
The angle in a semicircle

Consider the following result:

Proposition. Let A and B be opposite ends of the diameter of a circle, and let P be

a point on its circumference. Then angle APB is right.

This geometric result is familiar to many high school students. Although it is simply
stated, there are many dimensions to it and the mere statement of the result will inevitably
fail to convey its richness. As with any geometric result, certain properties are highlighted
for consideration and related; the posited relationship might seem quite mysterious and
incomprehensible. In order to feel more at home and perceive that the result is somehow
natural, it is desirable to probe deeply and sense how the mathematical structure is woven
together.

This particular result can be approached from many directions (Barbeau, 1988), and
the purpose of this note is to comment on the mathematical content of some of these.

The most straightforward proof is probably to join P to the centre O of the circle,
observe that triangles AOP and BOP are isosceles and deduce that the angle APB is
equal to the sum of the remaining two angles of the triangle APB.

What does such a proof do for us? The result is briefly stated; all we are given is that
A, B and P are three points on a circle whose diameter is AB. Accordingly, we have to
parse these facts closely for whatever meaning they may yield. What does it mean for A,
B and P to lie on a circle? It means that they are the same distance from some point O.
In other words, this proof forces students to move from an intuitive idea of what a circle
is to a characterization of it, in this case, as a set of points a fixed distance from a certain
point. The significance of the circle in the hypothesis is laid bare.

In fact, this is a common value of proofs. The mere statement of a theorem will
involve terminology and (if we are lucky) contain some intuitive content for the student.
At the point where try to explicitly link hypotheses and conclusion, we need to unpack
the meaning of the terms and identify those particular characteristics that are particularly
pertinent to the situation.

Other proofs raise different issues. Paraphrasing John Donne’s dictum that no man is
an island, we can assert that no result stands completely on its own. It fits into some kind
of mathematical context, and different proofs indicate the places in the mathematical world
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that the result lives. There is a second proof, similar in some respects to the foregoing
one, that situates the result in a larger context.

Suppose, keeping the same notation, that we produce the segment PO through O to
a point X. Observe that XOB is the exterior angle of isosceles triangle POB and so is
equal to twice angle OPB. Similarly, angle XOA is equal to twice angle OPA. Hence

∠APB = ∠OPA + ∠OPB =
1
2
(∠XOA + ∠XOB) =

1
2
(180◦) = 90◦ .

However, by making a slight manoeuvre, we can see that the result is the special case of
a more general one. Imagine that A and B are moved independently from their original
positions, while the position of P is unchanged. Then exactly the same argument can be
given to show that ∠AOB, the angle subtended by the chord AB at the centre of the
circle, is equal to twice ∠APB, the angle subtended by AB at the circumference.

There are some areas of mathematics, such as algebra, calculus and trigonometry,
that provide a general framework for proving results of a particular type. In using general
techniques, we are situating the result among a category of those that can be handled
in a specific way. This focuses attention on the particular characteristics that make the
techniques applicable. For example, we can conceive of the situation of the proposition in
the cartesian plane, the complex plane or two-dimensional vector space. The proposition
contains elements that are capable of straightforward formulation in each of these areas.

In the cartesian plane, the circle can be described by a simple quadratic equation and
the condition for perpendicularity of two lines involves their slopes. If we coordinatize A,
B and P as (−1, 0), (1, 0) and (x, y) where x2 + y2 = 1, then we can check that 1 plus the
product of the slopes of AP and BP is 0. In the complex plane, where multiplication by
i corresponds to the geometric rotation through 90◦ about the origin, the proof becomes
a matter of verifying that if A is taken to be −1, B as +1 and P as z where zz̄ = 1, then
(z − 1)/(z + 1) is a real multiple of z − z̄ and so pure imaginary. Finally, the vector proof
can be carried out with or without coordinates. In the latter case, the proof is particularly
slick. Taking the centre of the circle as the origin of vectors, then

(P − B) · (P − A) = P 2 − P · (A + B) + A · B = O ,

since A = −B and P 2 = B2 = A2 is the square of the radius of the circle.

Some proofs reveal more than others; from some of the arguments, it can be quickly
inferred that angle APB is right if and only if AB is the diameter of a circle that contains
P , so that the converse really is also built into the proof.
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A student’s whose learning is robust is likely to have developed a multifaceted way of
looking at mathematical facts. Her knowledge is hedged around with many connections and
corroborations. The bald statement of results and practice of techniques may not achieve
this; the process of having to construct or follows proofs has a much better opportunity to
obtain this rich knowledge.
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