = ∠DJF and ∠ECF = ∠FDJ , triangles CEF and DJF are congruent. Hence CF = FD as
required.

Solution 4. By Menelaus’ Theorem, applied to triangle ACD and transversal BFE,

CE

EA
· AB

BD
· DF

FC
= −1 ,

so that 1
2 · (−2) · (DF/FC) = −1 and DF = FC, as desired.

Solution 5. [T. Yue] Let K be the midpoint of AC; then BC = 2DK and BC‖DK. Suppose that BE
produced and DK produced meet at H. Since triangles EBC and EHK are similar and EC = 2EK, it
follows that BC = 2KH and so DH = BC. Thus, DHCB is a parallelogram whose diagonals BH and CD
must bisect each other. The result follows.

Solution 6. Place the triangle in the cartesian plane so that B ∼ (0, 0), C ∼ (3, 0) and A ∼ (6a, 6b). Then
D ∼ (3a, 3b), E ∼ (2(a + 1), 2b) and the lines BE and and CD have the respective equations y = bx/(a + 1)
and y = b(x− 3)/(a− 1). These lines intersect at the point ((3/2)(a + 1), (3/2)b), and the result follows.
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Solution 7. [L. Chen] [BDE] = [ADE] = 1
2 [ABE] = [BEC]. Let M and N be the respective feet of the

perpendiculars from D and C to BE. Then [BDE] = [BEC] ⇒ DM = CN . Since DMF and CNF are
similar right triangles with DM = CN , they are congruent and so DF = CF .

Solution 8. [F. Chung; Y. Jean] As in the previous solution, [BDE] = [BEC]. Therefore,

DF : FC = [DEF ] : [CEF ] = [DBF ] : [CBF ] = ([DEF ] + [DBF ]) : ([CEF ] + [CBF ])

= [BDE] : [BEC] = 1 : 1 .

Solution 9. [Y. Wei] Let U be a point on BC such that DU‖AC. Suppose that DU and BE intersect
in V . Then 2EC = AE = 2DV , so that DV = EC. Also ∠V DF = ∠ECF abd ∠DFV = ∠ECF , so that
triangles DV F and CEF are congruent. Hence DF = FC.

Solution 10. Let AF produced meet BC at L. By Ceva’s Theorem,

AD

DB
· BL

LC
· CE

AE
= 1 ,

whence BL = 2LC and, so, LE‖AB. Since the triangles ABC and ELC are similar with factor 3, AB = 3EL.
Let EL intersect CD at M . Then the triangles AFB and LFE are similar, so that FD = 3FM . But,

FD + FM + MC = DC = 3MC ⇒ 2FM = MC ⇒ FC = FM + MC = 3FM = FD ,

as desired.

Solution 11. [H. Lee] Let u = −−→
DB, v = −−→

EC, a = −−→
BF , λa = −−→

FE, b = −−→
CF and µb = −−→

FD. Then

a + µb + u = 0

and
b + λa + v = 0 .

Hence
u = −a− µb and v = −b− λa .

Therefore, from triangle ABE,

0 = (λ + 1)a− 2v + 2u
= (λ + 1)a + 2b + 2λa− 2a− 2µb

= (3λ− 1)a + 2(1− µ)b .

Since {a,b} is a linearly independent set, λ = 1/3 and µ = 1, yielding the desired result.

Solution 12. [M. Zaharia] Place masses 1, 1, 2, respectively, at the vertices A, B, C. We locate the
centre of gravity of these masses in two ways. Since the masses at A and B have their centre of gravity at
D, we can get an equivalent system by replacing the masses at A and B by a mass 2 at the point D. The
centre of gravity of the original set-up is equal to the centre of gravity of masses of 2 placed at each of D
and C, namely at the midpoint of CD.

On the other hand, the centre of gravity of the masses at A and C is at E. So the centre of gravity
of the original set-up is equal to the centre of gravity of a mass 3 located at E and a mass 1 located at B,
namely on the segment BE (at the point F for which BF = 3FE). Since both BE and CD contain the
centre of gravity of the original set-up, the result follows.

Solution 13. Place the triangle in the complex plane with C at 0, B at 12z and A at 12. Then D is
located at 6(z +1) and E at 4. Let P be the midpoint 3(z +1) of CD. Then, BP and PE are collinear since

12z − 3(z + 1) = 3(3z − 1) = 3[3(z + 1)− 4] ,
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i.e., the vector −−→BP is a real multiple of −−→PE. The result follows.

193. Determine the volume of an isosceles tetrahedron for which the pairs of opposite edges have lengths a,
b, c. Check your answer independently for a regular tetrahedron.

Solution 1. The edges of the tetrahedron can be realized as the diagonals of the six faces of a rectangular
parallelepiped with edges of length u, v, w in such a way that a2 = v2 + w2, b2 = u2 + w2 and c2 = u2 + v2.
The tetrahedran can be obtained from the parallelepiped by trimming away four triangular pyramids each
with three mutually perpendicular faces (surrounding a corner of the parallelepiped) and three pairwise
orthogonal edges of lengths u, v, w. Hence the volume of the tetrahedron is equal to

uvw − 4((1/6)uvw) = (1/3)uvw .

From the foregoing equations, 2u2 = b2 + c2− a2, 2v2 = c2 + a2− b2 and 2w2 = a2 + b2− c2. (By laying
out the tetrahedron flat, we see that the triangle of sides a, b, c is acute and the right sides of these equations
are indeed positive.) It follows that the volume of the tetrahedron is

√
2

12

√
(b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2) .

In the case of a regular tetrahedron of side 1, the height is equal to
√

2/3 and the area of a side is equal
to
√

3/4, and the formula checks out.

Solution 2. [D. Yu] Let the base of the tetrahedron be triangle ABC, eith a = |BC| = |AD|, b =
|AC| = |BD|, c = |AB| = |CD|; let P be the foot of the perpendicular from D to the plane of ABC and let
h = |DP |. Then |AP | =

√
a2 − h2, |BP | =

√
b2 − h2, |CP | =

√
c2 − h2.

Suppose that α = ∠BCP and β = ∠ACP . Then using the Law of Cosines on triangles BCP , ACP
and ABC, we obtain that

cos α =
a2 + c2 − b2

2a
√

c2 − h2

cos β =
b2 + c2 − a2

2b
√

c2 − h2

and

cos(α + β) =
a2 + b2 − c2

2ab
,

whence
a2 + b2 − c2

2ab
=

(a2 + c2 − b2)(b2 + c2 − a2)−
√

4a2(c2 − h2)− (a2 + c2 − b2)2
√

4b2(c2 − h2)− (b2 + c2 − a2)2

4ab(c2 − h2)
.

Shifting terms and squaring leads to

[2(a2+b2−c2)(c2−h2)−(a2+c2−b2)(b2+c2−a2)]2 = [4a2(c2−h2)−(a2+c2−b2)2][4b2(c2−h2)−(b2+c2−a2)2] .

With u = b2 + c2 − a2, v = c2 + a2 − b2, w = a2 + b2 − c2, z = c2 − h2, this can be rendered

0 = [2wz − uv]2 − [4a2z − v2][4b2z − u2]

= z[4(w2 − 4a2b2)z − 4(uvw − a2u2 − b2v2)]

so that

c2 − h2 = z =
a2u2 + b2v2 − uvw

4a2b2 − w2
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and

h2 =
4a2b2c2 + uvw − a2u2 − b2v2 − c2w2

4a2b2 − w2
.

Now
4a2b2 − w2 = −a4 − b4 − c4 + 2a2b2 + 2a2c2 + 2b2c2

= (a + b + c)(a + b− c)(b + c− a)(c + a− b)

= 16S2 ,

where S is the area of triangle ABC.

Now consider the numerator of h2. Its value when w = a2 + b2− c2 is set equal to 0 is 4a2b2c2− a2u2−
b2v2 = 4a2b2c2 − a2(2b2) − b2(2a2) = 0, so that w divides the numerator. So also do u and v. Hence the
numerator of degree 6 in a, b, c must be a multiple of uvw, also of degree 6 in a, b, c. Hence the numerator
is a multiple of uvw. Comparing the coefficients of a6 (say) gives that the numerator must be 2uvw. Hence

h2 =
2uvw

16S2
=

uvw

8S2
.

The volume V of the tetrahedron satisfies

V 2 =
(

Sh

3

)2

=
S2h2

9
=

uvw

72
,

whence

V =
√

uvw

6
√

2
=

2uvw

12
.

The checking for the tetrahedron proceeds as before.

194. Let ABC be a triangle with incentre I. Let M be the midpoint of BC, U be the intersection of
AI produced with BC, D be the foot of the perpendicular from I to BC and P be the foot of the
perpendicular from A to BC. Prove that

|PD||DM | = |DU ||PM | .

Solution 1. Suppose that the lengths of the sides of the triangle are a, b and c, using the conventional
notation. Then the distance from B of the following points on the side BC are given by (B, 0), (C, a),
(M,a/2), (U, ca/(b + c)), (D, (a + c− b)/2) and (P, c cos B) = (P, (a2 + c2 − b2)/(2a)). One can then verify
the desired relation by calculation.

Solution 2. [L. Chen] Let the side lengths of the triangle be a, b, c, as conventional, and, wolog, suppose
that c < b. Let u = |BP | and v = |PC|. Then, equating two expressions for the area of the triangle, with
r = |ID| as the inradius, we find that |AP | = 2rs/a. From similar triangle, we have that

|PU |
|DU |

=
|AP |
|ID|

=
2s

a
= 1 +

b + c

a
,

whence
|PD|
|DU |

=
b + c

a
.

Now |PM | = (a/2)− u = (v − u)/2 and |DM | = (b− c)/2. Hence

|PM |
|DM |

=
v − u

b− c
.
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By Pythagoras’ Theorem, c2 − u2 = b2 − v2, whence

v − u

b− c
=

b + c

v + u
=

b + c

a

and the result follows.

195. Let ABCD be a convex quadrilateral and let the midpoints of AC and BD be P and Q respectively,
Prove that

|AB|2 + |BC|2 + |CD|2 + |DA|2 = |AC|2 + |BD|2 + 4|PQ|2 .

Solution 1. Let X denote the vector from an origin to a point X. Then, vectorially, it can be verified
that

(A−B) · (A−B) + (B − C) · (B − C) + (C −D) · (C −D) + (D −A) · (D −A)
− (A− C) · (A− C)− (B −D) · (B −D)

= −2A ·B − 2B · C − 2C ·D − 2D ·A + 2A · C + 2B ·D + A2 + B2 + C2 + D2

= 4
(

A + C

2
− B + D

2

)
·
(

A + C

2
− B + D

2

)
,

which yields the desired result.

Solution 2. [T. Yin] We use the result that for any parallelogram KLMN , 2|KL|2 +2|LM |2 = |KM |2 +
|LN |2. This is straightforward to verify using the Law of Cosines, for example. Let W , X, Y , Z be the
respective midpoints of the sides AB, BC, CD, DA. Using the fact that all of WXY Z, PXQZ and PWQY
are parallelograms, we have that

|AB|2 + |BC|2 + |CD|2 + |DA|2 = 4[|PX|2 + |PW |2 + |PZ|2 + |PY |2]
= 2[|PQ|2 + |XZ|2 + |PQ|2 + |WY |2]
= 4|PQ|2 + 2[|XZ|2 + |WY |2]
= 4|PQ|2 + 4[|WZ|2 + |WX|2]
= 4|PQ|2 + |BD|2 + |AC|2 .

196. Determine five values of p for which the polynomial x2 + 2002x− 1002p has integer roots.

Answer. Here are some values of (p;u, v) with u and v the corresponding roots: (0; 0,−2002),
(4; 2,−2004), (784; 336,−2338), (1780; 668,−2670), (3004; 2002,−3004), (3012; 1004,−3006),
(4460; 1338,−3340), (8012; 2004,−4006), (8024; 2006,−4008), (−556;−334,−1668),
(−1000;−1000,−1002).

Solution 1. If x satisfies the equation x2+2002x−1002p = 0, then we must have p = x(x+2002)/(1002).
If we choose integers x for which x(x + 2002) is a multiple of 1002, then this value of p will be an integer
that yields a quadratic with two integer roots, namely x and −2002 − x. One way to do this is to select
either x ≡ 0 or x ≡ 2 (mod 1002). Observing that 1002 = 2× 3× 167, we can also try to make x ≡ 0 (mod
167) and x ≡ 2 (mod 6). For example, x = 668 works. We can also try x ≡ 2 (mod 167) and x ≡ 0 (mod 6);
in this case, x = 336 works.

Solution 2. The discriminant of the quadratic is 4 times 10012 + 1002p. Suppose that p is selected to
make this equal to a square q2. Then we have that

1002p = q2 − 10012 = (q − 1001)(q + 1001) .
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We select q so that either q − 1001 or q + 1001 is divisible by 1002. For example q = 2003, 1, 3005, 4007 all
work. We can also make one factor divisible by 667 and the other by 6.

197. Determine all integers x and y that satisfy the equation x3 + 9xy + 127 = y3.

Solution 1. Let x = y + z. Then the equation becomes (3z + 9)y2 + (3z2 + 9z)y + (z3 + 127) = 0, a
quadratic in y whose discriminant is equal to

(3z + 9)2z2 − 4(3z + 9)(z3 + 127)

= (3z + 9)[z2(3z + 9)− 4(z3 + 127)]

= −(3z + 9)(z3 − 9z2 + 508) .

Note that z3 − 9z2 + 508 = z2(z − 9) + 508 is nonnegative if and only if z ≥ −5 (z being an integer) and
that 3z + 9 is nonnegative if and only if z ≥ −3. Hence the discriminant is nonnegative if and only if
z = −3,−4,−5. From the quadratic equation, we have that z3 + 127 ≡ 0 (mod 3). The only possibility
is z = −4 and this leads to the equation 0 = −3y2 + 12y + 63 = −3(y − 7)(y + 3) and the solutions
(x, y) = (3, 7), (−7,−3).

Solution 2. The equation can be rewritten

(x− y)[(x− y)2 + 3xy] + 9xy = −127

or
u3 + 3v(u + 3) = −127

where u = x− y and v = xy. Hence

3v = −u3 + 127
u + 3

= −
[
(u2 − 3u + 9) +

100
u + 3

]
.

Therefore, u3 + 127 ≡ 0 (mod 3), so that u ≡ 2 (mod 3), and u + 3 divides 100. The candidates are

u = −103,−28,−13,−7,−4,−1, 2, 17, 47 .

Checking these out leads to the posible solutions.

198. Let p be a prime number and let f(x) be a polynomial of degree d with integer coefficients such that
f(0) = 0 and f(1) = 1 and that, for every positive integer n, f(n) ≡ 0 or f(n) ≡ 1, modulo p. Prove
that d ≥ p− 1. Give an example of such a polynomial.

Solution. Since the polynomial is nonconstant, d ≥ 1, so that the result holds for p = 2. Henceforth,
assume that p is an odd prime. Let 0 ≤ k ≤ p− 2. Consider the polynomial

pk(x) =
x(x− 1)(x− 2) · · · (x− k + 1)(x− k − 1) · · · (x− p + 2)

k!(p− k − 2)!(−1)p−k
.

We have that pk(k) = 1 and pk(x) = 0 when x = 0, 1, 2, · · · , k − 1, k + 1, · · · , p− 2. Let

g(x) =
p−2∑
k=0

f(k)pk(x) .

Then the degree of g(x) does not exceed p− 2 and g(x) = f(x) for x = 0, 1, 2, · · · , p− 2; in fact, g(x) is the
unique polynomial of degree less than p− 1 that agrees with f at these p− 1 points (why?).

65



Now

g(p− 1) =
p−2∑
k=0

(−1)p−k (p− 1)!
k!(p− k − 1)!

f(k) =
p−2∑
k=0

(−1)p−k

(
p− 1

k

)
f(k) .

Since
(
p−1

k

)
=

(
p
k

)
−

(
p−1
k−1

)
and

(
p
k

)
≡ 0 (mod p) for 1 ≤ k ≤ p − 1, and induction argument yields that(

p−1
k

)
≡ (−1)k for 1 ≤ k ≤ p− 1, so that

g(p− 1) ≡ (−1)p

p−2∑
k=0

f(k)

(mod p). Since f(0) = 0 and f(1) = 1, it follows that
∑p−2

k=0 f(k) is congruent to some number between 1
and p− 2 inclusive, so that g(p− 1) 6≡ 0 and g(p− 1) 6≡ 1 (mod p). Hence f(p− 1) 6= g(p− 1), so that f and
g are distinct polynomials. Thus, the degree of f exceeds p− 2 as desired.

By Fermat’s Little Theorem, the polynomial xp−1 satisfies the condition.

Solution 2. [M. Guay-Paquet] Let

h(x) = f(x) + f(2x) + · · ·+ f((p− 1)x) .

Then h(1) 6≡ 0 (mod p) and h(0) = 0. The degree of h is equal to d, the degree of f .

Let x 6≡ 0 (mod p). Then (x, 2x, 3x, · · · , (p − 1)x) is a permutation of (1, 2, 3, · · · , p − 1), so that
h(x) ≡ h(1) (mod p).

Suppose that g(x) = h(x)−h(1). The degree of g is equal to d, g(0) ≡ −h(1) 6≡ 0 (mod p) and g(x) ≡ 0
whenever x 6≡ 0 (mod p). Therefore, g(x) differs from a polynomial of the form k(x−1)(x−2) · · · (x−p− 1)
by a polynomial whose coefficients are multiples of p. Since k 6≡ 0 (mod p) (check out the value at 0), the
coefficient of xk−1 must be nonzero, and so d ≥ p− 1, as desired.
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