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Introduction

An equivalence relation

Definition 1
Two lattice polygons in the plane are equivalent if there is a
continuous bijection between their edges and vertices such
that, up to SL(2,Z)-transformations, the angles between the
corresponding edges match simultaneously.

Question: Are the following two polygons equivalent?
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Introduction

Pizza slices

Definition 2
A pizza slice is a quadrilateral equivalent to one of the
quadrilaterals in the following figure:
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Pizzas

Definition 3
A pizza is a polygon subdivided into pizza slices in such a way
that each pizza slice attaches to the center of the pizza at one
of its red vertices, and each slice has exactly one vertex
matching with a vertex of the polygon (its vertex opposite to the
central one).
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Pizzas

We will return to other aspects of the pizza after we are finished
with the dough, but until then, we ask:

Question
Up to equivalence, how many pizzas are there?
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The dough

How does one go about baking a pizza? We could just start
putting pieces together:
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The dough

How does one go about baking a pizza? We could just start
putting pieces together:
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The dough

To do it more systematically, start with a single pizza slice
sheared in a way that the bottom left basis of Z2 is the standard
basis:
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The dough

We know that the (clockwise) next slice will have to attach to
the green basis
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For instance,
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The dough

And the next slice will have to attach to the purple basis:
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The dough

And if a pizza is formed, we must get back to the standard
basis after some number of pizza slices
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So we assign a matrix (in SL2(Z)) for each pizza slice that
records how it transforms the standard basis, for example

is assigned the matrix
(
−1 1
−1 0

)
.
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And the second pizza slice

is assigned the matrix
(
? ?
? ?

)
.
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And the second pizza slice

is assigned the matrix
(
? ?
? ?

)
.
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The dough

And the second pizza slice

is assigned the matrix
(

0 1
−1 1

)
.
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So if the first pizza slice changes the standard basis to M and
the second one to N, then the two pizza slices consecutively
change it to

(MNM−1)M = MN.

Theorem 4
Let M1,M2, . . . ,Ml be the matrices associated to a given list of

pizza slices. If they form a pizza, then
∏l

i=1 Mi =

(
1 0
0 1

)
.
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So if the first pizza slice changes the standard basis to M and
the second one to N, then the two pizza slices consecutively
change it to (MNM−1)M = MN.

Theorem 4
Let M1,M2, . . . ,Ml be the matrices associated to a given list of

pizza slices. If they form a pizza, then
∏l

i=1 Mi =

(
1 0
0 1

)
.
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Side lengths

What is wrong with the following pizza?

The current matrix is
(

0 −1
1 1

)
.
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What is wrong with the following pizza?

The current matrix is
(

0 −1
1 1

)2

=

(
−1 1
1 0

)
.
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Side lengths

What is wrong with the following pizza?

The current matrix is
(

0 −1
1 1

)3

=

(
−1 0
0 −1

)
.
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Side lengths

What is wrong with the following pizza?

The current matrix is
(

0 −1
1 1

)4

=

(
0 −1
1 −1

)
.
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Side lengths

What is wrong with the following pizza?

The current matrix is
(

0 −1
1 1

)5

=

(
1 −1
1 0

)
.
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Side lengths

What is wrong with the following pizza?

The current matrix is
(

0 −1
1 1

)6

=

(
1 0
0 1

)
.
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The dough

Layers

What is wrong with the following pizza?

The current matrix is
(

0 1
−1 −1

)(
0 1
−1 −1

)
=

(
−1 −1
1 0

)
.
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Layers

What is wrong with the following pizza?

The current matrix is
(
−1 −1
1 0

)(
0 1
−1 0

)
=

(
1 −1
0 1

)
.
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Layers

What is wrong with the following pizza?

The current matrix is
(

1 −1
0 1

)(
−1 1
−1 0

)
=

(
0 1
−1 0

)
.
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Layers

What is wrong with the following pizza?

The current matrix is
(

0 1
−1 0

)(
0 1
−1 0

)
=

(
−1 0
0 −1

)
.
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Layers

What is wrong with the following pizza?

The current matrix is
(
−1 0
0 −1

)(
0 1
−1 0

)
=

(
0 −1
1 0

)
.



Pizzas

The dough

Layers

What is wrong with the following pizza?

The current matrix is
(

0 −1
1 0

)(
0 1
−1 0

)
=

(
1 0
0 1

)
.
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Layers

To make sure our pizza is single-layered, we want to think of
pizza slices not living in SL(2,R) but in its universal cover
S̃L2(R). We will represent this by assigning the slice its matrix

and the straight line path connecting
(

1
0

)
to M

(
1
0

)
, i.e.

and we think of multiplication in S̃L2(R) as multiplication of the
matrices and appropriate concatenatenation of paths.
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The dough

Layers

Then for a pizza, we will have a closed loop around the origin.
Also, as this path is equivalent to the path consisting of
following the primitive vectors of the spokes of the pizza, its
winding number will coincide with the number of layers of our
pizza, as demonstrated by the following picture:
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The dough

The Braid group

A fun fact about this lifting of pizza slices to S̃L2(R):

Theorem 5

(Wikipedia) The preimage of SL2(Z) inside S̃L2(R) is Br3, the
braid group on 3 strands.
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The dough

The Braid group

The braid group Br3 is generated by the braids A and B (and
their inverses):

with (vertical) concatenatenation as multiplication.
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The dough

The Braid group

The only relation is ABA = BAB



Pizzas

The dough

The Braid group

The homomorphism Br3 → SL(2,Z) is given by:

A 7→
(

1 1
0 1

)
B 7→

(
1 0
−1 1

)
Exercise: Check what the braid relation corresponds to via this
mapping.
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The dough

The Braid group

There is a very special element of Br3, the “full twist” braid
(AB)3:

who gets sent to
(
−1 0
0 −1

)
. In fact, the kernel of the

homomorphism is generated by (AB)6.
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The Braid group

Braids are really cool, but for computational reasons we would
prefer to work with matrices:

Lemma 6

The map Br3 → SL2(Z)× Z, with second factor ab given by
abelianization, is injective.

So for each pizza slice, we want to specify an integer.
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The dough

The Braid group

This integer should be compatible with the abelianization maps:

Lemma 7

([5]) The abelianization of SL2(Z) is Z/12Z. Moreover, for(
a b
c d

)
∈ SL2(Z),

the image in Z/12Z can be computed by taking

χ

(
a b
c d

)
= ((1−c2)(bd+3(c−1)d+c+3)+c(a+d−3))/12Z.
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The dough

Nutrition

Definition 8
The nutritive value ν of a pizza slice S is the rational number
ab(S)

12 . They are given by
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The dough

Nutrition

Assigning the nutritive value of pizza slices is equivalent to
lifting their matrices to Br3:

(Notice: ν(S) is equal to the number of As and Bs, minus the
number of A−1s and B−1s)



Pizzas

The dough

Nutrition

Now we can make sure our pizza is bakeable in a conventional
oven by requiring that the product of the matrices is the identity,
and the sum of the nutritive values of the slices in the pizza is
12
12 . This almost reduces the classification to a finite problem.
Rephrasing this in terms of braids, a pizza is a list of the words
of the slices whose product is equal to the double full twist
element (AB)6.
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Toppings

Toppings

Having made the dough, we must not forget about toppings.
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Toppings

Toppings should always be arranged nicely, and the possible
toppings on the individual pizza slices are:
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Topping arrangements

Also, even though we specified the allowed topping
configurations on the individual slices, they should of course be
consistent across the pizza:

Every edge of the pizza must have the number of toppings
equal to its lattice length going across it.
Toppings can only end at the edge of the pizza, not
between slices.
No two spokes (edges adjacent to the center vertex)
should have the same set of toppings over them.
No two spokes should have a combined amount of
toppings on them equal to the toppings on a third spoke.

If these conditions are satisfied, then we call this configuration
a topping arrangement.
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Topping arrangements

For example, these are all the possible toppings on this pizza:
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Topping arrangements

And here is a topping arrangement:
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Topping arrangements

Sometimes we do not need to use all available toppings to get
an arrangement:
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Toppings

Simply laced pizza slices

Because of the low nutritive value (and general annoyingnesss)
of certain pizza slices, we decided to only use the following set
of slices for our pizzas (a condition that we will refer to as
“simply laced”):
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Toppings

Main Result

Our main result is the following:

Theorem 9
There are 20 non-equivalent pizzas made of simply laced pizza
slices, and at least 19 of those have Kazhdan-Lusztig atlases
(a necessary condition for this is the existence of a topping
arrangement). Moreover, in each of the cases where H is of
finite type, the degeneration of definition 16 can be carried out
inside H/BH .

Relaxing the simply laced assumption to “doubly laced” still
leaves a finite problem, but with more than 400 non-equivalent
pizzas, and until the process of finding H can also be
automated, this is not feasible. Other future directions could be
relaxing any/all of the toric, smooth, 2-dimensional
assumptions.
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Simply laced pizzas
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A degeneration of the Grassmannian

Define the family

F =


(V1, . . . ,Vn, s) : Vi ∈ Grk (Cn),


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
s 0 0 . . . 0

Vi ⊆ Vi+1(mod n)


.

For s 6= 0, if we know V1, then the rest of the Vi ’s are uniquely
determined, so

Fs ∼= Grk (Cn),

but the fiber F0 is something new.
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A degeneration of the Grassmannian

The Grassmannian, and hence Fs has an action of T = (C×)n,
and for s 6= 0 the fixed points of which are identified with
F T

s =
([n]

k

)
(where [n] = {1,2, . . . ,n}). For the special fiber,

F T
0 =

{
(λ1, . . . , λn) ∈

(
[n]
k

)n

: shift−1(λi) ⊆ λi+1

}
where shift−1(λi) =

(
{λ1

i − 1, . . . λk
i − 1} ∩ [n]

)
.

Question

What are the objects that naturally index F T
0 ?
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Bounded juggling patterns

Let Ŵ = {f : Z→ Z : f (i + n) = f (i) + n} be the Weyl group of
ĜLn(C). It contains the so-called bounded juggling patterns

Bound(k ,n) :=

{
f ∈ Ŵ : f (i)− i ∈ [0,n],

(
n∑

i=1

f (i)− i

)/
n = k

}
.

Define a map m : Bound(k ,n)→ F T
0 by f 7→ (λ1, . . . , λn), where

λi =

(
(f (≤ i)− i) \ (−N) ∈

(
[n]
k

))
Then m is a bijection, but more is true:

Theorem 10
(Knutson, Lam, Speyer, [4]) The map m is an order-reversing
map w from the poset of positroid strata of Grk (Cn) to Ŵ .
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A Bruhat atlas on the Grassmannian

The geometry agrees with the combinatorics, in the sense that

Theorem 11
(Snider, [7]) There is a stratified isomorphism between the
standard open sets Uf of Grk (Cn) and X w(f )

o ⊆ ĜLn(C)/B.

and the T -equivariant degeneration of Grk (Cn) (via F ) sits
inside ĜLn(C)/B as a union of Schubert varieties.
We would like to axiomatize this phenomenon, we want a
stratified TM -manifold (M,Y), a Kac-Moody group H, and we
want the stratifications to “match up” appropriately.
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Cohomology of flag varieties

Let H be a semisimple algebraic group (e.g. SLn(C)).
Let P a parabolic subgroup (e.g. a subgroup containing all
upper triangular matrices).
Then H/P is a projective variety, known as a flag variety
(e.g. Fl = {(V1 ⊂ V2 ⊂ . . .Vk ⊂ Cn)}).
The subgrop B (upper triangular matrices) acts on H/P
with finitely many orbits, H/P =

⊔
w∈W P BwP/P, with

BwP/P ∼= Cl(w) (e.g. CPn = Cn t Cn−1 t . . . t {pt}).
The closures X w := BwP/P are called Schubert
varieties. Their classes [X w ] form an additive basis of
H∗(H/P).



Pizzas

Motivation 2

Multiplicity-free subvarieties

Since the [X w ] are a basis of H∗(H/P), the class [V ] of any
subvariety can be written as [V ] =

∑
cw [X w ] with cw ∈ N.

Definition 12
(Brion, [2]) Let V ⊆ H/P be a subvariety. Write
[V ] =

∑
cw [X w ]. Then V is multiplicity-free if cw ∈ {0,1}.

Theorem 13
(Brion, [2]) Let V ⊆ H/P be a multiplicity-free subvariety. Then
V is normal and Cohen-Macaulay, and admits a flat
degeneration to a (reduced, C-M) union of Schubert varieties.

We are interested in finding multiplicity-free subvarieties of full
flag varieties H/BH . Generically, they receive the following
structure:
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Equivariant Bruhat atlases

Definition 14

(He, Knutson, Lu, [3]) An equivariant Bruhat atlas on a stratified
TM -manifold (M,Y) is the following data:

1 A Kac-Moody group H with TM ↪→ TH ,

2 An atlas for M consisting of affine spaces Uf around the minimal
strata, so M =

⋃
f∈Ymin

Uf ,

3 A ranked poset injection w : Yopp ↪→WH whose image is a union
of Bruhat intervals

⋃
f∈Ymin

[e,w(f )],

4 For f ∈ Ymin, a stratified TM -equivariant isomorphism
cf : Uf

∼→ X w(f )
o ⊂ H/BH ,

5 A TM -equivariant degeneration M  M ′ :=
⋃

f∈Ymin
X w(f ) of M

into a union of Schubert varieties, carrying the anticanonical line
bundle on M to the O(ρ) line bundle restricted from H/BH .
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Bruhat and Kazhdan-Lusztig atlases

Examples of Bruhat atlases

Some remarkable families of stratified varieties possess
(equivariant?) Bruhat atlases:

Theorem 15
(He, Knutson, Lu, [3]) Let G be a semisimple linear algebraic
group. There are equivariant Bruhat atlases on every G/P, and
for the wonderful compactification Ĝ of a group G.

A rather interesting fact about the Bruhat atlases on the above
spaces related to G is that the Kac-Moody group H is
essentially never finite, or even affine type, although H ’s Dynkin
diagram is constructed from G’s.



Pizzas

Bruhat and Kazhdan-Lusztig atlases

The structure on the strata

Equivariant Bruhat atlases put the families G/P and G in the
same basket, so one naturally wonders what other spaces
could have this structure. Let (H, {cf}f∈Ymin ,w) be an
equivariant Bruhat atlas on (M,Y). We would like to
understand what sort of structure a stratum Z ∈ Y inherits from
the atlas. Each Z has a stratification,

Z :=
⋃

f∈Ymin

Uf ∩ Z , with Uf ∩ Z ∼= X w(f )
o ∩ Xw(Z )

since by (14), the isomorphism Uf
∼= X w(f )

o is stratified.
Therefore Z has an “atlas” composed of Kazhdan-Lusztig
varieties.
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The structure on the strata

Definition 16

A Kazhdan-Lusztig atlas on a stratified TV -variety (V ,Y) is:

1 A Kac-Moody group H with TV ↪→ TH ,

2 A ranked poset injection wM : Yopp →WH whose image is⋃
f∈Ymin

[w(V ),w(f )],

3 An open cover for V consisting of affine varieties around each
f ∈ Ymin and choices of a TV -equivariant stratified isomorphisms

V =
⋃

f∈Ymin

Uf
∼= X w(f )

o ∩ Xw(V ),

4 A TV -equivariant degeneration V  V ′ =
⋃

f∈Ymin
X w(f ) ∩ Xw(V )

carrying some ample line bundle on V to O(ρ).
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Toric surfaces

Question
Which toric varieties admit Bruhat/K-L atlases?

As a first step towards answering the question above, we ask

Question
Which smooth toric surfaces admit Bruhat/K-L atlases?
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Toric surfaces

The definition is a big package, so we summarize what we are
after as a checklist. To put an equivariant Kazhdan-Lusztig
atlas on a smooth toric surface M, we need:
2 A subdivision of M ’s moment polygon into a pizza.
2 A Kac-Moody group H with TM ↪→ TH .
2 An assignment w of elements of WH to the vertices of the

pizza.
2 A point m ∈ H/BH such that TM ·m ∼= M.
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Toric surfaces

Pizzas

Let M be a smooth toric surface with an equivariant
Kazhdan-Lusztig atlas. Part (4) of definition 16 gives us a
decomposition of M ’s moment polygon into the moment
polytopes of the Richardson varieties X w(f ) ∩ Xw(V ), or, more
pictorially, a slicing of the polytope into pizza slices:
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Toric surfaces

Pizzas

It turns out that the Bruhat case is not very interesting, largely
because the moment polytopes of the pizza slices must be
moment polytopes of Schubert varieties (labeled by the rank 2
groups where they appear):

which must attach to the center of the pizza at one of the red
vertices.
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Toric surfaces

Equivariant Bruhat atlases

Theorem 17
The only smooth toric surfaces admitting equivariant Bruhat
atlases are CP1 × CP1 and CP2.

The corresponding pizzas are:

with H = (SL2(C))4, ŜL2(C), respectively.
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Toric surfaces

Richardson quadrilaterals

Proposition 18

The moment polytope of a Richardson surface in any H appears in a
rank 2 Kac-Moody group, and the following is a complete list of the
ones who are smooth everywhere except possibly where they attach
to the center of the pizza (possible center locations in red).



Pizzas

Toric surfaces

Kazhdan-Lusztig atlases

Using the nutritive values of the Richardson quadrilaterals, we
force this (at least the simply-laced case) through a computer to
obtain all possible pizzas.
2� A subdivision of M ’s moment polygon into a pizza.
2 A Kac-Moody group H with TM ↪→ TH .
2 An assignment w of elements of WH to the vertices of the

pizza.
2 A point m ∈ H/BH such that TM ·m ∼= M.
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Toric surfaces

Kazhdan-Lusztig atlases

Recall that in order to have a Kazhdan-Lusztig atlas on a toric
surface, we need a Kac-Moody group H and a map
w : Yopp →W , i.e. we need a map from the vertices of the
pizza to W , where vertices should be adjacent when there is a
covering relation between them.

Lemma 19

All covering relations v l w are of the form vrβ = w for some
positive root β, and we will label the edges in the pizza by these
positive roots of H. The lattice length of an edge in a pizza
equals the height of the corresponding root.
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Toric surfaces

Kazhdan-Lusztig atlases

Consider the example of CP2:

with α, β, γ the simple roots of H = ŜL2(C).
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Toric surfaces

Kazhdan-Lusztig atlases

Note that the covering relations in W correspond to T -invariant CP1’s
in H/BH , and the edge labels are determined by the cohomology
classes of these. For instance, if we know the labels on two edges of
a pizza slice:

Then we can deduce the other two:
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Toric surfaces

Kazhdan-Lusztig atlases

And this is what toppings are about! For CP2, the compatible
topping arrangement leading to this atlas is:

with H ’s diagram being
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Kazhdan-Lusztig atlases

So considering the toppings on the pizzas, we can find potential
H ’s.
2� A subdivision of M ’s moment polygon into a pizza.
2� A Kac-Moody group H with TM ↪→ TH .
2 An assignment w of elements of WH to the vertices of the

pizza.
2 A point m ∈ H/BH such that TM ·m ∼= M.
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Kazhdan-Lusztig atlases

For a given H, finding WH -elements labeling the vertices of the
pizza is (usually) not very difficult.
2� A subdivision of M ’s moment polygon into a pizza.
2� A Kac-Moody group H with TM ↪→ TH .
2� An assignment w of elements of WH to the vertices of the

pizza.
2 A point m ∈ H/BH such that TM ·m ∼= M.
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Toric surfaces

Kazhdan-Lusztig atlases

Having the labels on the vertices, for H finite type, we may use
the map H/BH � H/Pαc

i
for simple roots αi to find which

Plücker coordinates should vanish on a potential m.
2� A subdivision of M ’s moment polygon into a pizza.
2� A Kac-Moody group H with TM ↪→ TH .
2� An assignment w of elements of WH to the vertices of the

pizza.
2� A point m ∈ H/BH such that TM ·m ∼= M.
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Kazhdan-Lusztig atlases
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