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CHAPTER EIGHT

CURVES IN THE PLANE

§1. QUADRATICS

Algebraic curves are graphs of polynomials in two variables. Quadratic curves are either conic sections
or pairs of straight lines. Their study can be unified by casting the situation into the projective plane by
the use of homogeneous coordinates.

The general quadratic equation in the plane is given by

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0 ,

and this can represent an ellipse (in particular, a circle), an hyperbola, a parabola, an intersecting or parallel
pair of lines, or a degenerate locus. The first three of these, the conic sections are projectively related, and
can be studied together as one phenomenon in the real projective plane consisting of equivalent classes of
points (X,Y, Z) with X,Y, Z not all zero, and (X,Y, Z) ∼ (U, V,W ) when X : Y : Z = U : V : W . A regular
affine point (x, y) corresponds to the equivalence class of (x, y, 1), while (U, V, 0) is a “point at infinity” given
by the vector direction (U, V ) (i.e., the set of parallel lines in the direction of (U, V ) meet at the point of
infinity). These lines are parallel to the line Uy = V x and have slope V/U .

We can describe the locus in the projective plane by a homogeneous equation that, when satisfied by
(X,Y, Z), is satisfied also by all scalar multiples of this. The “homogenization” of the general quadratic is

aX2 + 2hXY + bY 2 + 2gXZ + 2fY Z + cZ2 = 0 .

The interplay between algebraic and geometric structure can be used to solve diophantine equations
over Q. Consider the Pythagorean diophantine equation x2 + y2 = 1. An obvious solution of this is
(x, y) = (−1, 0). Let m be an arbitrary rational. The line y = m(x+ 1) passes through (−1, 0) and a second
point on the circle x2 + y2 = 1 whose abscissa satisfies the equation

0 = (m2 + 1)x2 + 2m2x+ (m2 − 1) = (x+ 1)[(m2 + 1)x− (1−m2)] ,

so that the rational point (
1−m2

1 +m2
,

2m
1 +m2

)
also lies on the circle. (We know the coordinates of the point are rational, because one of the zeros and the
sum of the zeros of the quadratic for the abscissae are both rational.)

Setting m = p/q and casting the situation in the projective plane, we obtain the generic solution

(X,Y, Z) = (q2 − p2, 2pq, q2 + p2)

for the Pythagorean equation. If we take m = tan(θ/2), a rational number, we get the solution in the form
(x, y) = (cos θ, sin θ) and the group structure of rotation through the angle θ induces a group structure on
the solutions of the Pythagorean equation.

A similar technique involving the sum or product of the roots can be used to solve other quadratic
diphantine equations, even with more variables. For example, an obvious solution of the equation

x2 + y2 + z2 = 3xyz
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is (x, y, z) = (1, 1, 1). If we fix two variables, the equation is quadratic in the third:

x2 − (3yz)x+ (y2 + z2) = 0 .

If y, z are integers, then either both roots of this equation are integers with the sum 3yz or neither are
integers. Using this, we can construct an infinite family of solutions including

(1, 1, 1), (1, 1, 2), (1, 5, 2), (1, 5, 13), (29, 5, 2) .

§2. BEZOUT’S THEOREM

In complex projective space (X,Y, Z) any pair of lines either coincide or intersect in exactly one point;
we do not have to make exception for parallel lines as in affine space. This is a simple instance of a very
strong property in that the number of intersections of two algebraic curves is a product of the degrees of the
equations that represent them.

If C1 and C2 are two projective curves given by homogeneous polynomials of respective degrees d1 and
d2, and P is a common point, we can define the multiplicity of P at an intersection point. Its value is 1 if
the curves intersect transversally, i.e. their tangents have distinct directions, and greater than 2 otherwise.
The exact value is given by a rather technical definition.

Bezout’s Theorem says that the number of intersection points counting multiplicity of the two curves is
equal to the product of the degrees, provided the two curves do not have a common component (given by a
common factor of their polynomials). The affine version of this theorem says that the number of intersection
points does not exceed the product of the degrees.

For example, if C1 and C2 are both conic sections, then they have at most four points in common unless
they intersect in a line or coincide. (See [5, Chapter 1] for further details.)

§3. CUBIC CURVES.

Suppose that C1 and C2 are both cubic curves. By Bezout’s Theorem, they intersect in 9 points.
However, if D is a curve that goes through 8 of these points, it will in fact go through the ninth point as
well. This can be seen as follows.

Each cubic curve can be described by an equation of the form
∑
aijX

iY jZ3−i−j = 0, where there are
ten parameters aij corresponding to the conditions 0 ≤ i, j ≤ 3, i+ j ≤ 3. Every point on the curve imposes
a linear restriction on these parameters, so that nine points lead to nine homogeneous linear equations for
these ten coefficients aij . Normally, this system will have a unique solution up to a multiple of the vector of
coefficients. However, in the situation of Bezout’s Theorem, the nine points would be the set of intersection
points of two distinct curves.

To find a cubic such as D containing eight of the intersection points, we have to solve 8 homogenous
linear equations for the vector of 10 coefficients. The space of solutions is 2−dimensional. The coefficient
vectors for C1 and C2 constitute a basis for this space, and so the coefficient vector for D must be a linear
combination of them. Since C1 and C2 pass through the ninth point, so also must D. ♣

A cubic curve is irreducible if and only if, having integer or rational coefficients, its polynomial does not
factor nontrivially over Q. It is nonsingular at a point if and only if its affine realization in (x, y) does not
have both its partial derivatives vanishing at the point. Basically, the curve does not intersect itself nor have
a cusp at a nonsingular point. A flex of C is a point at which C is nonsingular and intersects its tangent at
least three times (think of y = x3 at the origin). A projective transformation can be found that removes the
flex to the point at infinity and renders the equation of the curve into the form

y2 = x3 + bx+ c ,

60



an elliptic curve.

We can define a group operation on the points of a cubic curve C as follows. We note that, as the
coordinates of the points on the curve belong to a particular field, say the rationals, then the “sum” of the
points under the group operations will have coordinates in the same field.

Begin by specifying a point O, which is generally a flex point of the curve; this is going to be the identity.
In the complex projective plane, each line passing through two points of C passes through a third. (If we are
in the affine plane, one of these points may be at infinity.) For P and Q on the cubic curve, let P ∗Q be the
third point of intersection of the line PQ with the curve; note that if these two points coincide, the line PQ
is the tangent. Define P + Q to be the intersection of the cubic curve with the line that passes through O
and P ∗Q.

It is straightforward to see that the group operation + is commutative. O is the identity, since O, O ∗P
and P are collinear and so P = P +O. Let S be the point where the tangent at O intersects C. Then −P is
the third point of intersection of C and the line that passes through P and S. Since P ∗ (−P ) = S, it follows
that P + (−P ) = O.

Proving that the group law is associative is more interesting and delicate. We have to show that
(P +Q) +R = P + (Q+R); it is sufficient to show that (P +Q) ∗R = P ∗ (Q+R).

Consider the following ten points:

O,P,Q,R, P ∗Q,P +Q,Q ∗R,Q+R, (P +Q) ∗R,P ∗ (Q+R)

in the given cubic curve, C. Let D be the cubic curve consisting of the union of the three lines:

L1 through P,Q, P ∗Q

L2 through O,Q ∗R,Q+R

L3 through P +Q,R, (P +Q) ∗R

and let E be the cubic curve consisting of the union of the three lines:

M1 through Q,R,Q ∗R

M2 through O,P ∗Q,P +Q

M3 through P,Q+R,P ∗ (Q+R) .

The curve E passes through eight of the nine intersection points of C and D (all but possibly (P+Q)∗R),
so it must pass through the ninth, namely (P+Q)∗R. Since C and E cannot have more than nine intersection
points, we must have (P +Q) ∗R = P ∗ (Q+R).

§4. THE LYNESS RECURSION

It is readily checked that, except for some anomalous cases, the recursion {xn} defined by

xn+1 =
xn + 1
xn−1

is periodic with period 5. In fact, if you start with initial terms (called seeds) x and y unequal to −1 or 0, the
sequence cycles through x, y, (y+1)/x, (x+y+1)/(xy), (x+1)/y. It is natural to consider the generalization
of this recursion

xn+1 =
xn + c

xn−1
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where c ≥ 0. We suppose that the seeds x0 and x1 are given, so that every other xn can be determined,
with division by 0 never occurring. When c = 0, we find that the recursion has period 6. However, for other
values of c the situation is more complicated. We can conveniently analyze the sequence by plotting points
(xn, xn+1), where n ranges over the integers. We are looking for orbits under the planar transformation

Tc : (x, y) −→
(
y,
y + c

x

)
.

Peter Harrison of Toronto, ON observed that, when c is positive and unequal to 0 or 1, the orbits appear
to fill up loops in the positive quadrant. Perhaps these loops can be described by an algebraic equation. So
we can ask, given c and any (x0, x1), is there a function fc(x, y) for which

fc(xn, xn+1) = fc(x0, x1)

for each n. Such a function should satisfy the identity

fc(x, y) = fc

(
y,
y + c

x

)
.

Fortunately, we can get an idea of what such a function might be by looking at the c = 0 and c = 1 cases;
here we can construct such a function by adding together the finite number of entries in a general orbit.
Thus,

f1(x, y) = x+ y +
y + 1
x

+
x+ y + 1

xy
+
x+ 1
y

=
x2y + xy2 + x2 + 2x+ y2 + 2y + 1

xy
,

and
f0(x, y) = x+ y +

y

x
+

1
x

+
1
y

+
x

y

=
x2y + xy2 + x2 + x+ y2 + y

xy
.

These examples lead to a successful conjecture for the function, namely

fc(x, y) =
x2y + xy2 + x2 + (c+ 1)x+ y2 + (c+ 1)y + c

xy

=
(x+ 1)(y + 1)(x+ y + c)

xy
− (c+ 2) ,

and we can check by substitution that fc(x, y) = fc(y, (y + c)/x). In the positive quadrant, the function
f(x, y) achieves a global minimum at (α, α), where α = 1

2 (1+
√

1 + 4c). This is a fixed point for the mapping
Tc.

For each value of k, the equation fc(x, y) = k can be recast as hc,k(x, y) = 0, where

hc,k(x, y) = x2y + xy2 + x2 + y2 − kxy + (c+ 1)(x+ y) + c

= xy(x+ y) + (x+ y)2 − (k + 2)xy + (c+ 1)(x+ y) + c

= xy(x+ y − k − 2) + (x+ y + c)(x+ y + 1)

= (y + 1)x2 + (y2 − ky + (c+ 1))x+ (y + 1)(y + c)

= (x+ 1)y2 + (x2 − kx+ (c+ 1))y + (x+ 1)(x+ c)
= (x+ 1)(y + 1)(x+ y + c)−Kxy ,
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with K = k + c + 2. Observe that hc,k is symmetric in x and y, so that hc,k(xn−1, xn) = hc,k(xn, xn+1) =
hc,k(xn+1, xn) with the result that xn−1 and xn+1 are the two roots of the quadratic equation hc,k(x, xn) = 0.

Proposition 8.1. There is no value of c, save 0 and 1, for which every sequence obtained and defined
is periodic with fixed period N .

Proof. The sequence with seed −1, t is

· · · ,−1, t,−t− c,−1,
1− c

t+ c
, · · · .

Since every third element is −1, the issue turns on whether the real mapping φc : t→ (1− c)/(t+ c) has a
univeral period independent of t.

When c 6= 0, 1, 2, φc has two fixed points, −1 and 1− c, one attractive and one repellent, so that there
is a neighbourhood of each free of periodic points. When c = 2, the fixed point −1 is attractive from the
right and repellent from the left, so again there is a neighbourhood free of fixed points. ♠

It may happen, when c 6= 0, 1 that there are particular values of x0 and x1 yielding periodic sequences.
First, if the seeds are −1 and t, then fc(−1, t) = −(c+ 2) and

hc,−(c+2)(x, y) = (y + 1)(x+ 1)(x+ y + c)

with the result that each point (−1, t) lies on a degenerate cubic locus consisting of the union of three straight
lines y = −1, x = −1 and x+ y = −c. Since the quadratic equation hc,−(c+2)(−1, t) = 0 is degenerate, there
is no restriction on t (unless the sequence leads to a term with 0 denominator). If there are two consecutive
terms u, v, in the sequence for which u + v + c = 0, then the next term is −1. Thus, the sequences that
contain −1 are precisely those that satisfy fc(xn, xn+1) = −(c+ 2) for all n.

When y 6= −1, the quadratic hc,−(c+2) in x has precisely two roots, whose product is y + c. Suppose
x0 = u and x1 = v. Then we obtain

x−4 =
c(u2v + uv2) + cv2 + (c2 + 1)uv + cv

cuv + u2 + 2cu+ c2v + c2

x−3 =
cuv + cv + u+ c

u2 + cu

x−2 =
cv + u+ c

uv

x−1 =
u+ c

v

x0 = u

x1 = v

x2 =
v + c

u

x3 =
cu+ v + c

uv

x4 =
cuv + cu+ v + c

v2 + cv

x5 =
c(u2v + uv2) + cu2 + (c2 + 1)uv + cu

cuv + v2 + 2cv + c2u+ c2
.

Proposition 8.2. Suppose that the sequence {xn} does not contain −1.

(a) If x0 = x1, then x−n = xn+1 for each positive integer n.

(b) If, for some positive integer m, xm+1 = x−m, then either x0 = x1 or the sequence {xn} has period
2m+ 1.
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(c) If, for some positive integer m, x0 = x1 and the sequence is periodic with period 2m + 1, then for
2 ≤ r ≤ m, xr = x2m+2−r. Thus, the sequence is “symmetric” about the term xm+1.

(d) If, for some positive integer m, xm = x−m and xm+1 = x−(m−1), then xn is periodic with period
2m.

(e) If x0 = x1 and for some positive integer m, xm = xm+1, then the sequence {xn} is periodic with
period 2m.

(f) If, for some positive integer m, x0 = x1 = x2m = x2m+1, then xm = xm+1.

Proof. (a) This is established by induction.

(b) Let z be the common value of xm+1 and x−m. If k = fc(x0, x1), the roots of the quadratic equation
hc,k(z, t) = 0 are xm+2 and xm, as well as x−m+1 and x−m−1. If xm = x−m−1, then the consecutive pair
xm, xm+1 equals the consecutive pair x−m−1, x−m and the sequence has period 2m + 1. The remaining
possibility is that xm = x−m+1. This leads in turn to xk = x−k+1 where k takes the values m,m− 1, · · · , 1,
i.e., to x1 = x0.

(c) By an argument similar to that used in (b), we note that if u = x0 = x1, then u = x2m+2 and
x2 = x2m are the roots of a quadratic equation hc,k(u, t) = 0. This leads to the result.

(d) This is clear.

(e) Since x0 = x1, it follows that x−m+1 = xm and x−m = xm+1. Hence, the consecutive pair
x−m, x−m+1 is equal to the consecutive pair xm, xm+1.

(f) The hypothesis implies that {xn} is 2m−periodic. Hence xm = x−m = xm+1 as desired. ♠

We now examine the periodic behaviour of the mapping Tc.

Period 1. Tc has the fixed points (r, r) where r is one of the roots of the quadratic equation t2 = t+ c.
The Jacobean matrix of the Tc has the characteristic equation t2 − (1/r)t + 1 = 0. When r ≤ 1

2 , this has
two roots of the form cos θ + i sin θ, and Tc behaves roughly like a rotation. In fact, Tc takes nearby loops
into themselves; we can refer to a rotation number, which is the limit as n→∞ of the number of times we
move clockwise around the loop in the first n points divided by n.

Period 2. For a sequence {· · · , p, q, p, q, · · ·} of prime period 2, we have that p2 = q+ c and q2 = p+ c,
whence p + q = −1 and p and q are the roots of the quadratic equation t2 + t + 1 = c. It happens that
fc(p, q) = −3, independently of c. Thus, (p, q) and (q, p) lie on the locus of hc,−3(x, y) = 0 where

hc,−3(x, y) = (x+ y + 1)(xy + x+ y + c) .

They lie at the intersection of the straight line x+ y = −1 and the hyperbola (x+ 1)(y + 1) = 1− c.

Period 3. Letting x0 = u and x1 = v and equating x−1 = x2 and x0 = x3 leads to

u2 + cu = v2 + cv ⇐⇒ (u− v)(u+ v + c) = 0

and
u2v = cu+ v + c .

Taking c 6= 1 to avoid a degenerate case, we find that the only possibility for a sequence of period 3 is

{· · · ,−1,−1, 1− c, · · ·}

and the points of the 3−orbit on which Tc acts are the points where the lines x = −1, y = −1 and x+y = −c
intersect in pairs.

Period 4. When x0 = u and x1 = v, we set x−2 = x2 and x−1 = x3 leads to 0 = (u − v)(u + v + 1).
We pick up sequences of period 1 and period 2, and there are no sequences of prime period 4.

64



Period 6. Equating x3 = x−3 and x4 = x−2 leads to (v+1)(u2−v− c) = 0 and (u+1)(v2−u− c) = 0.
We pick up sequences of periods 1, 2, 3 and find there are no sequences of prime period 6, when c 6= 0.

Period 7. Suppose, to begin with, we have a sequence of period 7 with adjacent equal entries x0 =
x1 = u. Then x4 = x−3 holds automatically, and x5 = x−2 leads to

0 = (u2 − u− c)[2cu3 + (1 + 3c+ c2)u2 + (2c+ 2c2)u+ c2) .

The first factor picks up the constant sequence. From the second factor, we get a sequence for which
fc(u, v) = −((1/c) + 1 + c). In the case that x0 = u 6= x1 = v, the condition x4 = x−3 leads to the equation

0 = c(u− v)hc,−(1/c+1+c)(u, v) .

Thus, a point of smallest period 7 must lie on the curve hc,k(x, y) = 0 where k = −(1/c + 1 + c) and so
cannot lie in the positive quadrant.

Period 8. Every sequence of period 8 returns to adjacent equal values at every fourth term so we can
take x0 = x1 = u and x4 = x5 = v. The latter equation leads to 2cu2 + (1 + 2c)u + c = 0, so v = 1

2u. If
c = (1−

√
2)/2, the quadratic has coincident roots and we get sequences with constant term 1/

√
2 or −1/

√
2.

Noting that x5 − x−3 has numerator c(u2 − v− c)hc,k(u, v) where k = −(2c2 + 1)/c, we find that (u, v) is of
period 8 if and only if hc,k(u, v) = 0 where k = −(2c2 + 1)/c.

Period 9. (u, v) is of smallest period 9 for Tc if and only if hc,k(u, v) = 0 for k = (c3− 3c2− 1)/c. This
gives the first case of periodic points in the positive quadrant when c is sufficiently large.

Period 10. When c = 2 ±
√

5. there are no sequences with smallest period 10, as they collapse into
constant sequences. Otherwise (excluding c = 0, 1), we find that (u, v) has smallest period 10 if and only if
hc,k(u, v) = 0 with k = −(1 + c+ 3c2 + c3)/(c2 + c).

Numerical investigation led to the conjecture: Let c > 1 and r be a positive real for which c = r2 − r.
If p/q is a rational in lowest terms with 1/5 < p/q < (1/2π) arccos(1/2r), there is a unique value of k for
which the points of period q for Tc, for which one traverses clockwise around the loop on average p times to
first return to the initial point of the orbit, is coincident with the set of points on the curve fc(x, y) = k. On
each loop fc(x, y) = k, Tc is conjugate to a rotation of the circle.

This situation can be tackled using the theory of elliptic curves. Consider the curve Ck:

0 = (y + 1)x2 + (y2 − ky + (c+ 1))x+ (y + 1)(y + c) = hc,k(x, y) .

It has an asymptote y + 1 = 0. Its rendition in the projective plane has the form (X + T )(Y + T )(X + Y +
cT )−KXY T = 0. It contains the points P ∼ (1, 0, 0) and O ∼ (1,−1, 0) at infinity as well as A ∼ (−c, 0, 1)
and B ∼ (−1, 0, 1). A group law can be defined on this elliptic curve with identity O. The action of Tc can
be defined as follows.

Suppose that (u, v) ∈ Ck. The line y = v intersects the curve Ck at the point (u′, v), where u and u′ are
the roots of the equation

0 = (v + 1)x2 + (v2 − kv + (c+ 1))x+ (v + 1)(v + c) .

The root u′ is equal to (v + c)/u, so that the second point of intersection is ((v + c)/u, v). But then we flip
this over the line y = x to arrive at Tc(u, v) = (v, (v + c)/u).

Thus, if M is a point on Ck, Tc(M) = M + P , and M is a n−periodic point on Ck if and only if
nP = 0. If n = 2k, then kP = −kP and the two coordinates of kP are equal (there are three possibilities).
If n = 2k+ 1, then −kP = kP + P , so that, if kP = (u, v), then (v, u) = (v, (v+ c)/u) and v+ c = u2. Also
−2(kP ) = P , so that the tangent to the cubic at kP is horizontal.

65



An integer n ≥ 2 is an algebraic minimum period if nP = 0 for at least one value of (c, k) with c > 0. It
is acceptable if nP = 0 occurs for at least one (c, k) with c > 0 and k > fc(r, r), where (r, r) is the positive
quadrant fixed point. Thus, n = 7, 8 are algebraic but not acceptable, but n = 9 is algebraic and acceptable.

From a theorem of Mazur, for c rational, there is no minimum period n with n = 11 or n ≥ 13 among
rational points. For a fixed c > 0 and k > fc(r, r), the mapping Tc is conjugate to a rotation on a circle
with rotation number in the interval bounded by 1/5 and arccos(1/2r)/2π, which is contained in the interval
[1/6, 1/4]. The integer n is a minimal acceptable period only if there is a positive quadrant loop acted on
by Tc with rotation number m/n ∈ [1/6, 1/4]. This excludes the following numbers as minimal acceptable
periods 2, 3, 4, 6, 7, 8, 10, 12, 15, 18, 20 and possibly 42.
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