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QUADRATIC ALLEMANDS

The sequence {xn = n} of natural numbers satisfies the
two recursions

xn+1 + xn−1 = 2xn

and

xn−1xn+1 = x2n − 1.

Thus xn−1 and xn+1 are the two roots of the quadratic
equation

h(x, xn) = 0

where

h(x, y) = x2 − 2xy + (y2 − 1) = (x− y − 1)(x− y + 1).

1



2

Page 2

This motivates the definition of a (quadratic) allemand
{xn} which is determined by a quadratic symmetric func-
tion

h(x, y) = x2 + y2 + βxy + γ(x+ y) + δ

= x2 + (βy + γ)x+ (y2 + γy + δ).

and a seed x0.

We form a bilateral sequence by solving the equation
h(x, x0) = 0, let x−1 be one of its roots and x1 be the
other.

We can then continue the sequence in both directions as
follows. If xn−1 and xn are both known, then h(xn−1, xn) =
0, and xn−2 is the root other than xn of h(x, xn−1) = 0 and
xn+1 is the root other than xn−1 of h(x, xn) = 0.

The allemand sequence satisfies the pair of recursions:

xn+1 + xn−1 = −(βxn + γ) (1)

and

xn+1xn−1 = x2n + γxn + δ. (2)
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xn+1 + xn−1 = −(βxn + γ) (1)

and

xn+1xn−1 = x2n + γxn + δ. (2)

It turns out that a sequence defined by either one of these
recursions individually is an allemand by a suitable choice
of parameter.

If (1) holds, then

xn+1xn−1 − x2n − γxn = xnxn−2 − x2n−1 − γxn−1.

If we take any sequence satisfying (1), we can define δ =
x0x2−x21−γx1 and the sequence becomes an allemand with
the function h(x, y).

Likewise, if (2) holds, then

xn+1 + xn−1 + γ

xn
=
xn + xn−2 + γ

xn−1
,

so that any sequence satifying (2) can be made into an
allemand by defining β = −x0+x2+γ

x1
.
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Example 1. Consider the sequence defined by the recur-
sion:

x0 = 1, x1 = −1, xn+1 =
x2n − xn + 1

xn−1
.

This sequence is {1,−1, 3,−7, 19,−49, 129, . . . }. Prove
that every term in this sequence is an integer.

We can take γ = −1 and δ = 1, and we find that

xn+1 + xn−1 − 1

xn
=
x2 + x0 − 1

x1
=

3 + 1− 1

−1
= −3 = −β.

Thus the sequence is an allemand satisfying

xn+1 = −3xn − xn−1 + 1.

Each term is clearly an integer.

The function implementing the allemand is

h(x, y) = x2 + y2 + 3xy − (x+ y) + 1.

If we change the intial conditions slightly to x0 = x1 = 1
with the same recursion for xn+1xn−1 we can again take
γ = −1, δ = 1. But now xn = 1 for all n and β = −1, and

h(x, y) = x2 + y2 − xy − (x+ y) + 1.
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What are some of the problems that can be explored?
The locus of the equation h(x, y) = 0 is a conic section,
a curve in the plane, one of whose axes is the line y = x.
For an allemand, the mapping (xn−1, xn)→ (xn, xn+1) rep-
resents a dynamical system along this curve. We can in-
vestigate when allemands are periodic regardless of seed
or whether for particular seed. We can also look at varia-
tion in behaviour when some parameters are held fixed and
others allowed to vary.

By translation of the sequence and consider h(x−κ, y−κ)
for a suitable value of κ, as long as β 6= −2, we can tansform
the allemand polynomial to the form x2+y2+βxy+δ. When
β = −2, the locus of h(x, y) = 0 is a parabola. By rescaling
x and y, we may assume that δ = 0,±1.

When β = 0, the locus of h(x, y) = 0 is a circle (when
not degenerate) and each allemand is periodic with period
4. The associated transformation is quarter turn about the
centre.

Example 2. Let

h(x, y) = (x− y)2 − (x+ y) = x2 − (2y + 1)x+ y(y − 1).

Seeding this with 0 yields the bilateral sequence of trian-
gular numbers

{. . . , 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, . . . }
which satisfy the recursions

xn+1 = 2xn − xn−1 + 1 and xn+1 =
x2n − xn
xn−1

.
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The points whose coordinates are pairs of consecutive tri-
angular numbers track along the parabola whose equation
is h(x, y) = 0. The vertex of the parabola is (0, 0) and its
focus is (1/8, 1/8).

Example 3. Let

h(x, y) = x2+y2−xy−5(x+y)+6 = x2−(5+y)x+(y−2)(y−3).

The allemand satisfies the two recursions xn+1 + xn−1 =
xn + 5 and xn+1xn−1 = (xn − 2)(xn − 3). This allemand
has period 6, regardless of the seed. When h(a, b) = 0, the
period is given by

(a, b, b− a+ 5, 10− a, 10− b, 5 + a− b).

Two particular examples are (0, 2, 7, 10, 8, 3) and (1, 3 +√
7, 7 +

√
7, 9, 7−

√
7, 3−

√
7).

Note that h(x + 5, y + 5) = x2 + y2 − xy − 19, which
moves the centre of the locus of the conic to the origian.
The period we identified above of the allemand is moved to
(−5,−3, 2, 5, 3,−2).

Note that this allemand satisfies the recursion xn+1 −
xn + xn−1 = 0, so that xn+3 = −xn and every allemand has
period 6. (This is true whenever β = −1.)

Suppose that we have an allemand with γ = 0 that is
periodic with period m. Then, summing xk+1 +xk−1 = βxk
as k goes from 1 to m, we find that 2(x1 + · · · + xm) =
β(x1 + · · · + xm), whereupon either β = 2 (and we get an
arithmetic progression) or x1 + · · ·+ xm = 0.
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Example 4. Let

h(x, y) = x2 + y2 + 2xy − 7(x+ y) + 12

= x2 + (2y − 7)x+ (y2 − 7y + 12)

= (x+ y − 3)(x+ y − 4),

so that xn+2 + xn−1 = −2xn + 7. A slice of the allemand is

{. . . , a− 1, 4− a, a, 3− a, a+ 1, 2− a, . . . }.

A particular allemand is

{. . . ,−2, 5,−1, 4, 0, 3, 1, 2, 2, 1, 3, 0, 4,−1, 5,−2, 6, . . . }.

Example 5. The sequence {xn = an2 + bn+ c} generated
by a quadratic corresponds to the allemand

h(x, y) = x2 + y2 − 2xy − 2a(x+ y) + (a2 − b2 + 4ac)

= x2 − 2(y + a)x+ (y − a)2 − (b2 − 4ac)

= (x− y)2 − 2a(x+ y) + a2 − (b2 − 4ac).

Since for the function h(x, y) to generate an allemand, we
need it to be symmetric and of degree 2 in each variable, we
can allow h(x, y) to be cubic or even quartic in the variables
together. We look at the cubic situation next.
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We will now make a more systematic study of the alle-
mand generated by the function h(x, y) = x2+y2+βxy+δ,
where |β| 6= 2. When |β| < 2, we can write

β = −2 cos θ = −(eiθ + e−iθ).

Then recursion xn+1 = 2(cos θ)xn − xn−1 is satisfied by
xn = cosnx, which corresponds to δ = cos2 θ−1 = − sin2 θ,
and by xn = sinnθ, which corresponds to δ = − sin2 θ. Al-
ternatively, we have the allemand xn = einθ which cor-
responds to δ = 0. We get a periodic allemand when
θ = 2π/m for some integer m. The general solution of
the linear recursion is

xn = a cosnθ + b sinnθ

where the corresponding δ = 1
2(a2 + b2)(cos 2θ− 1) = (a2 +

b2) sin2 θ.

When |β| > 2, then we can set β = −2 cosh s = −(es +
e−s. In this case, the recursion xn+1 = (2 cosh s)xn − xn−1
is satisfied by xn = ens with corresponding δ = 0, and by
xn = cosh s with δ = (e− e−1)2 = 4 sinh2 s.

Related to this, we can find a polynomial allemands by
considering the function

h(x, y) = x2 + y2 − 2txy + δ(t).

The linear recursion satisfied by the allemand is

xn+1 = 2txn − xn−1,
which is satisfied by the sequences of Chebyshev functions
Tn(t) and Un(t) of the first and second kind. For Tn(t), the
corresponding value of δ is t2 − 1 and for Un(t), it is −1.
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Another generalization is to increase the humber of vari-
ables in the function h. Let

h(x, y, z) = x2 + y2 + z2 + β(xy + yz + zx) + γ(x+ y + z) + δ

= x2 + (β(y + z) + γ)x+ (y2 + z2 + βyz + γ(y + z) + δ).

We create an allemand with a double seed x0 and x1, and
for each value of n, xn+1 and xn−2 are the roots of the
quadratic

h(x, xn, xn−1) = 0.

This allemand satisfies the recursions

xn+1 = −(β(xn + xn−1) + γ + xn−2)

and

xn+1 =
x2n + x2n−1 + β(xnxn−1) + γ(xn + xn−1) + δ

xn−2
.

In fact, our choice of which root is xn and which is xn−2 de-
termines two different allemands (i.e. one is not the reverse
of the other). As for the two variable case, by a translation
of the variables, we see that it suffices to consider h(x, y)
of the form

h(x, y, z) = x2 + y2 + z2 + β(xy + yz + zx) + δ

when β 6= −1.
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Example 6. Let

h(x2 + y2 + z2) = x2 + y2 + z2 + 3(xy + yz + zx) + 1.

This satisfies the recursions xn+1 = −3(xnxn−1)−xn−2 and

xn+1 =
x2n + x2n−1 + 3xnxn−1 + 1

xn−2
.

Some allemands generated by this function are

{. . . ,−3, 2,−1, 0, 1,−2, 3,−4, 5, . . . }
{. . . ,−2, 1,−1, 0, 2,−5, 9,−14, . . . }
{. . . ,−9, 5,−2, 0, 1,−1, 0, 2, . . . }
{. . . ,−5, 0, 2,−1,−3, 10, · · · }
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CUBIC ALLEMANDS

In 1942, the British mathematician, R.C. Lyness, intro-
duced a sequence that exhibits an unexpected periodicity.
This bilateral sequence of nonzero numbers {xn} satisfies
xn−1xn+1 − xn = 1 for every integer n.

This relation can be rewritten

xn+1 =
xn + 1

xn−1
.

If we start with a pair of numbers x, y, the sequence turns
out to be 5-periodic with period

x, y,
y + 1

x
,
x+ y + 1

xy
,
x+ 1

y
.

If we add these five quantities together, we get the func-
tion

f1(x, y) =
x2y + xy2 + x2 + y2 + 2(x+ y) + 1

xy

which satisfies f1(x, y) = f1(y, (y + 1)/x).

(An interesting extension of this is that fact that the se-
quence defined by

xn+1 =
xn + xn−1 + 1

xn−2
has period 8. This unfortunately does not seem to gener-
alize.)
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Next, consider a sequence satisfying the recursion

xn+1 =
xn
xn−1

.

This has period 6 with the period (x, y, yx ,
1
x ,

1
y ,

x
y ).

Adding the six terms gives the function

f0(x, y) =
x2y + xy2 + x2 + y2 + x+ y

xy
.

which satisfies f0(x, y) = f0(y, y/x).

These two example motivate considering the recursion

xn+1 =
xn + c

xn−1
and checking out the function

fc(x, y) =
x2y + xy2 + x2 + y2 + (c+ 1)(x+ y) + c

xy
.

We find that, although in general, the sequence is not
periodic, nevertheless

fc(x, y) = fc(y, (y + c)/x).

Thus fc(xn, xn+1) = k for some constant k along the se-
quence {xn}.
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Put another way, {xn} is an allemand generated by the
cubic polynomial

hc,k(x, y) = x2y + xy2 + x2 + y2 − kxy + (c+ 1)(x+ y) + c

= (y + 1)x2 + (y2 − ky + (c+ 1))x+ (y + 1)(y + c).

We suppose that the allemand never contains −1, which
leads to a degeneracy.

We have a number of results involving periodicity:

(1) If c 6= 0, 1, then the allemand is not generally periodic,
although periodicity may occur for specific pairs (c, k).

(2) The allemand Sc satisfied by xn+1 = (xn + c)/xn−1 is
the constant sequence {r} if and only if r2 = r+ c, and the
corresponding value of k is 2(r + 1) + 2(c+ 1)r−1 + cr−2.

(3) The allemand Sc has period 2 whose entries are the
roots of the quadratic equation t2 + t + 1 = c. The cor-
responding value of k is 3. (When c = 1, the situation
degenerates.)

(4) The allemand Sc has the 3-period (−1,−1, 1− c) and
the corresponding value of k is −(c+ 1). The case c = 1 is
degenerate.

(5) Period 5 allemands occur if and only if c = 1 for any
value of k.
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(6) When c 6= 0, there are no allemands Sc of smallest
period 6.

(7) There is a allemand Sc of smallest period 7 if and only
if k = −(c−1 + 1 + c).

(8) There is an allemand Sc of smallest period 8 if and
only if k = −(2c+ c−1).

(9) There is an allemand Sc of smallest period 9 if and
only if k = c2 − 3c− c−1.

(10) There is an allemand Sc of smallest period 10 if and
only if

k = −
(

1 + c+ 3c2 + c3

c(c+ 1)

)
.

If we fix a positive value of c 6= 1, and allow k to vary, we
get loci of hc,k(x, y) = 0 part of which are nested loops in
the positive quadrant. The mapping induced on these loops
is sometimes periodic, the smallest possible period being
9. The rotation number (the number of circuits needed
to come back to the original point divided by the period)
varies between 1/4 and 1/5. For example, when c = 6,
there is an allemand with period 9 and rotation number
2/9 when k = 18− 1/6.
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Generalizing, we define an allemand as a bilateral se-
quence {xn : n ∈ Z} formed from a seed x0 and a symmet-
ric polynomial h(x, y) which is quadratic in each for which,
given any integer n, xn−1 and xn+1 are the two roots of the
equation h(x, xn) = 0 (or, equivalently h(xn, x) = 0).

Observe that, once x0 and x1 have been fixed, then the
remainder of the sequence is uniquely determined.

We have already considered quadratic allemands. Now
we can look at the situation where h(x, y) is cubic in x and
y together, but quadratic in each variable.

Let

h(x, y) = x2y + xy2 + α(x2 + y2) + βxy + γ(x+ y) + δ

= (y + α)x2 + (y2 + βy + γ)x+ (αy2 + γy + δ).

As described above, we can determine a bilateral sequence
by specifying the function h and a seed x0. We will suppose
that α is not a term in the sequence.

We now consider allemands that avoid the term −α. Any
such allemand corresponding to function h(x, y) satisfies
both of the recursions

xn+1 + xn−1 = −
[
x2n + βxn + γ

xn + α

]
(3)

xn+1xn−1 =
αx2n + γxn + δ

xn + α
(4)

As in the quadratic case, a cubic allemand satisfies two
related recursions.
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Proposition. We have

h

(
αy2 + γy + δ

x(y + α)
, y

)
=
αy2 + γy + δ

x2(y + α)
h(x, y)

and

h

(
−
[
αy2 + βy + γ

y + α

]
− x, y

)
= h(x, y)

with the result that h(x,y)
xy is invariant along any recursion

satisfying (4) and h(x, y) is invariant along any recursion
satisfying (3).

It follows that, given a sequence {xn} satisfying (4), we
can select β so that h(xn, xn+1) = 0 and so it is an allemand.

Similarly, given a sequence {xn} satisfying (3), we can
select δ so that h(xn, xn+1) = 0 and so it is an allemand.

Any recursion satisfying either (5) or (6) will satisfy the
other with a suitable choice of parameters.

Proof.

h

(
αy2 + γy + δ

x(y + α)
, y

)
= (y + α)

(αy2 + γy + δ)2

x2(y + α)2

+ (y2 + βy + γ)
αy2 + γy + δ

x(y + α)

+ (αy2 + γy + δ)

=
αy2 + γy + δ

x2(y + α)[
(αy2 + γy + δ) + x(y2 + βy + γ) + x2(y + α)

]
=
αy2 + γy + δ

x2(y + α)
h(x, y).
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h

(
−
[
y2 + βy + γ

y + α

]
− x, y

)
= (y + α)

[
x2 +

2x(y2 + βy + γ)

y + α
+

(y2 + βy + γ)2

(y + α)2

]
− (y2 + βy + γ)

[
y2 + βy + γ

y + α
+ x

]
+ (αy2 + γy + δ) = h(x, y).

The remaining statements of the proposition follow from
these relations. If (4) holds, we select β so that h(xk, xk+1) =
0 when xkxk+1 6= 0; it then follows by induction that h(xn, xn+1) =
0 and so the recursion satisfies (3). A similar argument ap-
plies if we assume that (3) holds.

If H(x, y) = h(x + κ, y + κ), and if {xn} is an allemand
for h, then {xn − κ} is an allemand for H; thus there is a
one-one correspondence between the allemands for the two
functions. Since

H(x, y) = x2y + xy2 + (α + κ)(x2 + y2) + (β + 4κ)xy

+ (3κ2 + 2ακ+ βκ+ γ)(x+ y) + h(κ, κ)

we can, without loss of generality, select κ to make a desired
coefficient vanish.

We started this note with an example of an allemand S1 of
period 5. Before we examine this particular period in more
detail, let us look at situations where other periodicities
can occur.



18

Page 18

Constant allemands. Suppose h(x, y) = x2y+xy2+α(x2+
y2) +βxy+ γ(x+ y) + δ has a constant allemand for which
xn = κ for all n.

A necessary condition for this is κ3 = γκ+ δ.

Conversely, for any γ and δ with δ 6= 0, we choose real
κ for which κ3 = γκ + δ and then select α and β so that
2α + β = −3κ− γ/κ to obtain a constant allemand.

To obtain the zero sequence as a constant allemand, it is
necessary and sufficient to take γ = δ = 0.

This allemand satisfies the pair of recursion relations

xn+1 + xn−1 = −xn(xn + β)

xn + α

xn+1xn−1 =
αx2n
xn + α

.
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Here are a few simple cases where periodicity occurs:

Example 7. Let h(x, y) = x2y + xy2 + α(x2 + y2 + xy)
Any allemand satisfies xn+1 + xn + xn−1 = 0 and so is peri-
odic with period 3, the periodic segment being of the form
{u, v,−u− v} with u, v, α related by (u2 +uv+ v2)α+ (u+
v)uv = 0.

Example 8. Let h(x, y) = x2y+xy2+βxy+δ In this case,
we find that xn+1 +xn +xn−1 = −β and xn+1xnxn−1 = δ so
that the allemand must have period 3. An example is given
by h(x, y) = x2 + y2x+ 4xy + 6 which yields the allemand
with period (1,−2,−3).

Example 9. h(x, y) = x2y + xy2 + βxy + γ(x+ y)
This yields an allemand of period 4, regardless of the

starting value. If u, v are consecutive terms, then the next
two terms are γ/u, γ/v.

Now we move to the period 5 situation.
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Proposition 3. An allemand generated by the function
h(x, y) = x2y+xy2+βxy+γ(x+y)+δ is periodic of period
dividing 5 regardless of seed if and only if γ3 + δ2 = βγδ.

Proof. We can work from either recurrence satisfied by
the allemand. From the first, we have

xn+2 + xn+1 + xn = −β − γ

xn+1

xn + xn−1 + xn−2 = −β − γ

xn−1
whence

xn+2 + xn+1 + xn + xn−1 + xn−2 = −2β − γ
(
xn+1 + xn−1
xn+1xn−1

)
− xn

= −2β + γ

(
x2n + βxn + γ

γxn + δ

)
− xn

=
−(βγ + δ)xn + (γ2 − 2βδ)

γxn + δ

= −
(
β +

δ

γ

)
+

(
γ3 + δ2 − βγδ
γ2xn + γδ

)
.

The allemand has period 5 if and only if the sum of any
five consecutive terms is constant. This will occur if and
only if the term involving xn vanishes identically, i.e., if
and only if the required condition holds.

An alternative argument uses the product of five consec-
utive terms. We have

xn+2xn+1x
2
nxn−1xn−2 = (γxn+1 + δ)(γxn−1 + δ)

= γ2
(
γxn + δ

xn

)
− γδ

(
xn + β +

γ

xn

)
+ δ2

= (γ3 + δ2 − βγδ)− γδxn
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whence

xn+2xn+1xnxn−1xn−2 = −γδ +

(
γ3 + δ2 − βγδ

xn

)
.

The result again follows. QED

Proposition 3. An allemand generated by the function
h(x, y) = x2y+xy2+βxy+γ(x+y)+δ is periodic of period
dividing 5 regardless of seed if and only if γ3 + δ2 = βγδ.

We check this result against the example that introduced
this paper. If hc,k(x, y) = x2y + xy2 + x2 + y2 − kxy + (c+
1)(x+ y) + c, we compute

Hc,k(x, y) = hc,k(x− 1, y − 1)

= x2y + xy2 − (k + 4)xy + (k + c+ 2)(x+ y)− (k + c+ 2)

= yx2 + [y2 − (k + 4)y + (k + c+ 2)]x+ (k + c+ 2)(y − 1).

This has the form under discussion, where β = −(k + 4),
γ = −δ = k + c+ 2. It is readily checked that

γ3 + δ2 − βγδ = (k + c+ 2)2(c− 1) .

If k+ c+ 2 = 0, then the allemand degenerates. Regardless
of the seed, 0 is a root of the quadratic equation, and if we
then plug in 0 to get the neighbouring entries, the quadratic
degenerates. Therefore, we should suppose that k+c+2 6=
0. Thus, we see that every allemand from hc,k(x, y) is of
period 5 if and only if c = 1.
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Here are examples for which the allemand can be periodic
or nonperiodic depending on the seed.

Example 10. h(x, y) = x2y + xy2 − 3xy − 2(x+ y) + 6 =
yx2 + (y2 − 3y − 2)x + (−2y + 6). We have that h(x, 1) =
(x−2)2; h(x, 2) = 2(x−1)2; h(x, 1/2) = (1/4)(x−4)(2x−5),
h(x, 4) = 2(2x − 1)(x + 1); h(x,−1) = −(x − 4)(x + 2),
h(x,−2) = −2(x + 1)(x − 5), h(x, 5) = (x + 2)(5x − 2),
h(x, 2/5) = (1/10)(x−5)(5x−13). This function generates
the period 2 allemand {· · · , 1, 2, 1, 2, · · · } as well as the (ap-
parently) nonperiodic allemand {· · · , 5/2, 1/2, 4,−1,−2, 5, 2/5, · · · }.

Example 11. h(x, y) = x2y+xy2− 26
3 xy+3(x+y)−26 =

yx2 + (y2 − 26
3 y + 3)x + (3y − 26). There is a period 2

allemand with period (−1
3 , 9).

h(x,−1
3) = −1

3x
2 + (19 + 26

9 + 3)x− 27 = −1
3(x− 9)2.

h(x, 9) = 9x2 + (81− 78 + 3)x+ 1 = (3x+ 1)2.

If we take 12 as the seed, we find that

h(x, 12) = 12x2 + 43x+ 10 = (4x+ 1)(3x+ 10),

so that the allemand contains the chunk {. . . ,−1/4, 12,−10/3, . . . .
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There is a lot of untilled soil here. Let me list some
question that can be investigated.

(1) What familiar sequences are in fact allemands? We
have seen for example that the sequence of integers and of
triangular numbers are allemands.

(2) What are the conditions for an allemand to be peri-
odic regardless of the seed?

(3) When can an allemand be periodic for some seeds,
and what can be said about the periods?

(4) Investigating the dynamic of the planar transforma-
tion (x, y) − −− > (y, z) where h(x, y) = h(y, z) = 0. For
example, when is it conjugate to the mapping θ → cθ on
the unit circle in the complex plane parametrized by the
argument θ?

(5) Is there anything useful or interesting that can be said
about quartic allemands implemented by

h(x, y) = x2y2+ε(x2y+xy2)+α(x2+y2)+βxy+γ(x+y)+δ?
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