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CHAPTER NINE

ALLEMANDS

§1. INTRODUCTION.

We begin with the recursion of the last chapter, given by

xn+1 =
xn + c

xn−1
,

with c a nonnegative real parameter. This formula can be written to take the sequence backward by the
same process:

xn−1 =
xn + c

xn+1
,

so we can let the index n range over all of the integers. We suppose that the terms of the sequence are
selected to avoid division by 0. When c = 0 and c = 1, and bilateral sequence satisfying the recursion is
periodic with respective periods 6 and 5. For other values of c, certain but not all sequences are periodic.

When

fc(x, y) =
x2y + xy2 + x2 + (c + 1)x + y2 + (c + 1)y + c

xy
,

we have that

f(x, y) = f

(
y,

y + c

x

)
,

with the result that f(xn, xn+1) is constant with respect to the index n. As n varies, the points (xn, xn+1)
ranges over the planar curve with equation f(x, y) = k where k = f(x0, x1). When c, x0, x1 are positive, the
portion of the locus of f(x, y) = k is a loop in the positive quadrant. The mapping

Tc : (x, y) −→
(

y,
y + c

x

)
maps the loop into itself.

The equation fc(x, y) = k is equivalent to hc,k(x, y) = 0 where

hc,k(x, y) = x2y + xy2 + x2 + y2 − kxy + (c + 1)(x + y) + c

= xy(x + y) + (x + y)2 − (k + 2)xy + (c + 1)(x + y) + c

= (y + 1)x2 + (y2 − ky + (c + 1))x + (y + 1)(y + c) .

The function hc,k(x, y) is a symmetric polynomial quadratic in each variable. For each n, the terms xn−1

and xn+1 are the roots of the quadratic equation hc,k(x, xn) = 0, provided xn 6= 1. Indeed, from the relation
between the coefficients and the product of the roots of a quadratic, we corroborate the relation

xn−1xn+1 = xn + c . (9.1)

Moreover, we have

xn−1 + xn+1 = −
(

x2
n − kxn + c + 1

xn + 1

)
. (9.2)

This means that, if c and k are given, we can use (9.1) and (9.2) and a single seed x0 to define the sequence.
Choose x−1 and x1 to be the roots of the quadratic hc,k(x, x0) = 0, x2 (along with x0) to be the roots of
hc,k(x, x1) = 0, and so on.

67



This suggests the following formalization:

Definition. An allemand is a bilateral sequence {xn : n ∈ Z} formed from a seed x0 and a symmetric
polynomial h(x, y) which is quadratic in each variable, for which, given any integer n, xn−1 and xn+1 are
the two roots of the equation h(x, xn) = 0 (or, equivalently h(xn, x) = 0).

Observe that, once x−1 and x1 have been fixed, then the remainder of the sequence is uniquely determined.

We provide a preliminary exploration of this topic. There are three cases, according as the degree of
h(x, y) is 2, 3 or 4.

One way to understand the structure of allemands is to consider a dynamical system in the plane,
as we have done for the Lyness example. Given a point (x, y) on the locus of h(x, y) = 0, we define the
mapping T (x, y) = (y, z), where z is the value other than x (except in the case of a double root) for which
h(x, y) = h(z, y) = 0. Thus, T maps the locus to itself. The locus may be connected and may have several
components, bounded or unbounded. If there is a component which is a loop (homeomorph of a circle), it
is tempting to ask whether this loop is invariant under the action of T and whether the action of T on the
loop is conjugate to a rotation on a circle.

We can track the path of an allemand geometrically. Starting with the point (x0, x1). Locating the
intersection of the perpendicular to y = x from this point and the locus of h(x, y) = 0, locate the point
(x1, x0). The vertical line x = x1 meets the locus of h(x, y) = 0 again at the point (x1, x2). We can continue
in this way to obtain in turn each point (xn, xn+1).

§2. QUADRATIC ALLEMANDS.

Suppose that h(x, y) has degree 2, so that

h(x, y) = α(x2 + y2) + βxy + γ(x + y) + δ

= αx2 + (βy + γ)x + (αy2 + γy + δ)
.

We may assume that α = 1, since dividing h(x, y) by a constant does not change the allemand associated
with h(x, y).

Thus, let

h(x, y) = x2 + y2 + βxy + γ(x + y) + δ = x2 + (βy + γ)x + (y2 + γy + δ) .

Any allemand corresponding to this function must satisfy both of the recursions

xn+1 + xn−1 = −(βxn + γ) (9.3)

xn+1xn−1 = x2
n + γxn + δ (9.4)

It turns out that sequences that satisfy either of the recursions (9.3) or (9.4) are allemands. If (9.3) is
satisfied, then

xn+1xn−1 − x2
n − γxn = −xn−1(βxn + γ + xn−1)− x2

n − γxn

= −xn(βxn−1 + xn + γ)− γxn−1 − x2
n−1 = xnxn−2 − x2

n−1 − γxn−1

so that xn+1xn−1 − x2
n − γxn−1 is an invariant for any recursion satisfying (9.3) alone. If we let δ be the

value of this invariant, then we have (9.4) holding as well, so that any sequence (9.3) turns out to be an
allemand.
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Similarly, if (9.4) is satisfied, then

xn+1 + xn−1 + γ =
x2

n + γxn + δ

xn−1
+ xn−1 + γ

=
1

xn−1
(x2

n + γxn + δ + x2
n−1 + γxn−1)

=
xn

xn−1

(
xn + γ +

x2
n−1 + γxn−1 + δ

xn

)
=

xn

xn−1
(xn + xn−2 + γ)

so that x−1
n (xn+1 + xn−1 + γ) is an invariant β and xn+1 + βxn + xn−1 + γ = 0. Thus, any sequence defined

by (9.4) alone is in fact an allemand.

We note the relations:
h(y,−(βy + x + γ)) = h(x, y)

and

h

(
y,

y2 + γy + δ

x

)
=

y2 + γy + δ

x2
h(x, y)

with the result that h(x, y) is an invariant for two consecutive terms of sequence (9.3) and h(x, y)/xy is an
invariant for two consecutive terms of (9.4).

Case 1: β = −2

If γ = 0, then xn+1 + xn−1 = 2xn and xn+1xn−1 = x2
n + δ, so that the allemand is an arithmetic

progression and the common difference d satisfies δ = −d2. For a real allemand, δ < 0 and the locus of
h(x, y) = 0 is a parallel pair of lines given by 0 = (x− y + d)(x− y − d). If δ = 0, then these lines coincide
and the allemand must be a constant.

If γ 6= 0, then, the recursion (9.3) has the general term xn = 1
2γn2 +λn+µ, with (9.4) giving a relation

between λ and µ and the coefficients of the function h(x, y). Since h(x, y) = (x − y)2 + γ(x + y) + δ, the
locus of h(x, y) = 0 is a parabola.

Case 2: β = 0.

Let τ2 = 1
2γ2 − δ. Then

h(x, y) =
(

x +
γ

2

)2

+
(

y +
γ

2

)2

− τ2 .

Since xn+1 + xn−1 = −γ, it follows that the allemand is a sequence of period 4 with periodic section

−γ

2
+ u,−γ

2
+ v,−γ

2
− u,−γ

2
− v ,

where
(−γ

2
+ v)(−γ

2
− v) = δ − (−γ

2
+ u)(−γ

2
− u)

or
u2 + v2 = τ2 .

The successive points (xn, xn+1) are displaced by a rotation of 90◦ around a circle of radius τ and centre
(−γ

2 ,−γ
2 ).

Case 3: β = 2.

The recursion (9.3) has the general solution xn = (ρn + σ)(−1)n − 1
4γ and we get an allemand with

δ = (γ2/4)− ρ2. The function h(x, y) has the form

h(x, y) =
[
(x + y) +

1
2
γ

]2

+
(

δ − 1
4
γ2

)
.
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When γ2 ≥ 4δ, then h(x, y) can be factored and any real seed will yield a real allemand. When γ2 < 4δ,
there are no real allemands corresponding to h(x, y). When γ2 = 4δ, then we get a period-2 allemand with
repeating entries x0 and −(x0 + γ/2).

Example 9.1. Suppose γ = δ = 1 and β = 2. Then

h(x, y) = (x + y)2 + (x + y) + 1 =
(x + y)3 − 1
x + y − 1

.

This function has no allemands that are entirely real. However, for any seed x0 = u, we can generate an
allemand with x−1 = ω2 − u and x1 = ω − u, where ω is an imaginary cube root of 1.

Example 9.2. Suppose β = δ = 2 and γ = −3. Then

h(x, y) = (x + y)2 − 3(x + y) + 2 = (x + y − 2)(x + y − 1) .

The seed u gives rise to the allemand

{· · · ,−u + 2, u,−u + 1, u + 1,−u, u + 2,−u− 1, u + 3, · · ·} .

Example 9.3. Geometric progressions. From (4), we get a geometric progression if and only if γ =
δ = 0. Since xn+1 + βxn + xn−1 = 0, the common ratio must satisfy r2 + βr + 1 = 0. ♣

Suppose that α = 1 and β 6= −2. For any real κ,

h(x + κ, y + κ) = x2 + y2 + βxy + [κ(2 + β) + γ](x + y) + h(κ, κ)

and one can select κ so that the coefficients of the linear term vanishes. This has the effect of translating
the allemand by a constant and not changing its essential character. We can thus suppose without loss of
generality that

h(x, y) = x2 + y2 + βxy + δ .

Since h(x, y) is the sum of a homogeneous polynomial and a constant, we can change scale and assume that
δ is equal to 0, 1 or -1.

Example 9.4. Let
hu(x, y) = x2 + y2 + βxy − 1 .

Since xn−1 and xn+1 are the two roots of the quadratic equation

t2 + βxnt + (x2
n − 1) = 0 ,

the theory of the quadratic informs us that, for each integer n,

xn+1 + xn−1 = −βxn

xn+1xn−1 = x2
n − 1 .

The function

f(x, y) =
x2 + y2 − 1

xy

is an invariant of the transformation T : (x, y) → (y, (y2 − 1)/x).

Since the sequence {xn} in particular satisfies the second order recursion xn+1 = −βxn − xn−1, it will
or will not be periodic according to the character of the zeros of the characteristic polynomial t2 + βt + 1,
regardless of what its values for x0 and x1 are.
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We also observe that the form xn+1xn−1 − x2
n is independent of n for each second order recursion of

the type xn+1 = −βxn − xn−1, so that such a recursion is an allemand corresponding to the polynomial
x2+y2+βxy+δ, where δ is the common value of the form. In 1993, Problem A-2 on the Putnam Competition
asked students to prove that the condition x2

n−xn−1xn+1 = 1 on a sequence entailed that the same sequence
also satisfied the linear recursion for some β.

Example 9.5. Suppose that β = −2 cos θ with 0 < θ < π, γ = 0 and δ = −1, so that

h(x, y) = x2 + y2 − (2 cos θ)xy − 1 .

Since xn+1 − (2 cos θ)xn + xn−1 = 0, xn must have the form xn = a cos nθ + b sinnθ for some parameters a
and b. Since 1 = x2

n − xn+1xn−1, we must have (a2 + b2)(1 − cos 2θ) = 2. If θ is a rational multiple of π,
then {xn} is periodic for each choice of a and b.

The locus of h(x, y) = 0 is an ellipse. Let us make the index n continuous and calibrate it so that x0 = 0
and x1 = 1. Then

xt =
sin tθ

sin θ
.

The points on the ellipse have the form (
sin tθ

sin θ
,
sin(t + 1)θ

sin θ

)
for t ∈ R, and the ellipse is homeomorphic to the interval [0, 2π/θ] with the ends identified. The mapping T
described in the introduction is conjugate to the rotation t −→ t + 1 (mod 2π/θ).

§3. CUBIC ALLEMANDS

Let
h(x, y) = x2y + xy2 + α(x2 + y2) + βxy + γ(x + y) + δ

= (y + α)x2 + (y2 + βy + γ)x + (αy2 + γy + δ) .

There is a singular case. Suppose we try to seed the allemand with x0 = −α. If α2 − βα + γ = 0, then
h(x,−α) is constant and the situation degenerates. If α2 − βα + γ 6= 0, then h(x,−α) = 0 has single root,
namely

x = −
[

α2 − γα + δ

α2 − βα + γ

]
and we could take x1 to be this value and then define xn for n ≥ 0, at least until we arrive at an index n for
which xn = −α.

Example 9.6. Let α = γ = δ = 0, β 6= 0, so that h(x, y) = xy(x + y + β). Start with the seed u.
Then h(x, u) = 0 if and only if x = 0 or x = −u− β. We cannot proceed further in the x = 0 direction, but
h(x,−u− β) = x(−u− β)(x− u) = 0 leads to x = 0 in the other direction. So we have a closed sequential
segment {0, u,−u− β, 0} which cannot be extended in either direction.

Example 9.7. Let α = β = γ = δ = 1 so that h(x, y) = (y + 1)x2 + (y2 + y + 1)(x + 1). Starting with
the seed −1, we get the closed sequential segment {−1,−1}. ♣

We now consider allemands that avoid the term −α. Any such allemand corresponding to function
h(x, y) satisfies both of the recursions

xn+1 + xn−1 = −
[
x2

n + βxn + γ

xn + α

]
(9.5)

xn+1xn−1 =
αx2

n + γxn + δ

xn + α
(9.6)
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Proposition 9.1. We have

h

(
αy2 + γy + δ

x(y + α)
, y

)
=

αy2 + γy + δ

x2(y + α)
h(x, y)

and

h

(
−

[
αy2 + βy + γ

y + α

]
− x, y

)
= h(x, y)

with the result that h(x,y)
xy is invariant along any recursion satisfying (6) and h(x, y) is invariant along any

recursion satisfying (5).
It follows that, given a sequence {xn} satisfying (9.6), we can select β so that h(xn, xn+1) = 0 and so

it is an allemand.
Similarly, given a sequence {xn} satisfying (9.5), we can select δ so that h(xn, xn+1) = 0 and so it is an

allemand.
Any recursion satisfying either (5) or (6) will satisfy the other with a suitable choice of parameters.

Proof.

h

(
αy2 + γy + δ

x(y + α)
, y

)
= (y + α)

(αy2 + γy + δ)2

x2(y + α)2
+ (y2 + βy + γ)

αy2 + γy + δ

x(y + α)
+ (αy2 + γy + δ)

=
αy2 + γy + δ

x2(y + α)

[
(αy2 + γy + δ) + x(y2 + βy + γ) + x2(y + α)

]
=

αy2 + γy + δ

x2(y + α)

[
x2y + y2x + α(x2 + y2) + βxy + γ(x + y) + δ

]
=

αy2 + γy + δ

x2(y + α)
h(x, y) .

h

(
−

[
y2 + βy + γ

y + α

]
− x, y

)
= (y + α)

[
x2 +

2x(y2 + βy + γ)
y + α

+
(y2 + βy + γ)2

(y + α)2

]
− (y2 + βy + γ)

[
y2 + βy + γ

y + α
+ x

]
+ (αy2 + γy + δ)

= x2y + αx2 + 2xy2 + 2βxy + 2γx− xy2 − βxy − γx + αy2 + γy + δ

= h(x, y) .

The remaining statements of the proposition follow from these relations. If (9.6) holds, we select β so
that h(x0, x1) = 0; it then follows by induction that h(xn, xn+1) = 0 and so the recursion satisfies (9.5). A
similar argument applies if we assume that (9.5) holds. ♠

Example 9.8. Constant allemands. Suppose h(x, y) = x2y +xy2 +α(x2 + y2)+βxy + γ(x+ y)+ δ has
a constant allemand for which xn = κ for all n. Then t = κ must be a double root of the quadratic equation
h(t, κ) = 0. In other words, not only

h(t, κ) = (κ + α)t2 + (κ2 + βκ + γ)t + (ακ2 + γκ + δ)

but also its derivative
2(κ + α)t + (κ2 + βκ + γ)

must vanish when t = κ, i.e., h(κ, κ) = 2κ3 + (2α + β)κ2 + 2γκ + δ = 0 and 3κ2 + (2α + β)κ + γ = 0.
Subtracting κ times the second equation from the first yields the necessary condition κ3 = γκ+δ for there to
be a constant allemand {κ}. Conversely, for any γ and δ with δ 6= 0, we choose real κ for which κ3 = γκ + δ
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and then select α and β so that 2α + β = −3κ − γ/κ to obtain a constant allemand. To obtain the zero
sequence as a constant allemand, it is necessary and sufficient to take γ = δ = 0.

Example 9.9. h(x, y) = x2y +xy2 +α(x2 + y2)+2αxy = (y +α)x2 +(y2 +2αy)x+αy2 = [xy +α(x+
y)](x + y). 0 seeds the constant allemand. In general, any term {xn} in an allemand has neighbours −xn

and −αxn/(xn + α). If we seed with x0 = −α, we get the unilateral sequence

{−α, α,−α/2, α/2,−α/3, α/3, · · · ,−α/m, α/m, · · · .}

Example 9.10. h(x, y) = x2y + xy2 + α(x2 + y2 + xy)
Any allemand satisfies xn+1 + xn + xn−1 = 0 and so is periodic with period 3, the periodic segment

being of the form {u, v,−u− v} with u, v, α related by (u2 + uv + v2)α + (u + v)uv = 0. ♣

If H(x, y) = h(x + κ, y + κ), and if {xn} is an allemand for h, then {xn − κ} is an allemand for H; thus
there is a one-one correspondence between the allemands for the two functions. Since

H(x, y) = x2y + xy2 + (α + κ)(x2 + y2) + (β + 4κ)xy + (3κ2 + 2ακ + βκ + γ)(x + y) + h(κ, κ)

we can select κ to make a desired coefficient vanish.

Replacing (x, y) by (x− α, y − α) in a given allemand function transforms it to the form

h(x, y) = x2y + xy2 + βxy + γ(x + y) + δ = yx2 + (y2 + βy + γ)x + (γy + δ)

and yields the recursion relations

xn+1 + xn−1 = −
(

x2
n + βx + γ

xn

)
= −

(
xn + β +

γ

xn

)
xn+1xn−1 =

γxn + δ

xn
= γ +

δ

xn
.

Example 9.11. h(x, y) = x2y + xy2 + βxy + γ(x + y)
This yields an allemand of period 4, regardless of the starting value. If u, v are consecutive terms, then

the next two terms are γ/u, γ/v and −β is the sum of four consecutive terms.

Example 9.12. h(x, y) = x2y + xy2 + βxy + δ
In this case, we find that xn+1 + xn + xn−1 = −β and xn+1xnxn−1 = δ so that the allemand must have

period 3. If xn = aωn+bω2n−β/3 (where ω is an imaginary cube root of unity), then δ = a3+b3−abβ−β3/27.

Proposition 9.2. An allemand generated by the function h(x, y) = x2y + xy2 + βxy + γ(x + y) + δ is
periodic of period dividing 5 regardless of seed if and only if γ3 + δ2 = βγδ.

Proof. We can work from either recurrence satisfied by the allemand. From the first, we have

xn+2 + xn+1 + xn = −β − γ

xn+1

xn + xn−1 + xn−2 = −β − γ

xn−1

whence

xn+2 + xn+1 + xn + xn−1 + xn−2 = −2β − γ

(
xn+1 + xn−1

xn+1xn−1

)
− xn

= −2β + γ

(
x2

n + βxn + γ

γxn + δ

)
− xn

=
−(βγ + δ)xn + (γ2 − 2βδ)

γxn + δ

= −
(

β +
δ

γ

)
+

(
γ3 + δ2 − βγδ

γ2xn + γδ

)
.
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The allemand has period 5 if and only if the sum of any five consecutive terms is constant. This will
occur if and only if the term involving xn vanishes identically, i.e., if and only if the required condition holds.

An alternative argument uses the product of five consecutive terms. We have

xn+2xn+1x
2
nxn−1xn−2 = (γxn+1 + δ)(γxn−1 + δ)

= γ2

(
γxn + δ

xn

)
− γδ

(
xn + β +

γ

xn

)
+ δ2

= (γ3 + δ2 − βγδ)− γδxn

whence

xn+2xn+1xnxn−1xn−2 = −γδ +
(

γ3 + δ2 − βγδ

xn

)
.

The result again follows. �

Example 9.13. If hc,k(x, y) = x2y + xy2 + x2 + y2 − kxy + (c + 1)(x + y) + c, we compute

Hc,k(x, y) = hc,k(x− 1, y − 1) = x2y + xy2 − (k + 4)xy + (k + c + 2)(x + y)− (k + c + 2)

= yx2 + [y2 − (k + 4)y + (k + c + 2)]x + (k + c + 2)(y − 1) .

This has the form under discussion, where β = −(k + 4), γ = −δ = k + c + 2. It is readily checked that

γ3 + δ2 − βγδ = (k + c + 2)2(c− 1) .

If k + c+2 = 0, then the allemand degenerates. Regardless of the seed, 0 is a root of the quadratic equation,
and if we then plug in 0 to get the neighbouring entries, the quadratic degenerates. Therefore, we should
suppose that k + c + 2 6= 0. Thus, we see that every allemand from hc,k(x, y) is of period 5 if and only if
c = 1, confirming the observation made in [2]..

Proposition 9.3. Suppose there is an allemand {· · · , λ, µ, λ, µ, · · ·} of prime period 2 corresponding to
the function h(x, y) = x2y + xy2 + βxy + γ(x + y) + δ. Then we have

λ + µ = −β = − δ

γ

and
λµ = −γ .

Conversely, if the conditions β2 +4γ 6= 0 and βγ = δ holds, then there is an allemand of period 2 whose
entries are given by the roots of the quadratic equation t2 + βt− γ = 0.

Proof. Suppose that there is an allemand of period 2 as specified. Then

2λ = −
(

µ2 + βµ + γ

µ

)
and 2µ = −

(
λ2 + βλ + γ

λ

)
whence

2λµ + µ2 + βµ + γ = 0 and 2λµ + λ2 + βλ + γ = 0 .

Taking the difference of the two equations yields

(λ− µ)(λ + µ + β) = 0

whence λ + µ = −β. On the other hand, starting with

2λ = −µ− β − γ

µ
and 2µ = −λ− β − γ

λ
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and taking the difference yields

(λ− µ) = −γ

(
λ− µ

λµ

)
whence λµ = γ.

Similarly, λ2µ = γµ + δ and λµ2 = γλ + δ yield λµ(λ − µ) = −γ(λ − µ) whence λµ = −γ (as before).
Also λ2 = γ + δ

µ and µ2 = γ + δ
λ yield after taking the difference and dividing out λ− µ, λ + µ = δ

λµ = − δ
γ .

Conversely, let h(x, y) = x2y + xy2 + βxy + γ(x + y) + βγ and suppose that λ and µ are the distinct
roots of the quadratic equation t2 + βt− γ = 0. Then λ + β = −µ and γ = −λµ, so that

h(x, λ) = λx2 + (λ(λ + β) + γ)x + γ(λ + β)

= λ(x2 − 2µx + µ2) = λ(x− µ)2

so that both neighbours of the element λ are µ. Similarly, both neighbours of µ are λ and the result follows.
♠

Example 9.14. h(x, y) = x2y+xy2−3xy−2(x+y)+6 = yx2+(y2−3y−2)x+(−2y+6). We have that
h(x, 1) = (x−2)2; h(x, 2) = 2(x−1)2; h(x, 1/2) = (1/4)(x−4)(2x−5), h(x, 4) = 2(2x−1)(x+1); h(x,−1) =
−(x− 4)(x + 2), h(x,−2) = −2(x + 1)(x− 5), h(x, 5) = (x + 2)(5x− 2), h(x, 2/5) = (1/10)(x− 5)(5x− 13).
This function generates the period 2 allemand {· · · , 1, 2, 1, 2, · · ·} as well as the (apparently) nonperiodic
allemand {· · · , 5/2, 1/2, 4,−1,−2, 5, 2/5, · · ·}.

§4. QUARTIC ALLEMANDS.

Let
h(x, y) = x2y2 + αxy(x + y) + β(x2 + y2) + γxy + δ(x + y) + ε

= (y2 + αy + β)x2 + (αy2 + γy + δ)x + (βy2 + δy + ε) .

Then allemands avoiding the roots of y2 + αy + β = 0 satisfy the recursions

xn+1 + xn−1 = −
[
αx2

n + γxn + δ

x2
n + αxn + β

]

xn+1xn−1 =
βx2

n + δxn + ε

x2
n + αxn + β

.

Example 9.15. As in the cubic case, the situation with the constant allemand {0} requires that
δ = ε = 0.

Since

h(κx, κy) = κ4(x2y2 + κ−1αxy(x + y) + κ−2β(x2 + y2) + κ−2γxy + κ−3δ(x + y) + κ−4ε)

and h(x − 1
2α, y − 1

2α) = x2y2+ (a quadratic in x and y), we can change scale and position and suppose
without loss of generality that α = 0 and β = ±1.

Example 9.16. h(x, y) = x2y2 − (x2 + y2). If the allemand is seeded by u > 1, then it has period
4 with four successive entries u, u(u2 − 1)−1/2, −u and −u(u2 − 1)−1/2. When u =

√
2, then the segment

becomes
√

2,
√

2, −
√

2 and −
√

2.

More generally, let h(x, y) = x2y2 − (x2 + y2) + ε with ε 6= 1. In this case, we obtain an allemand of
period 4 for which xn+1 +xn−1 = 0 and xn+1xn−1 = (x2

n− ε)/(x2
n− 1). When ε = 1, the locus of h(x, y) = 0

is the union of four lines with equations x = ±1, y = ±1.
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§5. PELL’S EQUATION.

A generalized (quadratic) Pell’s equation has the form x2 − dy2 = k, where d is a positive nonsquare
integer and k is an integer, and solutions are sought in integers x and y. The equation x2 − dy2 = 1
always has a fundamental solution (x, y) = (u, v) for which the complete collection of solutions is given by
(x, y) = (un, vn) where

un + vn

√
d = (u + v

√
d)n

where n runs over all the integers. We suppose that (u, v) is such a fundamental solution and that (x, y) =
(r, s) is a particular solution of x2 − dy2 = k. We can get other solutions of x2 − dy2 = k by transforming
(x, y) = (r, s) to (x, y) = (ru + dsv, rv + su) and iterating this operation.

Suppose that z = rv + su is the second member of the transformed solution. We form a symmetric
quadratic equation that involves s and z that will lead to a bilateral sequence for the second member of
solutions of x2 − dy2 = k. From r = (z − su)/v, we get from r2 − ds2 = k that

(z − su)2 − dv2s2 = v2k ,

which simplifies to
z2 − 2usz + s2 − v2k = 0 .

Let p(y, z) = y2−2uyz+z2−v2k, and note that p(y, z) is symmetric in y and z. We can define the allemand
{sn} as follows.

Let s0 = s, and let s−1 and s1 be the two solutions of the quadratic equation p(s0, z) = 0 with s−1 ≤ s1.
We can continue on to define the allemand with p(si, si+1) = 0.

We find that ds2
n + k is always an integer square and that the recursions

sn+1 + sn−1 = 2usn

and
sn+1sn−1 = s2

n − v2k

are both satisfied.

If k < 0 and the allemand has a positive term, then all of its terms are positive. If s0 is the smallest
term, then the allemand decreases to s0 and increases thereafter. If k > 0 and the allemand contains at least
one nonnegative term, with s0 the smallest positive term, then the allemand is strictly increasing.

Example 9.17. The equation x2−2y2 = 7 is satisfied in particular by (x, y) = (3, 1). The fundamental
solution of x2 − 2y2 = 1 is (x, y) = (3, 2). Creating the allemand with s0 = 1 leads to

{· · · ,−3771,−647,−111,−19,−3, 1, 9, 53, 309, 1801, 10497, · · ·}

and the corresponding solutions that include (x, y) = (27,−19), (5,−3), (3, 1), (13, 9). Another solution is
(x, y) = (5, 3), which leads to another allemand with s0 = 3 and sequence of solutions.

Example 9.18. The equation x2−2y2 = −7 has the solution (x, y) = (1, 2). The allemand with s0 = 2
is

{· · · , 4348, 746, 128, 22, 4, 2, 8, 46, 268, 1562, · · · .}

More on this topic can be found in [1, 49− 52].

§6. TANGENT CIRCLES AND SPHERES.

An interesting instance of this quadratic method of extending a sequence arises in the work of H.S.M.
Coxeter on tangent spheres. [4, 5]. Suppose, in the plane, we have a sequence of circles such that any
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consecutive four of them are mutually tangent. Let εn be the reciprocal of the radius of the nth circle, signed
to account for internal and external tangency. Then for each integer n,

(εn + εn+1 + εn+2 + εn+3)2 = 2(ε2n + ε2n+1 + ε2n+2 + ε2n+3)

so that εn and εn+4 are the two roots of the quadratic equation

x2 − 2(εn+1 + εn+2 + εn+3)x + [ε2n+1 + ε2n+2 + ε2n+3 − 2(εn+1εn+2 + εn+1εn+3 + εn+2εn+3)] = 0

with the result that
εn + εn+4 = 2(εn+1 + εn+2 + εn+3)

and
εnεn+4 = ε2n+1 + ε2n+2 + ε2n+3 − 2(εn+1εn+2 + εn+1εn+3 + εn+2εn+3) .

This can be generalized to m−dimensional Euclidean space. If {εn} is the sequence of radius reciprocals
of spheres, any consecutive m + 2 of which are pairwise tangent, then

m

m+1∑
i=0

ε2i =
( m+1∑

i=0

εi

)2

which makes the sequences {εn} an allemand.
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